Math 220A Practice Final Exam I - Fall 2002

1. (a) Suppose $S(t)$ is the solution operator associated with the homogeneous equation

$$
(*)\left\{\begin{array}{l}
u_{t}+a u_{x}=0 \\
u(x, 0)=\phi(x) .
\end{array}\right.
$$

In particular, assume the solution of $\left(^{*}\right)$ is given by $u(x, t)=S(t) \phi(x)$. Show that $v(x, t)=S(t) \phi(x)+\int_{0}^{t} S(t-s) f(x, s) d s$ solves the inhomogeneous problem

$$
\left\{\begin{array}{l}
u_{t}+a u_{x}=f(x, t) \\
u(x, 0)=0
\end{array}\right.
$$

(b) Find the solution operator $S(t)$ for $\left(^{*}\right)$.
(c) Find a solution of the inhomogeneous initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+a u_{x}=f(x, t) \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

2. (a) Solve the following initial-value problem.

$$
\left\{\begin{array}{l}
u_{x}^{2} u_{t}-1=0 \\
u(x, 0)=x
\end{array}\right.
$$

(b) Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+u_{x}=x \\
u(x, x)=1
\end{array}\right.
$$

Explain why there is no solution to this problem.
3. (a) Find the general solution of

$$
u_{t t}+2 u_{x t}-3 u_{x x}=0
$$

(b) Find the solution of the initial-value problem,

$$
\left\{\begin{array}{l}
u_{t t}+2 u_{x t}-3 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

4. Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)=\left\{\begin{array}{rl}
a & x \leq 0 \\
a(1-x) & 0<x<1 \\
0 & x \geq 1
\end{array}\right.
$$

where $a>0$. Find the unique, weak solution which satifies the entropy condition.
5. Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t t}+2 u_{x t}-3 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

(a) Use energy methods to prove the value of the solution u at the point $\left(x_{0}, t_{0}\right)$ depends at most on the values of the initial data in the interval $\left(x_{0}-3 t_{0}, x_{0}+t_{0}\right)$.
(b) Use energy methods to prove uniqueness of solutions to this initial-value problem if the initial data has compact support.
6. Consider the following eigenvalue problem.

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0, \quad 0<x<l \\
y^{\prime}(0)+y(0)=0 \\
y(l)=0
\end{array}\right.
$$

(a) Show the boundary conditions are symmetric.
(b) State the definition of orthogonality of functions on $[0, l]$.
(c) Use the fact that the boundary conditions are symmetric to prove all eigenfunctions of this operator must be orthogonal.
(d) Find all positive eigenvalues and their corresponding eigenfunctions. (Note: You may not be able to find an explicit formula for these eigenvalues.) Show graphically that there are an infinite number of positive eigenvalues $\left\{\lambda_{n}\right\}$ such that $\lambda_{n} \rightarrow+\infty$.
7. Consider the following initial/boundary value problem,

$$
\begin{cases}u_{t t}-4 u_{x x}=0 & 0<x<l, t>0 \\ u(x, 0)=0 & 0<x<l \\ u_{t}(x, 0)=0 & 0<x<l \\ u(0, t)=\sin t & \\ u(l, t)=1 & \end{cases}
$$

Define a function $\mathcal{U}(x, t)$ such that by letting $v(x, t)=u(x, t)-\mathcal{U}(x, t)$, then $v(x, t)$ will satisfy

$$
\begin{cases}v_{t t}-4 v_{x x}=f(x, t) & 0<x<l, t>0 \\ v(x, 0)=\phi(x) & 0<x<l \\ v_{t}(x, 0)=\psi(x) & 0<x<l \\ v(0, t)=0=v(l, t) & t>0\end{cases}
$$

for some functions $f(x, t), \phi(x)$ and $\psi(x)$, thus, reducing the problem with inhomogeneous boundary data to an inhomogeneous problem with Dirichlet boundary data. You do not need to solve the new inhomogeneous problem.
8. Consider the initial-value problem for the wave equation in n dimensions,

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

(a) If the initial data is supported in the annular region $\{a<|x|<b\}$, find where the solution is definitely zero in
i. \mathbb{R}^{2}
ii. \mathbb{R}^{3}.
(b) Find the value of the solution u of the initial-value problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

where

$$
\psi(x)= \begin{cases}1, & |x|<a \\ 0, & |x|>a\end{cases}
$$

at a point (x, t) such that $|x|+t<a$.
9. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi, 0<y<\pi\right\}$. Solve the following initial/boundary value problem.

$$
\begin{cases}u_{t t}=u_{x x}+u_{y y}+1 & (x, y) \in \Omega, t>0 \\ u(x, y, 0)=\sin (x) \sin (2 y) & \\ u_{t}(x, y, 0)=0 & (x, y) \in \partial \Omega \\ u(x, y, t)=0 & \end{cases}
$$

10. Use Green's Theorem to show that the value of the solution u at the point $\left(0, t_{0}\right)$ of the wave equation on the half-line with Neumann boundary conditions

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \quad 0<x<\infty, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x) \\
u_{x}(0, t)=0
\end{array}\right.
$$

is given by

$$
u\left(0, t_{0}\right)=\phi\left(c t_{0}\right)+\frac{1}{c} \int_{0}^{c t_{0}} \psi(y) d y+\frac{1}{c} \iint_{\Delta} f(y, s) d y d s
$$

where Δ is the triangle in the $x t$-plane bounded by the lines $x=0, t=0$ and $x=$ $c\left(t_{0}-t\right)$.

