Math 220A

1. Solve the following initial-value problem,

$$
\left\{\begin{array}{l}
u_{t}+u_{x}+u^{2}=0 \\
u(x, 0)=x .
\end{array}\right.
$$

2. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u^{2} u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}0 & x<0 \\ 1 & x>0\end{cases}
$$

which satisfies the Oleinik entropy condition.
3. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi, 0<y<\pi\right\}$. Find all eigenvalues and eigenfunctions for the following eigenvalue problem

$$
\begin{cases}-\Delta X(x, y)=\lambda X(x, y) & (x, y) \in \Omega \\ X(0, y)=X_{x}(\pi, y)=0, & 0<y<\pi \\ X(x, 0)=X_{y}(x, \pi)=0, & 0<x<\pi\end{cases}
$$

4. Find the solution of the following initial-value problem for an inhomogeneous wave equation in \mathbb{R}^{3},

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=|x|^{2} \quad x \in \mathbb{R}^{3} \\
u(x, 0)=0 \\
u_{t}(x, 0)=0
\end{array}\right.
$$

You should explicitly calculate any integrals involved in the solution.
5. Let u be the solution of the wave equation in three dimensions,

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad x \in \mathbb{R}^{3} \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

where the initial data ϕ, ψ is supported in the ball of radius R about the origin. Let x_{0} be a point in \mathbb{R}^{3} with $\left|x_{0}\right|>R$.
(a) Find the largest time T_{1} for which we can guarantee that $u\left(x_{0}, t\right)$ must be zero for all $0 \leq t<T_{1}$.
(b) Find the smallest time T_{2} such that we can guarantee that $u\left(x_{0}, t\right)$ must be zero for all $t>T_{2}$.
6. Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}=\lambda X \quad 0<x<l \\
X(0)-a_{1} X^{\prime}(0)=0 \\
X(l)+a_{2} X^{\prime}(l)=0
\end{array}\right.
$$

where $a_{1}, a_{2} \geq 0$.
(a) Prove all eigenvalues are positive.
(b) Show there is an infinite sequence of positive eigenvalues λ_{n} such that $\lambda_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. (You may need to use an implicit formula to define your eigenvalues.)
(c) Find the eigenfunction X_{n} associated with each eigenvalue λ_{n}.
7. Let λ_{n}, X_{n} be the eigenvalues and eigenfunctions of the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}=\lambda X \quad 0<x<l \\
X(0)-a_{1} X^{\prime}(0)=0 \\
X(l)+a_{2} X^{\prime}(l)=0
\end{array}\right.
$$

where $a_{1}, a_{2} \geq 0$. By the previous problem, we know each $\lambda_{n}>0$. Use separation of variables to solve the following initial-value problem,

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t) & 0<x<l \\ u(x, 0)=\phi(x) \\ u_{t}(x, 0)=\psi(x) \\ u(0, t)-a_{1} u_{x}(0, t)=0 \\ u(l, t)+a_{2} u_{x}(l, t)=0 & \end{cases}
$$

where $a_{1}, a_{2} \geq 0$. You do not need to evaluate any integrals. You should express your solution in terms of $\phi, \psi, f, \lambda_{n}$, and X_{n}.
8. Consider the initial-value problem for the telegrapher's equation,

$$
(*)\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}+a u_{t}=0 \quad a>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

Define the energy function associated with this equation as

$$
E(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left[u_{t}^{2}+c^{2} u_{x}^{2}\right] d x
$$

(a) Prove that for solutions u of $\left(^{*}\right)$ which have compact support, $E(t)$ is a nonincreasing function of t.
(b) Use the energy function to prove there exists at most one smooth solution of the initial-value problem $\left({ }^{*}\right)$ which has compact support.
9. Let u be the solution of the wave equation on the interval $[0, l]$ with Dirichlet boundary conditions,

$$
\begin{cases}u_{t t}-u_{x x}=0 & 0<x<\pi \\ u(x, 0)=x \\ u_{t}(x, 0)=\sin (x) \\ u(0, t)=0=u(l, t)\end{cases}
$$

Use the method of reflection to find the values of u in regions R_{1} and R_{2} shown below.

10. Answer true or false to the following questions. No explanation is necessary.
(a) There exists a unique solution of the following initial-value problem,

$$
\left\{\begin{array}{l}
u_{t}+x u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

for all smooth functions ϕ.
(b) All eigenvalues of $-\partial_{x}^{2}$ are positive if the boundary conditions are symmetric.
(c) The interval of dependence for the solution of the inhomogeneous wave equation on the half-line with Neumann boundary conditions is $[0, x+c t]$ for the point (x, t) such that $x-c t<0$.
(d) If $f \in C^{1}([-l, l])$, then the full Fourier series of f converges to f pointwise in $(-l, l)$.
(e) Consider the wave equation

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad x \in \mathbb{R}^{n} \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

where n is odd. The value of the solution u at the point $\left(x_{0}, t_{0}\right)$ depends at most on the value of the initial data on $\partial B\left(x_{0}, c t_{0}\right)$, where $B(x, r)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}$.
(f) Every linear, constant-coefficient, second-order equation of the form

$$
\sum_{i, j} a_{i j} u_{x_{i} x_{j}}=0 \quad x \in \mathbb{R}^{n}
$$

can be reduced to one of the following forms through a change of variables,

$$
\begin{aligned}
& u_{y_{1} y_{1}}-\sum_{i=2}^{n} u_{y_{i} y_{i}}=0 \text { (hyperbolic) } \\
& \sum_{i=1}^{n} u_{y_{i} y_{i}}=0 \text { (elliptic) } \\
& \sum_{i=2}^{n} u_{y_{i} y_{i}}=0 \text { (parabolic) }
\end{aligned}
$$

(g) Consider the following initial-value problem,

$$
\left\{\begin{array}{l}
u_{t}+[f(u)]_{x}=0 \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where $\phi(x)$ is piecewise constant and f is uniformly convex. If there exists a point $x_{1}>x_{2}$ such that $\phi\left(x_{1}\right)<\phi\left(x_{2}\right)$, then the unique weak, admissible solution u will have a shock curve.
(h) Suppose f is a uniformly convex function. Then the entropy condition and the Oleinik entropy condition are equivalent.
(i) For first-order semilinear equations, projected characteristics do not intersect, and, therefore, solutions (and their derivatives) will not blow-up.
(j) The function

$$
u(x, t)= \begin{cases}1 & x<0 \\ 0 & x>0\end{cases}
$$

is a weak solution of

$$
\left\{\begin{array}{r}
u_{t}+u u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}1 & x<0 \\ 0 & x>0\end{cases}
$$

