Math 220A
Practice Final Exam I Solutions - Fall 2002

1. (a) Suppose S(t) is the solution operator associated with the homogeneous equation

U +au, =0
() { u(z,0) = ¢(x).

In particular, assume the solution of (*) is given by u(z,t) = S(t)¢(z). Show that
v(x,t) = St)o(r) + fot S(t — s)f(x,s)ds solves the inhomogeneous problem

ur + au, = f(x,t)
u(z,0) = 0.

Answer:
[0y + a0, ]v = [0; + ad,] {S(t)¢(x) + /0 S(t—s)f(z,s) ds}

=0+ St —1)f(x,t) —l—/t[@t +ad;|S(t —s)f(x,s)ds
= 5(0)f(z,t) = f(x,1).

In addition,
0
v(z,0) = S(0)o(z) +/0 S0 —s)f(z,s)ds = ¢(z).
(b) Find the solution operator S(t) for (*).

Answer: The solution of (*) is given by u(x,t) = ¢(x — at). Therefore, the
solution operator S(t) is the operator such that

S(t)o(x) = ¢(x — at).

(c¢) Find a solution of the inhomogeneous initial-value problem

u + au, = f(x,t)
u(z,0) = ¢(x).

Answer: A solution is given by

t

v(x,t) = S(t)¢+/0 S(t—s)f(x,s)ds

= ¢(z — at) —1—/0 flz—a(t—s),s)ds.




2. (a) Solve the following initial-value problem.
uwiu; —1=0
u(z,0) = z.

F(p,(],Z,Qf,t) :p2(]_ L.

The set of characteristic equations are given by

Answer: Let

‘;—i = 2pq z(r,0) =r
b =0 t(r,0) =
% = 2(r,0) =r
Cd(_g = p(ra O) = ¢1(7’)
d_z = Q(ra O) = ¢2(7“>
where 1)1, 99 satisfy
¢'(r) = (r)
iy — 1 =0.

Therefore,
wl(T’) =1= wg(’l“).
Solving this system of ODEs, we have

p=1
qg=1
r=284+r
t=s
z=3s54+T.

Solving for r, s, we find our solution is given by

u(z,t) = z(r(x,t), s(z,t)) =z +t.

(b) Consider the initial-value problem
U + Uy =T
u(z,z) = 1.
Explain why there is no solution to this problem.
Answer: The projected characteristic curves for this PDE are given by

dt
e
ds
dx
— =1.
ds



Therefore, they are the lines x —t = ¢. Further, du/ds = x along the characteristic
curves. But we are prescribing initial data which is constant along the projected
characteristics. Therefore, du/ds # z. Our initial data does not satisfy our
equation.

Find the general solution of
U + 2Uge — SUpe = 0.
Answer: Factoring as
(0r — 02)(0r + 30,)u = 0,

then we make a change of variables by defining new coordinates &, 7 such that

0
— =0, — 0,
o
0
— =0y + 30;.
on et
In particular, we let
1
£ = —1(95 — 3t)
= 1( +t)
n=; .
Therefore, we have
Ugy = O,

which implies

u(z,t) = f(§(z, 1) + g(n(z,t)) = fz = 3t) + g(z +1).

Find the solution of the initial-value problem,

Ut + 2uwt — SUM =0
u(z,0) = ¢(x)

Answer: The general solution is given by
u(z,t) = f(x —3t) + g(z +1t).
Therefore, the initial data implies we need

u(z,0) = f(z) + g(z
+

¢(x)
u(z,0) = =3f'(x) )

().

) —
g'(x



Solving this system of equations, we have

g(x) = 1B (@) + v(2)]

Integrating these equations, we conclude that the solution to our initial-value
problem is given by

ulayt) = floe =30 + 300+ 0] + 5 [ vy

4. Consider the initial-value problem

Uy +uu, =0
{ u(e,0) = é(x)
where
a <0
o(x) =< a(l —x) 0<zr<l
0 rz>1

where a > 0. Find the unique, weak solution which satifies the entropy condition.

Answer: The projected characteristics are given by
x(r) = ¢(r)t +r.

For r < 0, we have x = at +r. For 0 < r < 1, we have © = a(1 — r)t +r. For
r > 1, we have x = r. We see these curves do not intersect until ¢t = 1/a. Therefore,
for 0 <t < 1/a, our solution is well-defined, and the solution is constant along these
projected characteristics. In particular, for 0 <t < 1/a, our solution is given by

a T <at
u(z,t) = a(l_q;) at <z <1
1—at
0 x>1

For t > 1/a, the projected characteristics intersect. Therefore, we need to introduce a
shock curve. The values of the solution to the left and right of the curve of discontinuity

are given by v~ = a and u™ = 0. Our shock curve x = £(t) must satisfy
£/<t> _ [f(u)] _ %(U7)2 B %(U+)2
ul u —ut
a



This curve x = £(t) also contains the point ¢ = 1/a, x = 1. Therefore, this curve is
given by (z — 1) = 1a (t — 1). Therefore, for ¢ > 1/a our solution is given by

a

< L t—l—l
a r < —at+ =
2 2
u(z,t) = 1 1
0 > —at + —.

T 2(1 +2

5. Consider the initial-value problem

U + 2umt — 3U$$ =0
u(x,0) = ¢(x)
ue(x,0) = ¢(x)

(a) Use energy methods to prove the value of the solution w at the point (xo, %)
depends at most on the values of the initial data in the interval (z¢— 3tq, o +to).

Answer: Define an energy for this problem by

1

B() = /R (i + 302) da.

Now for a fixed ¢, define the energy over the interval (xg — 3(tg —t), xo + (to — t))
o 1 [frot(to—t)
e(t) = —/ (uf + 3u2) dz.

2 Jao-s(to-1)
Suppose the initial data ¢, 1) is zero in the interval (zo—3to, o +1to). We will show
that the solution is zero in the triangle bounded by the lines t = 0, z = xy—3(to—t)
and x = xo + (to — t). We will do so by showing that ¢’(t) < 0 and then use the
fact that e(0) = 0 and e(t) > 0 to conclude that e(t) = 0 for all ¢ such that
0 <t <ty. We proceed as follows.

1 3
e(t) = —§[U? + 3ui]|$=xo+(to—t) - 5[“? + 3u§]|l‘=$0—3(t0—t)
1 xo—i—(to—t)
+ 5 / (2upuyy + Bugtyy) do
zo—3(to—t)

1 3
= —g[uf + 3uc2c]|$=xo+(to—t) - 5[“? + 3Ui]|x=xo—3(to—t)
1 xo—i—(to—t)
+ 5 / (upugy — Bugguy) dx + 3Ugts|g—ag+(to—t) — SUaUt|z=z0—3(t0—t)
zo—3(to—t)
1 3
= —§[U? — Bgy + 3U2][a—ag s (to—t) — 5[Uf + 2uats + 307 lo—ro—3(10—1)

2
xo-i-(to —t)
[ s

0—3(t0—t)

1 3.1
= —5[3Uf — Bugty + 33| oot (t0—t) — §[§Ut2 + 2ugtty + 3] |lo—zo—3(t0—1)

1
= _§[Ut - ux]2’x:mo+(to—t) - Q[U? + 3uw]2|z:xo—3(t0—t) <0.
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Therefore, ¢/(t) < 0, which implies u; = 0 = u, within the interval (zo — 3(to —
t),xg + (to —t)). Therefore, u = C' for some constant C. But, u(x,0) = 0 in the
interval (xg — 3tg, zo + to) implies u = 0 in that interval.

(b) Use energy methods to prove uniqueness of solutions to this initial-value problem
if the initial data has compact support.
Answer: We define the energy as

E(t) == /00 (uf + 3u?) da.

—00

Now assume we have two solutions u, v with the same initial data. Let w = u —wv.
Therefore, w satisfies the initial-value problem with zero initial data. Now

1 o
E'(t) = —/ (2wywy + 6wywyy) do

[e.e]

o0
Tr— 400
= / WiWy — gz Wy AT 4+ Wewy| )

T——00
—00

= —2/ WWye AT

= —/ (wtz)x dr =0,

—00

using the fact that if the initial data has compact support, then the solution has
compact support. Therefore, E'(t) = 0. Therefore,

/ (wi + 3w?) dx = 0,

[e.9]

which implies w; = 0 = w,. Using the fact that w(z,0) = 0, we conclude that
w = 0, and, therefore, u = v.

6. Consider the following eigenvalue problem.

y" + Ay =0, 0<xz<l
y'(0) +y(0) =0
y(l) =0.

(a) Show the boundary conditions are symmetric.
Answer: First,
f(Dg(l) = f(Dg'(1) =0
for any functions f, g satisfying the boundary conditions, because f(I) =0 = g(I).
Second,

F'(0)g(0) = f(0)g'(0) = = f(0)g(0) + f(0)g(0) =0
for any functions satisfying the boundary conditions. Therefore, the boundary
conditions are symmetric.



(b) State the definition of orthogonality of functions on [0, [].

Answer: The functions f and ¢ are orthogonal on [0, /] if

[ st e =o.

(c) Use the fact that the boundary conditions are symmetric to prove all eigenfunc-

tions of this operator must be orthogonal.

Answer:  Note: [ should say to prove that eigenfunctions corresponding to
distinct eigenvalues are orthogonal. Figenfunctions corresponding to the same
eigenvalue can be chosen to be orthogonal using a Gram-Schmidt orthogonalization
Process.

Let X,,, X,, be two eigenfunctions corresponding to distinct eigenvalues \,, # \,,.
Therefore,

l !
)\n/ X, X, dr = —/ X'"X,, dx
0 0
!
= [ XX do - XX

’ [

— - [ XX (XX, - XX
0

!
:/\m/ X, X! d,
0

using the fact that the boundary conditions are symmetric. Therefore,

!
(An — )\m)/ X, X da = 0.
0

But, A\, # \,.. Therefore,
l
/ XX dr =0,
0

as claimed.

Find all positive eigenvalues and their corresponding eigenfunctions. (Note: You
may not be able to find an explicit formula for these eigenvalues.) Show graph-
ically that there are an infinite number of positive eigenvalues {\,} such that
A, — +00.
Answer: Look for positive eigenvalues A = 32 > 0. Therefore,

Y+ 3Y =0

Y'(0)+Y(0)=0

Y(l)=0.

Now the general solution of this ODE is given by

Y(y) = C cos(By) + Dsin(By).
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Now Y (0) = C and Y'(0) = Df. Therefore, the first boundary condition implies
C + DB = 0. Further, the second boundary condition implies

Y (1) = Ccos(Bl) + Dsin(5l) = 0.
Therefore, by the first condition, we need
—Dpcos(Bl) + Dsin(pl) = 0.
We don’t want D = 0. Therefore, we need
sin(31) = A cos(Bl),

or
tan(5l) = 5.

Therefore, the eigenvalues and corresponding eigenfunctions are given by

An = 2 where tan(B,l) = 3,
Ya(y) = =Dnfn cos(Bny) + Dsin(S,y).

7. Consider the following initial /boundary value problem,

Upp — dUyy = 0 O<zx<l,t>0
u(z,0) =0 0<z<l
w(z,0) =0 0<z<l
u(0,t) =sint

u(l,t) = 1.

Define a function U(z,t) such that by letting v(z,t) = u(z,t) — U(z,t), then v(x,t)
will satisfy

Uy — Avpe = f(x,1) O<ax<lt>0
v(z,0) = ¢(x) 0<z<l
vi(z,0) = Y(x) O<z<l
v(0,t) =0 =w(l,t) t>0

for some functions f(x,t),¢(z) and ¥(x), thus, reducing the problem with inhomo-
geneous boundary data to an inhomogeneous problem with Dirichlet boundary data.
You do not need to solve the new inhomogeneous problem.

Answer: Let

U(z,t) =

%((l —z)sint + x).

8. Consider the initial-value problem for the wave equation in n dimensions,

uy — Au =0 reR"t>0
u(z,0) = é(x)
Ut(I7 0) = 2/}(I>



(a) If the initial data is supported in the annular region {a < |z| < b}, find where the
solution is definitely zero in

i. R?
Answer:

|z| +t < aand |x| —t >D.

ii. R3.
Answer:

||+t <aand x| —¢>band t — |z| > b.

(b) Find the value of the solution u of the initial-value problem

uy — Au =0 rER3t>0
u(z,0) =0
Ut(SL’,O) = 1/}(:6)

w(x):{L lz| < a

where

0, lz| > a

at a point (z,t) such that |z| +t < a.
Answer: By Kirchoft’s formula, the solution is given by

1
ds(y).
- /a o TS

Now, ¢(y) = 1 for |y| < a. Therefore, if |z| + ¢ < a, then ¢ = 1. Therefore, the
solution is given by

tdS(y)

)=
ua?) 41t2 Jop (st

or

u(zx,t) =t.

9. Let @ = {(z,y) e R?: 0 < x < 7,0 < y < 7}. Solve the following initial /boundary
value problem.

Ut = Ugg + Uyy + 1 (x,y) € %t >0
u(z,y,0) = sin(x) sin(2y)

u(z,y,0) =0

u(z,y,t) =0 (x,y) € 00.

Answer: First, we will solve the homogeneous problem. Then, we will use Duhamel’s
principle. Using separation of variables, we have



which leads us to

Now, first, we consider the eigenvalue problem
—X"=pX O<z<m. X(0)=0= X(m).
The solutions of this eigenvalue problem are given by pu, = n?, X,,(z) = sin(nz). Next,

we solve

-y = A— [ O<y<m

Y(0)=0=Y(n).
The solutions of this eigenvalue problem are given by A — p = m?. Therefore, we
conclude that \,,, = m?+n? and X,,(2)Y,,(y) = sin(nz) sin(ny). Solving our equation
for T},,, we have

Ton(t) = Apn co8(v/ Apnt) + B sin(v/ Apnt).

Therefore, our solution has the form

u(z,y,t) = Z[Amn co8(v/ Amnt) + B sin(v/ Amnt)] sin(na) sin(my).
Now u(z,y,0) = sin(z) sin(2y) implies

a 1 n=1m=2
)0 otherwise.

Now ui(z,y,0) = 0 implies B,,, = 0. Therefore, the solution of the homogeneous
problem is given by

u(x,y,t) = cos(y/Ag1t) sin(x) sin(2y) = cos(V/5t) sin(z) sin(2y).

Using Duhamel’s principle, we conclude that the inhomogeneous part of the solution
is given by

Z B sin(v/ Apn (t — 8)) sin(nax) sin(my)
where

V An B = (L, sin(ne) sin(my)) 7 = % /07T /07r sin(nx) sin(my) dz dy.

(sin(nx) sin(my), sin(nz) sin(my

Therefore, our solution is given by

u(x,y,t) = cos(V/5t) sin(x) sin(2y) + /o Z Bin(8) sin(y/ A (t — 8)) sin(nz) sin(my) ds.

where B,,,(s) is defined above.
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10. Use Green’s Theorem to show that the value of the solution w at the point (0,ty) of
the wave equation on the half-line with Neumann boundary conditions

Uy — Cligy = 0 O<ax<oo,t>0

u(z,0) = ¢(x)
Ut<x7 0) = w@j)
uz(0,1) =0

is given by
cto 1
u0.t0) = oteto) + ¢ [ vy [[ 105 dyas

where A is the triangle in the xt-plane bounded by the lines © = 0, ¢ = 0 and ©z =
C(to - t)

Answer: Note: This should be the inhomogeneous problem! Integrating over A, we

have
/ /A (up — Clyy) da dt = / / f(x,t) dx dt.

By Green’s Theorem, we have

_ /A[(CQuI>I — ()¢ dx dt = — /aA[Ut dx + u, di]
— /L1 [ug dz + cPug dt] — / [u, do + P, dt]

Lo

- / [u dw + cPuy, dt],
L3
where L; is the line segment t = 0 from z = 0 to x = cty, Lo is the line segment

x = c(ty — t) from (cty,0) to (0,%p) and Lj is the line segment x = 0 from (0,ty) to
(0,0).

Now

cto cto
—/ [us dv + Pu, dt] = —/ ur(z,0) de = —/ () de.
Ly 0 0

—/L [us dv + Pu, dt] = — /0 0[—cut(c(to — 1), ) + Cug(c(to — t),t)] dt

[ug — cug,) dt

J
fo dz
= —| dt
c/o [ue +u dt]
J



Lastly,
0
—/ [us dz + Pu, dt] = —/ *u,(0,t) dt = 0.
L3

to

Therefore, we conclude that

cu(0,t9) = colcty) + /OCtO () de + //A f(z,t)dzdt,

which implies

u(0,to) = ¢(cty) + % /OC 0 () dx + % //A f(z,t)dzdt,

as claimed.
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