
Math 220A Midterm Exam Solutions Fall 2002

1. (10 points) Solve {
u2

t − c2u2
x = 0

u(0, t) = φ(t)

Answer: Let F (x, t, z, p, q) = q2 − c2p2. Using the method of characteristics, we
define the system of characteristic ODEs as follows,

dx
ds

= Fp = −2c2p x(r, 0) = 0
dt
ds

= Fq = 2q t(r, 0) = r
dz
ds

= pFp + qFq = −2c2p2 + 2q2 z(r, 0) = φ(r)
dp
ds

= −Fx − pFz = 0 p(r, 0) = ψ1(r)
dq
ds

= −Ft − qFz = 0 q(r, 0) = ψ2(r)

where we will determine ψ1, ψ2 below. Using the fact that we want

ur(x(r, s), t(r, s)) = ux(x(r, s), t(r, s))xr(r, s) + ut(x(r, s), t(r, s)tr(r, s)

we want
φ′(r) = ψ1(r) · 0 + ψ2(r) · 1.

Therefore, we see that ψ2(r) = φ′(r).

Next, using the fact that we need F (x, t, z, p, q) = 0, we see that we need

ψ2
2 − c2ψ2

1 = 0 =⇒ ψ1 = ±φ′

c
.

Now solving our system of characteristic ODEs (taking into account our initial condi-
tions), we have

dq
ds

= 0 =⇒ q(r, s) = ψ2(r) = φ′(r)
dp
ds

= 0 =⇒ p(r, s) = ψ1(r) = ±φ′
c

dx
ds

= −2c2p = ∓2cφ′ =⇒ x(r, s) = ∓2cφ′(r)s
dt
ds

= 2q = 2φ′ =⇒ t(r, s) = 2φ′(r)s + r
dz
ds

= −2c2p2 + 2q2 = −2(φ′)2 + 2(φ′)2 = 0 =⇒ z(r, s) = φ(r)

Now φ′(r)s = x
∓2c

implies t = ∓x
c

+ r. Therefore, we conclude our solution is given by

u(x, t) = φ
(
t± x

c

)
.

2. (12 points) Find the unique, weak solution of

{
ut + [u3]x = 0 x ∈ R, t > 0

u(x, 0) = φ(x)
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where

φ(x) =

{
2 x > 0

−2 x < 0

which satisfies the Oleinik entropy condition. Simplify your answer as much as possible.

Answer: The characteristic equations are given by

dx
ds

= 3z2 x(r, 0) = r
dt
ds

= 1 t(r, 0) = 0
dz
ds

= 0 z(r, 0) = φ(r).

Solving this system, we have

x(r, s) = 3φ2s + r
t(r, s) = s
z(r, s) = φ(r).

Therefore, our projected characteristics are given by x = 3φ2(r)t + r. By our initial
conditions, we see that u(x, t) = −2 to the left of x = 12t and u(x, t) = 2 to the right
of x = 12t. Now we see that the solution would have a jump across this curve. We
notice, however, that the RH jump condition would not be satisfied across ξ(t) = 12t,
because

[f(u)]

[u]
=

u3
− − u3

+

u− − u+

=
−8− 8

−2− 2
= 4 6= 12 = ξ′(t).

We look for a weak solution (in particular, satisfying the RH jump condition) and the
Oleinik entropy condition. We use the rubberband method.

In order to satisfy the Oleinik entropy condition, we will put in a chord connecting
u− = −2 and u2 such that

f(u−)− f(u2)

u− − u2

= f ′(u2)

In this case, the jump condition will be satisfied, and the Oleinik entropy condition will
be satisfied. Then, we notice that f ′ is invertible for u between u2 and u+. Therefore,
we will put in a rarefaction wave to go from u2 to u+. Now solving for u2 we see that
we need

3u2
2 =

u3
2 + 8

u2 + 2
=⇒ u2 = 1.

u

f(u)

-2 1 2
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Therefore, the curve of discontinuity will be given by x = 3t. Then we put in a
rarefaction wave between x = 3t and x = 12t. In this region, we define u(x, t) =
(f ′)−1(x/t) =

√
x/(3t).

x

t

u

uu

u=

=

−

+ = tx

x= t3

12

u=(x/3t)
1/2

We conclude that our solution is given by

u(x, t) =




−2 x < 3t√

x
3t

3t < x < 12t
2 x > 12t

3. (12 points) Solve




utt + 2uxt − 3uxx = f(x, t) −∞ < x < ∞, t > 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

Answer: First, we will solve the homogeneous problem. Rewriting the homogeneous
equation as

(∂t + 3∂x)(∂t − ∂x)u = 0,

we will make a change of variables by introducing ξ and η such that

∂ξ = ∂t + 3∂x

∂η = ∂t − ∂x.

In particular, we want tξ = 1 xξ = 3, tη = 1, xη = −1. Therefore, we take ξ = 1
4
(x+ t),

η = −1
4
(x− 3t). With this change of variables, our equation becomes

uξη = 0 =⇒ u = f(ξ) + g(η).

In particular, the solution of the homogeneous equation is given by

u(x, t) = f(x + t) + g(x− 3t)

for some functions f, g. Now, we need to choose f and g such that our initial condition
is satisfied. Now

u(x, 0) = φ(x) =⇒ f + g = φ
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and
ut(x, 0) = ψ(x) =⇒ f ′ − 3g′ = ψ.

Solving this system of simultaneous equations, we have

f ′ =
1

4
[3φ′ + ψ]g′ =

1

4
[φ′ − ψ].

Integrating these equations, we have

f(x) =
3

4
φ +

1

4

∫ x

0

ψ(y) dy + C1

g(x) =
1

4
φ− 1

4

∫ x

0

ψ(y) dy + C2.

Using the fact that f + g = φ, we see that C1 + C2 = 0. Therefore, the solution of our
homogeneous IVP is given by

u(x, t) = f(x + t) + g(x− 3t)

=
1

4
[3φ(x + t) + φ(x− 3t)] +

1

4

∫ x+t

x−3t

ψ(y) dy.

Therefore, by Duhamel’s principle, the solution of our inhomogeneous problem is given
by

u(x, t) =
1

4
[3φ(x + t) + φ(x− 3t)] +

1

4

∫ x+t

x−3t

ψ(y) dy +
1

4

∫ t

0

∫ x+(t+s)

x−3(t−s)

f(y, s) dy ds

4. (12 points) Consider the following initial-value problem,

(∗)
{

ut + [f(u)]x = 0 x ∈ R, t > 0

u(x, 0) = φ(x),

where we assume f is a smooth function, such that f(0) = 0.

(a) Suppose u is a classical solution of (*) with compact support. Show that

Eu(t) =

∫ ∞

−∞
u2(x, t) dx

is a conserved quantity. That is, show that E ′
u(t) = 0.
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Answer:

E ′
u(t) = 2

∫ ∞

−∞
uut dx

= −2

∫ ∞

−∞
u[f(u)]x dx

= +2

∫ ∞

−∞
ux[f(u)] dx− 2u[f(u)]|x→+∞

x→−∞

= 2

∫ ∞

−∞

(∫ u(x)

0

f(y) dy

)

x

dx

= 2

∫ u(x)

0

f(y) dy

∣∣∣∣∣

x→+∞

x→−∞
= 0.

(b) Use the fact from part (a) to prove uniqueness of classical solutions with compact
support of {

ut + aux = g(x, t) −∞ < x < ∞, t > 0

u(x, 0) = φ(x).

Answer: Suppose there are two solutions u and v. Let w = u− v. Then w is a
solution of {

wt + awx = 0 −∞ < x < ∞
w(x, 0) = 0.

Let Ew(t) =
∫∞
−∞ u2 dx. By part (a), we know that E ′

w(t) = 0. But, we also have
Ew(0) = 0 by our initial conditions. Therefore, we have Ew(t) ≡ 0, which implies
that w2 ≡ 0, or w ≡ 0, which implies that u ≡ v.

5. (12 points) Let φ be a smooth function with compact support. Consider the initial-
value problem for the damped Burger’s equation,

{
ut + uux + u = 0, −∞ < x < ∞, t > 0

u(x, 0) = φ(x).

(a) Find an implicit equation for the classical solution.

Answer: Our characteristic equations are given by

dt
ds

= 1 t(r, 0) = 0
dx
ds

= z x(r, 0) = r
dz
dx

= −z z(r, 0) = φ(r)

Solving this system, we have

t = s

x = −φ(r)e−s + r + φ(r)

z = φ(r)e−s
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Therefore, our implicit solution is given by

u(x, t) = φ(x + u(1− et))e−t.

(b) Show that |ux| is bounded if φ′(x) ≥ −1. That is, show that |ux| 6→ +∞ in finite
time if φ′(x) ≥ −1.

Answer: From our answer to part (a), we have

ux = φ′(p)e−t[1 + ux(1− et)]

where p = x + u(1− et). Then solving this equation for ux we have

ux[1 + φ′(p)[1− e−t]] = φ′(p)e−t =⇒ ux =
φ′(t)e−t

[1 + φ′(p)(1− e−t)]
.

As long as 1 + φ′(p)(1 − e−t) > 0, the solution will not blow up in finite time.
Notice that for t > 0, 1− e−t > 0. Therefore, if φ′(p) ≥ −1, we have

1 + φ′(p)(1− e−t) ≥ 1− (1− e−t) = e−t > 0.

6


