Math 220A
 Practice Final Exam I Solutions - Fall 2002

1. (a) Suppose $S(t)$ is the solution operator associated with the homogeneous equation

$$
(*)\left\{\begin{array}{l}
u_{t}+a u_{x}=0 \\
u(x, 0)=\phi(x) .
\end{array}\right.
$$

In particular, assume the solution of $\left(^{*}\right)$ is given by $u(x, t)=S(t) \phi(x)$. Show that $v(x, t)=S(t) \phi(x)+\int_{0}^{t} S(t-s) f(x, s) d s$ solves the inhomogeneous problem

$$
\left\{\begin{array}{l}
u_{t}+a u_{x}=f(x, t) \\
u(x, 0)=0
\end{array}\right.
$$

Answer:

$$
\begin{aligned}
{\left[\partial_{t}+a \partial_{x}\right] v } & =\left[\partial_{t}+a \partial_{x}\right]\left\{S(t) \phi(x)+\int_{0}^{t} S(t-s) f(x, s) d s\right\} \\
& =0+S(t-t) f(x, t)+\int_{0}^{t}\left[\partial_{t}+a \partial_{x}\right] S(t-s) f(x, s) d s \\
& =S(0) f(x, t)=f(x, t)
\end{aligned}
$$

In addition,

$$
v(x, 0)=S(0) \phi(x)+\int_{0}^{0} S(0-s) f(x, s) d s=\phi(x)
$$

(b) Find the solution operator $S(t)$ for $\left({ }^{*}\right)$.

Answer: The solution of $\left(^{*}\right)$ is given by $u(x, t)=\phi(x-a t)$. Therefore, the solution operator $S(t)$ is the operator such that

$$
S(t) \phi(x)=\phi(x-a t)
$$

(c) Find a solution of the inhomogeneous initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+a u_{x}=f(x, t) \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Answer: A solution is given by

$$
\begin{aligned}
v(x, t) & =S(t) \phi+\int_{0}^{t} S(t-s) f(x, s) d s \\
& =\phi(x-a t)+\int_{0}^{t} f(x-a(t-s), s) d s
\end{aligned}
$$

2. (a) Solve the following initial-value problem.

$$
\left\{\begin{array}{l}
u_{x}^{2} u_{t}-1=0 \\
u(x, 0)=x
\end{array}\right.
$$

Answer: Let

$$
F(p, q, z, x, t)=p^{2} q-1
$$

The set of characteristic equations are given by

$$
\begin{array}{ll}
\frac{d x}{d s}=2 p q & x(r, 0)=r \\
\frac{d t}{d s}=p^{2} & t(r, 0)=0 \\
\frac{d z}{d s}=3 & z(r, 0)=r \\
\frac{d p}{d s}=0 & p(r, 0)=\psi_{1}(r) \\
\frac{d q}{d s}=0 & q(r, 0)=\psi_{2}(r)
\end{array}
$$

where ψ_{1}, ψ_{2} satisfy

$$
\begin{gathered}
\phi^{\prime}(r)=\psi_{1}(r) \\
\psi_{1}^{2} \psi_{2}-1=0 .
\end{gathered}
$$

Therefore,

$$
\psi_{1}(r)=1=\psi_{2}(r)
$$

Solving this system of ODEs, we have

$$
\begin{aligned}
& p=1 \\
& q=1 \\
& x=2 s+r \\
& t=s \\
& z=3 s+r .
\end{aligned}
$$

Solving for r, s, we find our solution is given by

$$
u(x, t)=z(r(x, t), s(x, t))=x+t
$$

(b) Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+u_{x}=x \\
u(x, x)=1
\end{array}\right.
$$

Explain why there is no solution to this problem.
Answer: The projected characteristic curves for this PDE are given by

$$
\begin{gathered}
\frac{d t}{d s}=1 \\
\frac{d x}{d s}=1
\end{gathered}
$$

Therefore, they are the lines $x-t=c$. Further, $d u / d s=x$ along the characteristic curves. But we are prescribing initial data which is constant along the projected characteristics. Therefore, $d u / d s \neq x$. Our initial data does not satisfy our equation.
3. (a) Find the general solution of

$$
u_{t t}+2 u_{x t}-3 u_{x x}=0
$$

Answer: Factoring as

$$
\left(\partial_{t}-\partial_{x}\right)\left(\partial_{t}+3 \partial_{x}\right) u=0
$$

then we make a change of variables by defining new coordinates ξ, η such that

$$
\begin{aligned}
\frac{\partial}{\partial \xi} & =\partial_{t}-\partial_{x} \\
\frac{\partial}{\partial \eta} & =\partial_{t}+3 \partial_{x}
\end{aligned}
$$

In particular, we let

$$
\begin{aligned}
\xi & =-\frac{1}{4}(x-3 t) \\
\eta & =\frac{1}{4}(x+t) .
\end{aligned}
$$

Therefore, we have

$$
u_{\xi \eta}=0,
$$

which implies

$$
u(x, t)=f(\xi(x, t))+g(\eta(x, t))=f(x-3 t)+g(x+t) .
$$

(b) Find the solution of the initial-value problem,

$$
\left\{\begin{array}{l}
u_{t t}+2 u_{x t}-3 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

Answer: The general solution is given by

$$
u(x, t)=f(x-3 t)+g(x+t)
$$

Therefore, the initial data implies we need

$$
\begin{aligned}
u(x, 0) & =f(x)+g(x)=\phi(x) \\
u_{t}(x, 0) & =-3 f^{\prime}(x)+g^{\prime}(x)=\psi(x)
\end{aligned}
$$

Solving this system of equations, we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{4}\left[\phi^{\prime}(x)-\psi(x)\right] \\
g^{\prime}(x) & =\frac{1}{4}\left[3 \phi^{\prime}(x)+\psi(x)\right] .
\end{aligned}
$$

Integrating these equations, we conclude that the solution to our initial-value problem is given by

$$
u(x, t)=\frac{1}{4}[\phi(x-3 t)+3 \phi(x+t)]+\frac{1}{4} \int_{x-3 t}^{x+t} \psi(y) d y
$$

4. Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)=\left\{\begin{array}{rl}
a & x \leq 0 \\
a(1-x) & 0<x<1 \\
0 & x \geq 1
\end{array}\right.
$$

where $a>0$. Find the unique, weak solution which satifies the entropy condition.
Answer: The projected characteristics are given by

$$
x(r)=\phi(r) t+r .
$$

For $r<0$, we have $x=a t+r$. For $0<r<1$, we have $x=a(1-r) t+r$. For $r>1$, we have $x=r$. We see these curves do not intersect until $t=1 / a$. Therefore, for $0 \leq t \leq 1 / a$, our solution is well-defined, and the solution is constant along these projected characteristics. In particular, for $0 \leq t \leq 1 / a$, our solution is given by

$$
u(x, t)=\left\{\begin{array}{rl}
a & x<a t \\
a\left(\frac{1-x}{1-a t}\right) & a t<x<1 \\
0 & x>1 .
\end{array}\right.
$$

For $t \geq 1 / a$, the projected characteristics intersect. Therefore, we need to introduce a shock curve. The values of the solution to the left and right of the curve of discontinuity are given by $u^{-}=a$ and $u^{+}=0$. Our shock curve $x=\xi(t)$ must satisfy

$$
\begin{aligned}
\xi^{\prime}(t) & =\frac{[f(u)]}{[u]}=\frac{\frac{1}{2}\left(u^{-}\right)^{2}-\frac{1}{2}\left(u^{+}\right)^{2}}{u^{-}-u^{+}} \\
& =\frac{\frac{1}{2} a^{2}}{a}=\frac{1}{2} a .
\end{aligned}
$$

This curve $x=\xi(t)$ also contains the point $t=1 / a, x=1$. Therefore, this curve is given by $(x-1)=\frac{1}{2} a\left(t-\frac{1}{a}\right)$. Therefore, for $t \geq 1 / a$ our solution is given by

$$
u(x, t)= \begin{cases}a & x<\frac{1}{2} a t+\frac{1}{2} \\ 0 & x>\frac{1}{2} a t+\frac{1}{2}\end{cases}
$$

5. Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t t}+2 u_{x t}-3 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

(a) Use energy methods to prove the value of the solution u at the point $\left(x_{0}, t_{0}\right)$ depends at most on the values of the initial data in the interval $\left(x_{0}-3 t_{0}, x_{0}+t_{0}\right)$.
Answer: Define an energy for this problem by

$$
E(t)=\frac{1}{2} \int_{\mathbb{R}}\left(u_{t}^{2}+3 u_{x}^{2}\right) d x .
$$

Now for a fixed t, define the energy over the interval $\left(x_{0}-3\left(t_{0}-t\right), x_{0}+\left(t_{0}-t\right)\right)$ as

$$
e(t)=\frac{1}{2} \int_{x_{0}-3\left(t_{0}-t\right)}^{x_{0}+\left(t_{0}-t\right)}\left(u_{t}^{2}+3 u_{x}^{2}\right) d x .
$$

Suppose the initial data ϕ, ψ is zero in the interval $\left(x_{0}-3 t_{0}, x_{0}+t_{0}\right)$. We will show that the solution is zero in the triangle bounded by the lines $t=0, x=x_{0}-3\left(t_{0}-t\right)$ and $x=x_{0}+\left(t_{0}-t\right)$. We will do so by showing that $e^{\prime}(t) \leq 0$ and then use the fact that $e(0)=0$ and $e(t) \geq 0$ to conclude that $e(t) \equiv 0$ for all t such that $0 \leq t \leq t_{0}$. We proceed as follows.

$$
\begin{aligned}
e^{\prime}(t)=- & \left.\frac{1}{2}\left[u_{t}^{2}+3 u_{x}^{2}\right]\right|_{x=x_{0}+\left(t_{0}-t\right)}-\left.\frac{3}{2}\left[u_{t}^{2}+3 u_{x}^{2}\right]\right|_{x=x_{0}-3\left(t_{0}-t\right)} \\
& +\frac{1}{2} \int_{x_{0}-3\left(t_{0}-t\right)}^{x_{0}+\left(t_{0}-t\right)}\left(2 u_{t} u_{t t}+6 u_{x} u_{x t}\right) d x \\
=- & \left.\frac{1}{2}\left[u_{t}^{2}+3 u_{x}^{2}\right]\right|_{x=x_{0}+\left(t_{0}-t\right)}-\left.\frac{3}{2}\left[u_{t}^{2}+3 u_{x}^{2}\right]\right|_{x=x_{0}-3\left(t_{0}-t\right)} \\
& +\frac{1}{2} \int_{x_{0}-3\left(t_{0}-t\right)}^{x_{0}+\left(t_{0}-t\right)}\left(2 u_{t} u_{t t}-6 u_{x x} u_{t}\right) d x+\left.3 u_{x} u_{t}\right|_{x=x_{0}+\left(t_{0}-t\right)}-\left.3 u_{x} u_{t}\right|_{x=x_{0}-3\left(t_{0}-t\right)} \\
=- & \left.\frac{1}{2}\left[u_{t}^{2}-6 u_{x} u_{t}+3 u_{x}^{2}\right]\right|_{x=x_{0}+\left(t_{0}-t\right)}-\left.\frac{3}{2}\left[u_{t}^{2}+2 u_{x} u_{t}+3 u_{x}^{2}\right]\right|_{x=x_{0}-3\left(t_{0}-t\right)} \\
& -\int_{x_{0}-3\left(t_{0}-t\right)}^{x_{0}+\left(t_{0}-t\right)}\left(u_{t}^{2}\right)_{x} d x \\
=- & \left.\frac{1}{2}\left[3 u_{t}^{2}-6 u_{x} u_{t}+3 u_{x}^{2}\right]\right|_{x=x_{0}+\left(t_{0}-t\right)}-\frac{3}{2}\left[\frac{1}{3} u_{t}^{2}+2 u_{x} u_{t}+3 u_{x}^{2}\right]_{x=x_{0}-3\left(t_{0}-t\right)} \\
=- & \left.\frac{3}{2}\left[u_{t}-u_{x}\right]^{2}\right|_{x=x_{0}+\left(t_{0}-t\right)}-\left.\frac{1}{2}\left[u_{t}^{2}+3 u_{x}\right]^{2}\right|_{x=x_{0}-3\left(t_{0}-t\right)} \leq 0 .
\end{aligned}
$$

Therefore, $e^{\prime}(t) \leq 0$, which implies $u_{t}=0=u_{x}$ within the interval $\left(x_{0}-3\left(t_{0}-\right.\right.$ $t), x_{0}+\left(t_{0}-t\right)$. Therefore, $u \equiv C$ for some constant C. But, $u(x, 0) \equiv 0$ in the interval $\left(x_{0}-3 t_{0}, x_{0}+t_{0}\right)$ implies $u \equiv 0$ in that interval.
(b) Use energy methods to prove uniqueness of solutions to this initial-value problem if the initial data has compact support.
Answer: We define the energy as

$$
E(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left(u_{t}^{2}+3 u_{x}^{2}\right) d x
$$

Now assume we have two solutions u, v with the same initial data. Let $w=u-v$. Therefore, w satisfies the initial-value problem with zero initial data. Now

$$
\begin{aligned}
E^{\prime}(t) & =\frac{1}{2} \int_{-\infty}^{\infty}\left(2 w_{t} w_{t t}+6 w_{x} w_{x t}\right) d x \\
& =\int_{-\infty}^{\infty} w_{t} w_{t t}-3 u_{x x} w_{t} d x+\left.w_{x} w_{t}\right|_{x \rightarrow-\infty} ^{x \rightarrow+\infty} \\
& =-2 \int_{-\infty}^{\infty} w_{t} w_{x t} d x \\
& =-\int_{-\infty}^{\infty}\left(w_{t}^{2}\right)_{x} d x=0
\end{aligned}
$$

using the fact that if the initial data has compact support, then the solution has compact support. Therefore, $E^{\prime}(t)=0$. Therefore,

$$
\int_{-\infty}^{\infty}\left(w_{t}^{2}+3 w_{x}^{2}\right) d x=0
$$

which implies $w_{t}=0=w_{x}$. Using the fact that $w(x, 0)=0$, we conclude that $w \equiv 0$, and, therefore, $u \equiv v$.
6. Consider the following eigenvalue problem.

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0, \quad 0<x<l \\
y^{\prime}(0)+y(0)=0 \\
y(l)=0
\end{array}\right.
$$

(a) Show the boundary conditions are symmetric.

Answer: First,

$$
f^{\prime}(l) g(l)-f(l) g^{\prime}(l)=0
$$

for any functions f, g satisfying the boundary conditions, because $f(l)=0=g(l)$. Second,

$$
f^{\prime}(0) g(0)-f(0) g^{\prime}(0)=-f(0) g(0)+f(0) g(0)=0
$$

for any functions satisfying the boundary conditions. Therefore, the boundary conditions are symmetric.
(b) State the definition of orthogonality of functions on $[0, l]$.

Answer: The functions f and g are orthogonal on $[0, l]$ if

$$
\int_{0}^{l} f(x) g(x) d x=0
$$

(c) Use the fact that the boundary conditions are symmetric to prove all eigenfunctions of this operator must be orthogonal.
Answer: Note: I should say to prove that eigenfunctions corresponding to distinct eigenvalues are orthogonal. Eigenfunctions corresponding to the same eigenvalue can be chosen to be orthogonal using a Gram-Schmidt orthogonalization process.
Let X_{m}, X_{n} be two eigenfunctions corresponding to distinct eigenvalues $\lambda_{n} \neq \lambda_{m}$. Therefore,

$$
\begin{aligned}
\lambda_{n} \int_{0}^{l} X_{n} X_{m} d x & =-\int_{0}^{l} X_{n}^{\prime \prime} X_{m} d x \\
& =\int_{0}^{l} X_{n}^{\prime} X_{m}^{\prime} d x-\left.X_{n}^{\prime} X_{m}\right|_{x=0} ^{x=l} \\
& =-\int_{0}^{l} X_{n} X_{m}^{\prime \prime}+\left.\left(X_{n} X_{m}^{\prime}-X_{n}^{\prime} X_{m}\right)\right|_{x=0} ^{x=l}, \\
& =\lambda_{m} \int_{0}^{l} X_{n} X_{m}^{\prime \prime} d x
\end{aligned}
$$

using the fact that the boundary conditions are symmetric. Therefore,

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{l} X_{n} X_{m} d x=0
$$

But, $\lambda_{n} \neq \lambda_{m}$. Therefore,

$$
\int_{0}^{l} X_{n} X_{m} d x=0
$$

as claimed.
(d) Find all positive eigenvalues and their corresponding eigenfunctions. (Note: You may not be able to find an explicit formula for these eigenvalues.) Show graphically that there are an infinite number of positive eigenvalues $\left\{\lambda_{n}\right\}$ such that $\lambda_{n} \rightarrow+\infty$.
Answer: Look for positive eigenvalues $\lambda=\beta^{2}>0$. Therefore,

$$
\left\{\begin{array}{l}
Y^{\prime \prime}+\beta^{2} Y=0 \\
Y^{\prime}(0)+Y(0)=0 \\
Y(l)=0
\end{array}\right.
$$

Now the general solution of this ODE is given by

$$
Y(y)=C \cos (\beta y)+D \sin (\beta y) .
$$

Now $Y(0)=C$ and $Y^{\prime}(0)=D \beta$. Therefore, the first boundary condition implies $C+D \beta=0$. Further, the second boundary condition implies

$$
Y(l)=C \cos (\beta l)+D \sin (\beta l)=0
$$

Therefore, by the first condition, we need

$$
-D \beta \cos (\beta l)+D \sin (\beta l)=0
$$

We don't want $D=0$. Therefore, we need

$$
\sin (\beta l)=\beta \cos (\beta l)
$$

or

$$
\tan (\beta l)=\beta
$$

Therefore, the eigenvalues and corresponding eigenfunctions are given by

$$
\begin{aligned}
& \lambda_{n}=\beta_{n}^{2} \text { where } \tan \left(\beta_{n} l\right)=\beta_{n} \\
& Y_{n}(y)=-D_{n} \beta_{n} \cos \left(\beta_{n} y\right)+D \sin \left(\beta_{n} y\right)
\end{aligned}
$$

7. Consider the following initial/boundary value problem,

$$
\begin{cases}u_{t t}-4 u_{x x}=0 & 0<x<l, t>0 \\ u(x, 0)=0 & 0<x<l \\ u_{t}(x, 0)=0 & 0<x<l \\ u(0, t)=\sin t & \\ u(l, t)=1 & \end{cases}
$$

Define a function $\mathcal{U}(x, t)$ such that by letting $v(x, t)=u(x, t)-\mathcal{U}(x, t)$, then $v(x, t)$ will satisfy

$$
\begin{cases}v_{t t}-4 v_{x x}=f(x, t) & 0<x<l, t>0 \\ v(x, 0)=\phi(x) & 0<x<l \\ v_{t}(x, 0)=\psi(x) & 0<x<l \\ v(0, t)=0=v(l, t) & t>0\end{cases}
$$

for some functions $f(x, t), \phi(x)$ and $\psi(x)$, thus, reducing the problem with inhomogeneous boundary data to an inhomogeneous problem with Dirichlet boundary data. You do not need to solve the new inhomogeneous problem.
Answer: Let

$$
\mathcal{U}(x, t)=\frac{1}{l}((l-x) \sin t+x)
$$

8. Consider the initial-value problem for the wave equation in n dimensions,

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

(a) If the initial data is supported in the annular region $\{a<|x|<b\}$, find where the solution is definitely zero in
i. \mathbb{R}^{2}

Answer:

$$
|x|+t<a \text { and }|x|-t>b .
$$

ii. \mathbb{R}^{3}.

Answer:

$$
|x|+t<a \text { and }|x|-t>b \text { and } t-|x|>b .
$$

(b) Find the value of the solution u of the initial-value problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

where

$$
\psi(x)= \begin{cases}1, & |x|<a \\ 0, & |x|>a\end{cases}
$$

at a point (x, t) such that $|x|+t<a$.
Answer: By Kirchoff's formula, the solution is given by

$$
\frac{1}{4 \pi t^{2}} \int_{\partial B(x, t)} t \psi(y) d S(y)
$$

Now, $\psi(y) \equiv 1$ for $|y|<a$. Therefore, if $|x|+t<a$, then $\psi \equiv 1$. Therefore, the solution is given by

$$
u(x, t)=\frac{1}{4 \pi t^{2}} \int_{\partial B(x, t)} t d S(y)
$$

or

$$
u(x, t)=t \text {. }
$$

9. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi, 0<y<\pi\right\}$. Solve the following initial/boundary value problem.

$$
\begin{cases}u_{t t}=u_{x x}+u_{y y}+1 & (x, y) \in \Omega, t>0 \\ u(x, y, 0)=\sin (x) \sin (2 y) & \\ u_{t}(x, y, 0)=0 & (x, y) \in \partial \Omega \\ u(x, y, t)=0 & \end{cases}
$$

Answer: First, we will solve the homogeneous problem. Then, we will use Duhamel's principle. Using separation of variables, we have

$$
-\frac{T^{\prime \prime}}{T}=-\frac{X^{\prime \prime}}{X}-\frac{Y^{\prime \prime}}{Y}=\lambda
$$

which leads us to

$$
-\frac{X^{\prime \prime}}{X}=\lambda+\frac{Y^{\prime \prime}}{Y}=\mu
$$

Now, first, we consider the eigenvalue problem

$$
-X^{\prime \prime}=\mu X \quad 0<x<\pi . \quad X(0)=0=X(\pi)
$$

The solutions of this eigenvalue problem are given by $\mu_{n}=n^{2}, X_{n}(x)=\sin (n x)$. Next, we solve

$$
\begin{aligned}
& -\frac{Y^{\prime \prime}}{Y}=\lambda-\mu \quad 0<y<\pi \\
& Y(0)=0=Y(\pi)
\end{aligned}
$$

The solutions of this eigenvalue problem are given by $\lambda-\mu=m^{2}$. Therefore, we conclude that $\lambda_{m n}=m^{2}+n^{2}$ and $X_{n}(x) Y_{m}(y)=\sin (n x) \sin (n y)$. Solving our equation for $T_{m n}$, we have

$$
T_{m n}(t)=A_{m n} \cos \left(\sqrt{\lambda_{m n}} t\right)+B_{m n} \sin \left(\sqrt{\lambda_{m n}} t\right)
$$

Therefore, our solution has the form

$$
u(x, y, t)=\sum_{m, n}\left[A_{m n} \cos \left(\sqrt{\lambda_{m n}} t\right)+B_{m n} \sin \left(\sqrt{\lambda_{m n}} t\right)\right] \sin (n x) \sin (m y)
$$

Now $u(x, y, 0)=\sin (x) \sin (2 y)$ implies

$$
A_{m n}= \begin{cases}1 & n=1, m=2 \\ 0 & \text { otherwise }\end{cases}
$$

Now $u_{t}(x, y, 0)=0$ implies $B_{m n}=0$. Therefore, the solution of the homogeneous problem is given by

$$
u(x, y, t)=\cos \left(\sqrt{\lambda_{2,1}} t\right) \sin (x) \sin (2 y)=\cos (\sqrt{5} t) \sin (x) \sin (2 y)
$$

Using Duhamel's principle, we conclude that the inhomogeneous part of the solution is given by

$$
\sum_{m, n} B_{m n} \sin \left(\sqrt{\lambda_{m n}}(t-s)\right) \sin (n x) \sin (m y)
$$

where

$$
\sqrt{\lambda_{m n}} B_{m n}=\frac{\langle 1, \sin (n x) \sin (m y)\rangle}{\langle\sin (n x) \sin (m y), \sin (n x) \sin (m y)\rangle}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \sin (n x) \sin (m y) d x d y .
$$

Therefore, our solution is given by

$$
u(x, y, t)=\cos (\sqrt{5} t) \sin (x) \sin (2 y)+\int_{0}^{t} \sum_{m, n} B_{m n}(s) \sin \left(\sqrt{\lambda_{m n}}(t-s)\right) \sin (n x) \sin (m y) d s
$$

where $B_{m n}(s)$ is defined above.
10. Use Green's Theorem to show that the value of the solution u at the point $\left(0, t_{0}\right)$ of the wave equation on the half-line with Neumann boundary conditions

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \quad 0<x<\infty, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x) \\
u_{x}(0, t)=0
\end{array}\right.
$$

is given by

$$
u\left(0, t_{0}\right)=\phi\left(c t_{0}\right)+\frac{1}{c} \int_{0}^{c t_{0}} \psi(y) d y+\frac{1}{c} \iint_{\Delta} f(y, s) d y d s
$$

where Δ is the triangle in the $x t$-plane bounded by the lines $x=0, t=0$ and $x=$ $c\left(t_{0}-t\right)$.
Answer: Note: This should be the inhomogeneous problem! Integrating over Δ, we have

$$
\iint_{\Delta}\left(u_{t t}-c^{2} u_{x x}\right) d x d t=\iint f(x, t) d x d t
$$

By Green's Theorem, we have

$$
\begin{aligned}
-\iint_{\Delta}\left[\left(c^{2} u_{x}\right)_{x}-\left(u_{t}\right)_{t}\right] d x d t= & -\int_{\partial \Delta}\left[u_{t} d x+c^{2} u_{x} d t\right] \\
= & -\int_{L_{1}}\left[u_{t} d x+c^{2} u_{x} d t\right]-\int_{L_{2}}\left[u_{t} d x+c^{2} u_{x} d t\right] \\
& -\int_{L_{3}}\left[u_{t} d x+c^{2} u_{x} d t\right]
\end{aligned}
$$

where L_{1} is the line segment $t=0$ from $x=0$ to $x=c t_{0}, L_{2}$ is the line segment $x=c\left(t_{0}-t\right)$ from $\left(c t_{0}, 0\right)$ to $\left(0, t_{0}\right)$ and L_{3} is the line segment $x=0$ from $\left(0, t_{0}\right)$ to $(0,0)$.
Now

$$
\begin{aligned}
&-\int_{L_{1}}\left[u_{t} d x+c^{2} u_{x} d t\right]=-\int_{0}^{c t_{0}} u_{t}(x, 0) d x=-\int_{0}^{c t_{0}} \psi(x) d x \\
&-\int_{L_{2}}\left[u_{t} d x+c^{2} u_{x} d t\right]=-\int_{0}^{t_{0}}\left[-c u_{t}\left(c\left(t_{0}-t\right), t\right)+c^{2} u_{x}\left(c\left(t_{0}-t\right), t\right)\right] d t \\
&=c \int_{0}^{t_{0}}\left[u_{t}-c u_{x}\right] d t \\
&=c \int_{0}^{t_{0}}\left[u_{t}+u_{x} \frac{d x}{d t}\right] d t \\
&=c \int_{0}^{t_{0}} d u \\
&=c\left[u\left(0, t_{0}\right)-u\left(x_{0}, 0\right)\right] \\
&=c u\left(0, t_{0}\right)-c \phi\left(c t_{0}\right)
\end{aligned}
$$

Lastly,

$$
-\int_{L_{3}}\left[u_{t} d x+c^{2} u_{x} d t\right]=-\int_{t_{0}}^{0} c^{2} u_{x}(0, t) d t=0
$$

Therefore, we conclude that

$$
c u\left(0, t_{0}\right)=c \phi\left(c t_{0}\right)+\int_{0}^{c t_{0}} \psi(x) d x+\iint_{\Delta} f(x, t) d x d t
$$

which implies

$$
u\left(0, t_{0}\right)=\phi\left(c t_{0}\right)+\frac{1}{c} \int_{0}^{c t_{0}} \psi(x) d x+\frac{1}{c} \iint_{\Delta} f(x, t) d x d t
$$

as claimed.

