Math 220A Final Exam Solutions December 12, 2002

1. (10 points) Consider the following eigenvalue problem,

(a)

—X" =X 0<z<l
X(0)=0
X'+ X({1)=0

Find all positive eigenvalues.
Answer: If A\ = 3% > 0, then we have

X(z) = Acos(fz) + Bsin(fx).

The boundary condition
X(0)=0 = A=0.

The boundary condition
X'()+X(l) =0 = Bpcos(pl) + Bsin(fl) = 0.

Since we do not want B = 0, as that would imply X = 0, we need (cos(0l) +
sin(4l) = 0. Therefore, our positive eigenvalues are given by

An = (2 where 3, = — tan(B,1).

Show that zero is not an eigenvalue, and that there are no negative eigenvalues.
Answer: If A =0, then we have
X(z) = A+ Bz.
The boundary condition
X(0)=0 = A=0.
The boundary condition
X'+ X(1)=0 = B+ BIl=0.

Now 1+ 1 # 0 as [ > 0. Therefore, we conclude that B = 0 which implies
X(xz) = 0, but the zero function is not an eigenfunction. Therefore, we have no
negative eigenvalues.

If A\ = —9? < 0, then we have
X(z) = Acosh(vyx) + Bsinh(yz).
The boundary condition
X(0)=0 = A=0.
The boundary condition

X'(1)+ X (1) =0 = Brycosh(yl) + Bsinh(yl) = 0.

Now, y cosh(~l)+sinh(7l) # 0, because the curves f(v) = v and g(y) = — tanh(~()
do not intersect for v # 0. Therefore, in order to satisfy the condition above, we
need B = 0. But, this implies X(x) = 0. Again, the zero function is not an
eigenfunction. Therefore, we have no negative eigenvalues.
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2. (18 points) Consider the following initial /boundary value problem,

(utt—umjLu:f(x,t) 0<x<l

u(z,0) =0
(%) ¢ ue(z,0)=0
u(0,t) =0

up (1, 1) +u(l,t) =0

\

(a) (10 points) Let {X,(x),\,} denote the eigenfunctions and eigenvalues found in
the previous problem. Solve (*) in terms of X,, and \,. (You do not need to use
your answer from problem 1.)

Answer: First, we will solve the homogeneous problem above, and then we will
use Duhamel’s principle. We can rewrite this equation as a system as follows.
Letting v = u;, we get the following system,

o=l o [ 1)

If S(t) is the solution operator associated with the homogeneous equation, then
the solution of the inhomogeneous problem (*) will be given by

/0 t S(t — $)F(s)ds

using the fact that the initial conditions are zero. Therefore, we will look for S(t).
To do so, we will use separation of variables.

Consider the homogeneous problem. Looking for a solution of the form wu(z,t) =
X (x)T(t), we are led to the equation

XT" - X"T+ XT =0.

Dividing by XT', we get
By assumption, the eigenvalues and eigenfunctions of

X'"=-)\X 0<x<l
X0)=0 X'()+X({)=0.

are given by X, (z) and \,(z). Now we look for solutions of

1"

Znop =)
7, "

or rewritten as
T+ (14 X\)T, = 0.
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By problem 1, we know all eigenvalues are positive. Therefore, the solutions of
this equation are given by

To(t) = Acos(v/1+ A\pt) + Bsin(y/1 + A\,t).

Let

u(z,t) = i[A” cos(v/ 14+ \ut) + By sin(y/1 + A\t)] X ().

n=1
For general initial conditions u(z,0) = ¢(x) and w(z,0) = ¢ (x), our coefficients
will be given by

<¢, Xn> ‘ [0,1]
<Xna Xn> | [0,1]

Xn
VB, = Sl

(X, X))

A, =

We conclude that the solution of (*) is given by

(1) = /0 S Du(s) sin(v/T+ ) Xu()

where

(f(z,5), Xn(2))|oy
Vv 1+ >\n<Xn7 Xn>‘[0,l] .

(b) (8 points) Prove uniqueness of the solution to (*).

Dn(s) =

Answer: Suppose there were two solutions v and v. Let w = u —v. Then w

satisfies )
Wy — Wee +w=0 0<ax<l
w(z,0) =0
 wy(z,0) =0
w(0,t) =0

wy(l,t) +w(l,t) =0.

\

Multiply this equation by w; and integrate over [0,!] with respect to z. We have
l
0= / wt[wtt — Wgy + U)] dx
0

1
1 1 _
— / gat(wf) + Wy W, + §3t(w2) dx — wtwm|§;6
0

1
— %81; </ [w? + w? + w?] dx) + w (1, t)w(l, t) + we (0, t)w, (0, t)
0

1

I
= E&g (/ [w 4+ w? +w?] dx + w2(l,t))
0



using the fact that w(0,¢) = 0 implies wy(0,t) = 0 and w,(l,t) = —w(l,t).
Integrating this equation with respect to ¢, we have

!
/0 [w?(x, t) + wi(w, t) + w?(z,t)] do + w?(l, 1)
= /0 [w?(z,0) + w(z,0) + w?(z,0)] dz + w?(l,0).

By the initial conditions, we conclude that the right-hand side is zero, and, there-
fore, the left-hand side is identically zero. Therefore, we conclude that w?(z,t) = 0
for all x € [0,], which implies that w(z,t) = 0, and, thus, u = v.

3. (8 points) Use the method of reflection to show that the solution of

Ut — Clgy = 0 O<x<lit>0
u(z,0) = ¢(x)

ut(l‘,O) = 1/J<JZ)

u(0,t) =0 =u(l,t)

is periodic in t. That is, show that there exists p € R such that for all z € (0,1),
u(x,t) = u(z,t + p). Specifically, find the period p.
Answer: Since ¢y is 2L-periodic,
Gext (T + t) = Pext(T + ¢t + 2L) = ¢ext(x + c(t +2L/¢))
SO ext 1S periodic in ¢ with period 2L /c. Since 1)ey is odd and 2L-periodic, the integral

of eyt over any interval of length 2L is zero. Thus

x+ct+2L
[Gext ( + ct + 2L) 4+ Pexi(x — ct —2L)] + — / Vet (y) dy

u(x,t+2L/c) =
( /) 2¢ Jp—ct-or

e

[(bext(x + Ct) + ¢ext (.CL' - Ct)] + i / : ¢ext (y) dy

2 2¢ Jo—ct-ar
1 z+ct r+ct+2L

+ Vext (Y) dy + 5= Vext(y) dy

20 T—ct 20 x+ct
x+ct

= Slomsla )+ donla =t + 5 [l dy

2c

I —Ci

= u(z,t)
so u is periodic in t with period 2L/c.
4. (14 points) Consider the following equation for u = u(x,y, z),

gy + 4y, + 4u,, = 0.



(a) (6 points) Show the equation is hyperbolic.
Answer: The equation can be rewritten as

3
E aijumj =0

ij=1

where A = (a;;) is the symmetric matrix,

[\]

A=

NN O
N O N
[\]

0

The eigenvalues of A are given by the roots of the characteristic equation det(A —
M) = 0. This equation is given by (X + 2)%(A — 4) = 0. Therefore, we see that
A = —2 and A = 4 are the eigenvalues of this equation. As none of them are zero,
and one has the opposite sign of the other two, the equation is hyperbolic.

(b) (8 points) Make a change of variables to reduce it to
Q1 Ugy gy + QUgyg, + Q3Ugses = ()
where «; € R. In particular, find a matrix B such that defining

&1
§=|&| =B
&3

our equation can written in the form above. Determine the values for o;.

IS

Answer: We will define the matrix B as B = ST where S is the matrix whose column

vectors are orthonormal eigenvectors of A. First, for Ay = —2, we see that
2 2 2 111
A-MI=A+2I= |2 2 2] —- |0 0 O
2 2 2 000

(where — denotes row-reduction). An orthonormal basis for the eigenspace of A — A\,
is given by

1| 7 1
—lo0l|,—=
V2 1) Ve,

For \y = 4,we see that

-4 2 2] 10 -1
A-—Xl=A—-4=|2 -4 2| -0 1 -1
2 2 -4 0 0 O



A basis for the eigenspace of A — A\y[ is given by

L)
V314
Let
1 1 1
V2 Ve
S=10 % =i
11 1
V2 V6 V3

Now let B = ST. The coeflicients «o; =

|
\_l\')

|
\_l\')
W

. (10 points) Consider the following initial-value problem,

u+ [f(w).=0 zeRt>0
u(x,0) = o(x)

Assume f is uniformly convex and ¢ is a smooth function. Show that if ¢(z) = —z,
then |u;| — 400 in finite time.

Answer: The characteristic equations are given by

@
ds
d_a:
ds
@
ds

=1 t(r,0)=0
= f'(2) z(r,0) =r
=0 z(r,0) = ¢(r).

Solving this system, we get

t=s
x = f(p(r))s+r
z=(r).

We arrive at the following implicit equation for u(z,t),

u(z,t) = ¢z — f'(u)t).
Differentiating this equation with respect to x, we see that u, is given by

 da-
Tl (= ) f(u)t
Now if ¢(x) = —z, then ¢/(x) = —1, which implies
—1
Uy = ———————.
1 — f"(u)t

Now if 1 — f”(u)t = 0 in some finite time, then |u,| — +oo. By the uniform convexity
assumption, we know that there exists @ such that f”(u) > 6 > 0 for all u. Therefore,
0 < 1/f"(u) < C. Therefore, there exists a time ¢t < +oo such that ¢t = 1/f"(u), and
u, blows up.




6. (14 points) Consider the system

where
1 2e*
A= {Ze_x 1 }

(a) (6 points) Show that this system is hyperbolic.

Answer:  We need to show that the matrix A is diagonalizable. First, we
compute the eigenvalues of A. The eigenvalues are given by the roots of det(A —
M) = X2 —2)\ — 3 = 0. The roots of this equation are given by A\ = 3, —1. Since
the roots are distinct, we know the eigenvectors associated with them are linearly
independent, and, thus A is diagonalizable. Therefore, this system is hyperbolic.

(b) (8 points) Solve the initial-value problem,

A R B/ A
b
Uz, 0) [Smé”f)} |

Answer: We begin by diagonalizing the system. For \; = 3,

-2 2e” 1 —e*
A=hl= {26‘” —2} - [0 0 ]

Therefore, an eigenvector for A\; = 3 is given by

iy

For )\2 = —1,
2 2e" 1 e
A=Al = [Qez 2 } - [0 0}'
Therefore, an eigenvector for Ay = —1 is given by
ex
1l (-
Let
e’ e’
o= 5
Then .
-1 L 1 er
@ = 2e® [1 —e”

And, we have



Plugging in for A = QAQ ™, we have
Ui+ QAQ'U, = 0.
Multiplying by @Q~!, we have
QU +AQ'U, = 0.
This can be rewritten as
Q')+ MQ™'U) — A(Q™H).U = 0.
Now let V = Q~'U. Then, we arrive at
Vi + AV, = A(Q 1), U.
AQ™H,U = %A [:z 8] U — % {—sex ul] |

Therefore, our equation for V' becomes

1= —x
VH—AVx:—{ 3e ul]'

2| —e *uy

This system decouples into two initial-value problems for inhomogeneous transport
equations,

3 —x
(’Ul)t -+ 3<Ul)x = —56 U1
v1(z,0) = ée_m sin(z)

and
(Vo) — (V1) = —€ "1y

1
vo(x,0) = 56” sin(z).

The solutions of these equations are given by
1 —(z—3t) o3 3 ' —(z—(t—s))
vi(z,t) = 3¢ sin(z — 3t) — 5/ € u(x—(t—s),s)ds
0

1 t
vo(z,t) = 56’(”0 sin(z +1¢) — / e~ @ =Dy, (x — (t — 5), 5) ds.
0

Finally, the solution of our original system is given (implicitly) by U = QV'.

7. (10 points) Answer the following short-answer questions.



(a) (5 points) State the definition of a kth-order quasilinear partial differential equa-
tion for a function u : R™ — R.

Answer: We say a kth-order partial differential equation is quasilinear if it is
nonlinear, but not semilinear, and can be written in the following form,

Z ao(z,u, ..., D" 'u) D% + ag(z,u, . .., D*u) = 0,
la|=k

where D’u denotes the collection of all partial derivatives of order j and « is a
multi-index.

(b) (5 points) Give an example of an initial-value problem for a first-order semilinear
equation in which the initial data is smooth, but the solution blows up in finite
time.

Answer: Consider the following initial-value problem,

Ut + Uy = u?
u(z,0) = sin(z).

Now the characteristics are given by

dt

— =1 t =

dS (T7 0) 0

d

di =1 z(r,0) =71

g =22 z(r,0) = sin(r).

The solutions of this system are given by

t=s
r=Ss+r
-1 1

PR sin(r)’

Solving this system, we find that our solution is given by

sin(z — t)
1—tsin(z —t)

u(z,t) =

We see that at t =1, x = 1+ (2n + 1)7/2, the solution will blow up.

8. (18 points) Determine whether each of the following statements is True or False. Pro-
vide reasons for your answers.

(a) (3 points) Assume f is uniformly convex. Consider

) u+[f(w)],=0 zeRt>0
u(.ilj,()) = ¢(33)
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Suppose

qﬁ(m):{u; x <0

U x>0

Suppose u is a weak solution of (*). Then u(z,t) is continuous for ¢ > 0.

Answer: Suppose v~ > u't. Let

u- T < ot
e, t) = ut x> ot

where 0 = [f(u)]/[u]. Then u is a weak solution, but u is not continuous.

(b) (3 points) Let Q be a bounded subset of R™. All linearly independent eigenfunc-
tions of
{ ~AX=)X z€QCR"

X(x) =0 for x € 00

are orthogonal.

Answer: Consider the case when ) is a rectangle in R?. In particular,
consider 2 = (0,7) x (0,7). Then the eigenvalues are given by \,,, = n? + m?
with eigenfunctions X,,,(z,y) = sin(nzx) sin(my). In particular, we see that A =5
is an eigenvalue with multiplicity two. We note that X5 = sin(x)sin(2y) and
X1 = sin(2z) sin(y) are both eigenfunctions associated with A = 5. In addition,
any linear combination of these eigenfunctions is an eigenfunction with eigenvalue
A = 5. But, clearly, not all of these eigenfunctions are orthogonal.

(¢) (3 points) Suppose u is a solution of

Uy — Uy =1  x ER3 >0
u(xz,0) =0 r € R?
u(x,0) =0 r € R3.

Then u(x,t) # 0 for all ¢ > 0, all z € R3.
Answer: The solution is given by

u(z,t) = /O t(t — ) ]é o dS(y) ds

for all t > 0, all z € R3.

(d) (3 points) Let f(x) =1 for € [0,]. The Fourier sine series for f will converge
uniformly to f on [0, 1].
Answer: At z =0, sin(nmz/l) = 0 implies the Fourier sine series for f
is zero at © = 0, but f(0) = 1. Therefore, the series cannot converge uniformly.
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(e) (3 points) If A; is an m x m, constant-coefficent, diagonalizable matrix for ¢ =
1,...,n, then

Ui+ Y AU, =0
i=1
is a hyperbolic system.

Answer: The matrices A; being diagonalizable does not imply that
A& = Yo, A is diagonalizable for all £ € R™. In particular, consider m =

n = 2 and let
1 2
A=y 1]

11
4y = L 1] .
Then A; and A, are both diagonalizable because they both have two distinct
eigenvalues. But, letting £ = (1, —1), we see that

Alf) = A1 — Ay = [8 é],

which is not diagonalizable.

(f) (3 points) Consider the initial-value problem for the hyperbolic equation

Ut = D iy Qijllge; =0 2 €R™E>0
u(z,0) = ¢(x)
Ut(l’, 0) = d’(x)

where the eigenvalues of A = (a;;) are all positive. If ¢ and ¢ have compact
support, then u has compact support.

Answer: By a change of variables this equation can be written as the
wave equation in R",
Ut — Au = 0.

We know that if the initial data has compact support, then the solution has
compact support (in x).
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