1 Introduction

1.1 Basic Definitions and Examples

Let u be a function of several variables, u(zy,...,z,). We denote its partial derivative with
respect to x; as

_ Ou
For short-hand notation, we will sometimes write the partial differential operator 8%1- as Oy, .
With this notation, we can also express higher-order derivatives of a function u. For example,
for a function v = u(z,y, z), we can express the second partial derivative with respect to z
and then y as
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As you will recall, for “nice” functions w, mixed partial derivatives are equal. That is,
Ugy = Uy, etc. See Clairaut’s Theorem.

In order to express higher-order derivatives more efficiently, we introduce the following
multi-index notation. A multi-index is a vector &« = (aq,...,q,) where each «; is a
nonnegative integer. The order of the multi-index is |a| = oy + ... + a;,,. Given a
multi-index «, we define

0y 0z u.
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Example 1. Let u = u(x,y) be a function of two real variables. Let o = (1,2). Then « is

a multi-index of order 3 and
D%y = Gxaju = Ugyy.

If k£ is a nonnegative integer, we define
Dy = {D% : |a| = k}, (1.2)
the collection of all partial derivatives of order k.
Example 2. If u = u(zy,...,z,), then D'u = {u,, : i=1,...,n}.

With this notation, we are now ready to define a partial differential equation. A partial
differential equation is an equation involving a function u of several variables and its
partial derivatives. The order of the partial differential equation is the order of the highest-
order derivative that appears in the equation.

Example 3.
e u; = u, (Transport Eqn., first order)
e u; = kuy, (Heat Eqn., second order)

o uy = c*uy, (Wave Eqn., second order)



e u,, +u,, =0 (Laplace Eqn., second order)

o Uy, +uy, = f(z,y) (Poisson’s Eqn., second order)

® Uy + Ugyy + uu, = 0 (KAV Eqn., third order)

e u? +u; = ¢ (Eikonal Eqn. of Geometric Optics, first order)

In general, a k-th order partial differential equation is an equation which can be written
in the form
F(Z,u, Du, D*u, ..., D"u) =0
for some function F. For example, for the transport equation, the associated function F :
R5 — R is given by F(x,t,u,p,q) = ¢—p. In this way, the transport equation can be written
as
F(z,t,u,ugp, uy) = uy — uy = 0.

There are a wide variety of partial differential equations and, consequently, we cannot
hope to look for a general method for solving all of them. Instead, we will try to solve some
of the “easier” ones and continue from there. So, what do we mean by “easier”? We will
begin by introducing some definitions to classify partial differential equations into different
categories. In particular, we begin by introducing the concept of linearity.

A k-th order PDE is linear if it can be written as

D aa(E) D = f(E). (1.3)

lal <k

If f =0, the PDE is homogeneous. If f # 0, the PDE is inhomogeneous. If it is not
linear, we say it is nonlinear.

Example 4.
e u; + u, = 0 is homogeneous linear
® Uy, + uy, = 0 is homogeneous linear.
® U, +u,, = r?+ y? is inhomogeneous linear.
e u; + 2?u, = 0 is homogeneous linear.
® U + Uypr + uu, = 0 is not linear.
o ul+ ui = 1 is not linear.

As you may be able to guess, many equations are not linear. In studying partial differen-
tial equations, it is sometimes easier to distinguish further among nonlinear equations. We
will do so by introducing the following definitions.

We say a k-th-order nonlinear partial differential equation is semilinear if it can be
written in the form

Z o (Z)D*u 4 ag(D*tu, D*"2u, ..., Du,u, %) = 0. (1.4)
la|=k



In particular, this means that semilinear equations are ones in which the coefficients of
the terms involving the highest-order derivatives of u depend only on x, not on w or its
derivatives.

Example 5.
o u; + u, +u? = 0 is semilinear.
® U + Uyypr + uu, = 0 is semilinear.
e u; + xu, = 0 is linear.
e u; + uu, = 0 is not semilinear.

We say a k-th-order nonlinear partial differential equation, which is not semilinear, is
quasilinear if it can be written in the form

Z ao (D, ..., Du,u, ¥)D*u 4 ag(D*u, ..., Du,u, 7) = 0. (1.5)
|a|l=k

In particular, this means that quasilinear equations are those equations in which the coeffi-
cients of the highest-order terms may depend on &, u, ..., D 'u, but not on D¥u.

Example 6.
e u; + uu, = 0 is quasilinear.
e u; + a(u)u, = 0 is quasilinear.
e u2 +u? = 1 is not quasilinear.

A k-th order partial differential equation is fully nonlinear if the highest-order deriva-
tives of u appear nonlinearly in the equation.

Example 7.

° ug + uz = 1 is fully nonlinear.

o div (L> = 0 is fully nonlinear.
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We can also talk about systems of partial differential equations. In particular, suppose
U(Z) is a vector-valued function on R™ such that U : R™ — R™. That is

u1(7)
U@) =1 :
where uq, ..., u,, are the m component functions of U. For a multi-index «, we define

DU = {D%uy, ..., D%, }.
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For a nonnegative integer k, we define
DFU = {DU : |a| = k}.

An equation of the form B
F(z,U,DU,...,D*U) =0 (1.6)

is a k-th order system of partial differential equations.

Example 8. Suppose

ug(z,t)
Consider
{ (un)e = (u2)a wn
(u2)e = (u1)a-
This is a first-order system of PDEs. We note that this system can also be written as
U = AU, (1.8)

where
0 1
A= [1 0] .
Now that we have introduced the notion of a partial differential equation and classified

equations into different types, we will discuss the types of problems we are interested in
studying.

1.2 Initial/Boundary Value Problems

As discussed above, a partial differential equation is an equation involving a function u and
its derivatives. Given a PDE, we want to know if there are any functions u which satisfy the
equation. As you may recall from studying ordinary differential equations, however, there
may be no solutions or there may be many solutions for a given ODE. The same is true for
partial differential equations. For example, consider the transport equation,

Uy — Uy = 0.

This equation models simple fluid motion, where u(z,t) is the height of the wave at time ¢
and position x. Clearly, u(z,t) = 0 satisfies this equation, but so does u(x,t) = ¢ for any
constant c. In fact, there are a lot of different solutions to this equation. (We will discuss this
equation more later in the course.) This is called an ill-posed problem, because there is not
a unique solution. However, if we impose an auxiliary condition, i.e. - an initial condition,
we can find a unique solution. In particular, the problem

Uy — Uy = 0
u(z,0) = ¢(z)



is a well-posed problem assuming the initial data ¢(x) is a “nice” function.

We are interested in studying so-called well-posed problems. Roughly, we say a problem
is well-posed if there exists a unique solution which depends continuously on the initial
or boundary data. We will discuss particular initial value problems and boundary value
problems later in the course.

The reason for asking for the function u to satisfy additional conditions (initial or bound-
ary), is not purely a mathematical invention. As we will see more throughout the course,
when modelling a physical problem with a partial differential equation, it is quite natural to
ask that the solution u not only satisfies the PDE, but also satisfies some additional condi-
tions. For example, in the transport equation above, in order to ask what the height u(z,t)
of the wave will be at time ¢ and position x, we need to know something else about the wave!

1.3 General Remarks

The study of partial differential equations is a huge field. With the variety of possible PDEs,
it is impossible to find a method by which we can solve all equations. In this course, we
will touch upon some basic techniques for certain types of equations, but will only skim the
surface of this field.

The general rule of thumb is the following. Lower-order, linear equations are easier
than higher-order, nonlinear equations. Consequently, we will start with first-order linear
equations and work our way up.



