1. (10 points) Consider the following eigenvalue problem,

$$
\left\{\begin{array}{l}
-X^{\prime \prime}=\lambda X \quad 0<x<l \\
X(0)=0 \\
X^{\prime}(l)+X(l)=0
\end{array}\right.
$$

(a) Find all positive eigenvalues.

Answer: If $\lambda=\beta^{2}>0$, then we have

$$
X(x)=A \cos (\beta x)+B \sin (\beta x)
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)+X(l)=0 \Longrightarrow B \beta \cos (\beta l)+B \sin (\beta l)=0
$$

Since we do not want $B=0$, as that would imply $X \equiv 0$, we need $\beta \cos (\beta l)+$ $\sin (\beta l)=0$. Therefore, our positive eigenvalues are given by

$$
\lambda_{n}=\beta_{n}^{2} \text { where } \beta_{n}=-\tan \left(\beta_{n} l\right)
$$

(b) Show that zero is not an eigenvalue, and that there are no negative eigenvalues.

Answer: If $\lambda=0$, then we have

$$
X(x)=A+B x
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)+X(l)=0 \Longrightarrow B+B l=0
$$

Now $1+l \neq 0$ as $l>0$. Therefore, we conclude that $B=0$ which implies $X(x) \equiv 0$, but the zero function is not an eigenfunction. Therefore, we have no negative eigenvalues.
If $\lambda=-\gamma^{2}<0$, then we have

$$
X(x)=A \cosh (\gamma x)+B \sinh (\gamma x)
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)+X(l)=0 \Longrightarrow B \gamma \cosh (\gamma l)+B \sinh (\gamma l)=0
$$

Now, $\gamma \cosh (\gamma l)+\sinh (\gamma l) \neq 0$, because the curves $f(\gamma)=\gamma$ and $g(\gamma)=-\tanh (\gamma l)$ do not intersect for $\gamma \neq 0$. Therefore, in order to satisfy the condition above, we need $B=0$. But, this implies $X(x) \equiv 0$. Again, the zero function is not an eigenfunction. Therefore, we have no negative eigenvalues.
2. (18 points) Consider the following initial/boundary value problem,

$$
(*)\left\{\begin{array}{l}
u_{t t}-u_{x x}+u=f(x, t) \quad 0<x<l \\
u(x, 0)=0 \\
u_{t}(x, 0)=0 \\
u(0, t)=0 \\
u_{x}(l, t)+u(l, t)=0
\end{array}\right.
$$

(a) (10 points) Let $\left\{X_{n}(x), \lambda_{n}\right\}$ denote the eigenfunctions and eigenvalues found in the previous problem. Solve $\left(^{*}\right.$) in terms of X_{n} and λ_{n}. (You do not need to use your answer from problem 1.)
Answer: First, we will solve the homogeneous problem above, and then we will use Duhamel's principle. We can rewrite this equation as a system as follows. Letting $v=u_{t}$, we get the following system,

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]_{t}=\left[\begin{array}{cc}
0 & 1 \\
\partial_{x}^{2}-1 & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
f
\end{array}\right] .
$$

If $S(t)$ is the solution operator associated with the homogeneous equation, then the solution of the inhomogeneous problem $\left(^{*}\right)$ will be given by

$$
\int_{0}^{t} S(t-s) F(s) d s
$$

using the fact that the initial conditions are zero. Therefore, we will look for $S(t)$. To do so, we will use separation of variables.
Consider the homogeneous problem. Looking for a solution of the form $u(x, t)=$ $X(x) T(t)$, we are led to the equation

$$
X T^{\prime \prime}-X^{\prime \prime} T+X T=0
$$

Dividing by $X T$, we get

$$
\frac{T^{\prime \prime}}{T}+1=\frac{X^{\prime \prime}}{X}=-\lambda .
$$

By assumption, the eigenvalues and eigenfunctions of

$$
\left\{\begin{array}{l}
X^{\prime \prime}=-\lambda X \quad 0<x<l \\
X(0)=0 \quad X^{\prime}(l)+X(l)=0
\end{array}\right.
$$

are given by $X_{n}(x)$ and $\lambda_{n}(x)$. Now we look for solutions of

$$
\frac{T_{n}^{\prime \prime}}{T_{n}}+1=-\lambda
$$

or rewritten as

$$
T_{n}^{\prime \prime}+\left(1+\lambda_{n}\right) T_{n}=0
$$

By problem 1, we know all eigenvalues are positive. Therefore, the solutions of this equation are given by

$$
T_{n}(t)=A \cos \left(\sqrt{1+\lambda_{n}} t\right)+B \sin \left(\sqrt{1+\lambda_{n}} t\right)
$$

Let

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\sqrt{1+\lambda_{n}} t\right)+B_{n} \sin \left(\sqrt{1+\lambda_{n}} t\right)\right] X_{n}(x)
$$

For general initial conditions $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=\psi(x)$, our coefficients will be given by

$$
\begin{aligned}
& A_{n}=\frac{\left.\left\langle\phi, X_{n}\right\rangle\right|_{[0, l]}}{\left.\left\langle X_{n}, X_{n}\right\rangle\right|_{[0,1]}} \\
& \sqrt{1+\lambda_{n}} B_{n}=\frac{\left.\left\langle\psi, X_{n}\right\rangle\right|_{[0, l]}}{\left.\left\langle X_{n}, X_{n}\right\rangle\right|_{[0, l]}} .
\end{aligned}
$$

We conclude that the solution of $\left(^{*}\right)$ is given by

$$
u(x, t)=\int_{0}^{t} \sum_{n=1}^{\infty} D_{n}(s) \sin \left(\sqrt{1+\lambda_{n}} t\right) X_{n}(x)
$$

where

$$
D_{n}(s)=\frac{\left.\left\langle f(x, s), X_{n}(x)\right\rangle\right|_{[0, l]}}{\left.\sqrt{1+\lambda_{n}}\left\langle X_{n}, X_{n}\right\rangle\right|_{[0, l]}} .
$$

(b) (8 points) Prove uniqueness of the solution to (*).

Answer: Suppose there were two solutions u and v. Let $w=u-v$. Then w satisfies

$$
\left\{\begin{array}{l}
w_{t t}-w_{x x}+w=0 \quad 0<x<l \\
w(x, 0)=0 \\
w_{t}(x, 0)=0 \\
w(0, t)=0 \\
w_{x}(l, t)+w(l, t)=0
\end{array}\right.
$$

Multiply this equation by w_{t} and integrate over $[0, l]$ with respect to x. We have

$$
\begin{aligned}
0 & =\int_{0}^{l} w_{t}\left[w_{t t}-w_{x x}+w\right] d x \\
& =\int_{0}^{l} \frac{1}{2} \partial_{t}\left(w_{t}^{2}\right)+w_{x t} w_{x}+\frac{1}{2} \partial_{t}\left(w^{2}\right) d x-\left.w_{t} w_{x}\right|_{x=0} ^{x=l} \\
& =\frac{1}{2} \partial_{t}\left(\int_{0}^{l}\left[w_{t}^{2}+w_{x}^{2}+w^{2}\right] d x\right)+w_{t}(l, t) w(l, t)+w_{t}(0, t) w_{x}(0, t) \\
& =\frac{1}{2} \partial_{t}\left(\int_{0}^{l}\left[w_{t}^{2}+w_{x}^{2}+w^{2}\right] d x+w^{2}(l, t)\right)
\end{aligned}
$$

using the fact that $w(0, t)=0$ implies $w_{t}(0, t)=0$ and $w_{x}(l, t)=-w(l, t)$. Integrating this equation with respect to t, we have

$$
\begin{aligned}
\int_{0}^{l} & {\left[w_{t}^{2}(x, t)+w_{x}^{2}(x, t)+w^{2}(x, t)\right] d x+w^{2}(l, t) } \\
& =\int_{0}^{l}\left[w_{t}^{2}(x, 0)+w_{x}^{2}(x, 0)+w^{2}(x, 0)\right] d x+w^{2}(l, 0) .
\end{aligned}
$$

By the initial conditions, we conclude that the right-hand side is zero, and, therefore, the left-hand side is identically zero. Therefore, we conclude that $w^{2}(x, t) \equiv 0$ for all $x \in[0, l]$, which implies that $w(x, t) \equiv 0$, and, thus, $u=v$.
3. (8 points) Use the method of reflection to show that the solution of

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x) \\
u(0, t)=0=u(l, t)
\end{array}\right.
$$

is periodic in t. That is, show that there exists $p \in \mathbb{R}$ such that for all $x \in(0, l)$, $u(x, t)=u(x, t+p)$. Specifically, find the period p.
Answer: Since $\phi_{\text {ext }}$ is $2 L$-periodic,

$$
\phi_{\mathrm{ext}}(x+c t)=\phi_{\mathrm{ext}}(x+c t+2 L)=\phi_{\mathrm{ext}}(x+c(t+2 L / c))
$$

so $\phi_{\text {ext }}$ is periodic in t with period $2 L / c$. Since $\psi_{\text {ext }}$ is odd and $2 L$-periodic, the integral of $\psi_{\text {ext }}$ over any interval of length $2 L$ is zero. Thus

$$
\begin{aligned}
u(x, t+2 L / c) & =\frac{1}{2}\left[\phi_{\mathrm{ext}}(x+c t+2 L)+\phi_{\mathrm{ext}}(x-c t-2 L)\right]+\frac{1}{2 c} \int_{x-c t-2 L}^{x+c t+2 L} \psi_{\mathrm{ext}}(y) d y \\
& =\frac{1}{2}\left[\phi_{\mathrm{ext}}(x+c t)+\phi_{\mathrm{ext}}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t-2 L}^{x-c t} \psi_{\mathrm{ext}}(y) d y \\
& +\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{\mathrm{ext}}(y) d y+\frac{1}{2 c} \int_{x+c t}^{x+c t+2 L} \psi_{\mathrm{ext}}(y) d y \\
& =\frac{1}{2}\left[\phi_{\mathrm{ext}}(x+c t)+\phi_{\mathrm{ext}}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{\mathrm{ext}}(y) d y \\
& =u(x, t)
\end{aligned}
$$

so u is periodic in t with period $2 L / c$.
4. (14 points) Consider the following equation for $u=u(x, y, z)$,

$$
4 u_{x y}+4 u_{x z}+4 u_{y z}=0 .
$$

(a) (6 points) Show the equation is hyperbolic.

Answer: The equation can be rewritten as

$$
\sum_{i, j=1}^{3} a_{i j} u_{x_{i} x_{j}}=0
$$

where $A=\left(a_{i j}\right)$ is the symmetric matrix,

$$
A=\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right]
$$

The eigenvalues of A are given by the roots of the characteristic equation $\operatorname{det}(A-$ $\lambda I)=0$. This equation is given by $(\lambda+2)^{2}(\lambda-4)=0$. Therefore, we see that $\lambda=-2$ and $\lambda=4$ are the eigenvalues of this equation. As none of them are zero, and one has the opposite sign of the other two, the equation is hyperbolic.
(b) (8 points) Make a change of variables to reduce it to

$$
\alpha_{1} u_{\xi_{1} \xi_{1}}+\alpha_{2} u_{\xi_{2} \xi_{2}}+\alpha_{3} u_{\xi_{3} \xi_{3}}=0
$$

where $\alpha_{i} \in \mathbb{R}$. In particular, find a matrix B such that defining

$$
\xi \equiv\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right]=B\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right],
$$

our equation can written in the form above. Determine the values for α_{i}.
Answer: We will define the matrix B as $B=S^{T}$ where S is the matrix whose column vectors are orthonormal eigenvectors of A. First, for $\lambda_{1}=-2$, we see that

$$
A-\lambda_{1} I=A+2 I=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(where \rightarrow denotes row-reduction). An orthonormal basis for the eigenspace of $A-\lambda_{1} I$ is given by

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right\}
$$

For $\lambda_{2}=4$,we see that

$$
A-\lambda_{2} I=A-4 I=\left[\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

A basis for the eigenspace of $A-\lambda_{2} I$ is given by

$$
\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

Let

$$
S=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] .
$$

Now let $B=S^{T}$. The coefficients $\alpha_{i}=-2,-2,4$.
5. (10 points) Consider the following initial-value problem,

$$
\left\{\begin{array}{l}
u_{t}+[f(u)]_{x}=0 \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Assume f is uniformly convex and ϕ is a smooth function. Show that if $\phi(x)=-x$, then $\left|u_{x}\right| \rightarrow+\infty$ in finite time.
Answer: The characteristic equations are given by

$$
\begin{array}{lr}
\frac{d t}{d s}=1 & t(r, 0)=0 \\
\frac{d x}{d s}=f^{\prime}(z) & x(r, 0)=r \\
\frac{d z}{d s}=0 & z(r, 0)=\phi(r) .
\end{array}
$$

Solving this system, we get

$$
\begin{aligned}
& t=s \\
& x=f^{\prime}(\phi(r)) s+r \\
& z=\phi(r) .
\end{aligned}
$$

We arrive at the following implicit equation for $u(x, t)$,

$$
u(x, t)=\phi\left(x-f^{\prime}(u) t\right)
$$

Differentiating this equation with respect to x, we see that u_{x} is given by

$$
u_{x}=\frac{\phi^{\prime}\left(x-f^{\prime}(u) t\right)}{1+\phi^{\prime}\left(x-f^{\prime}(u) t\right) f^{\prime \prime}(u) t} .
$$

Now if $\phi(x)=-x$, then $\phi^{\prime}(x)=-1$, which implies

$$
u_{x}=\frac{-1}{1-f^{\prime \prime}(u) t}
$$

Now if $1-f^{\prime \prime}(u) t=0$ in some finite time, then $\left|u_{x}\right| \rightarrow+\infty$. By the uniform convexity assumption, we know that there exists θ such that $f^{\prime \prime}(u) \geq \theta>0$ for all u. Therefore, $0<1 / f^{\prime \prime}(u) \leq C$. Therefore, there exists a time $t<+\infty$ such that $t=1 / f^{\prime \prime}(u)$, and u_{x} blows up.
6. (14 points) Consider the system

$$
U_{t}+A U_{x}=0
$$

where

$$
A=\left[\begin{array}{cc}
1 & 2 e^{x} \\
2 e^{-x} & 1
\end{array}\right]
$$

(a) (6 points) Show that this system is hyperbolic.

Answer: We need to show that the matrix A is diagonalizable. First, we compute the eigenvalues of A. The eigenvalues are given by the roots of $\operatorname{det}(A-$ $\lambda I)=\lambda^{2}-2 \lambda-3=0$. The roots of this equation are given by $\lambda=3,-1$. Since the roots are distinct, we know the eigenvectors associated with them are linearly independent, and, thus A is diagonalizable. Therefore, this system is hyperbolic.
(b) (8 points) Solve the initial-value problem,

$$
\left\{\begin{array}{l}
U_{t}+\left[\begin{array}{cc}
1 & 2 e^{x} \\
2 e^{-x} & 1
\end{array}\right] U_{x}=0 \\
U(x, 0)=\left[\begin{array}{c}
\sin (x) \\
0
\end{array}\right]
\end{array}\right.
$$

Answer: We begin by diagonalizing the system. For $\lambda_{1}=3$,

$$
A-\lambda_{1} I=\left[\begin{array}{cc}
-2 & 2 e^{x} \\
2 e^{-x} & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -e^{x} \\
0 & 0
\end{array}\right]
$$

Therefore, an eigenvector for $\lambda_{1}=3$ is given by

$$
\left\{\left[\begin{array}{c}
e^{x} \\
1
\end{array}\right]\right\}
$$

For $\lambda_{2}=-1$,

$$
A-\lambda_{2} I=\left[\begin{array}{cc}
2 & 2 e^{x} \\
2 e^{-x} & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & e^{x} \\
0 & 0
\end{array}\right]
$$

Therefore, an eigenvector for $\lambda_{2}=-1$ is given by

$$
\left\{\left[\begin{array}{c}
e^{x} \\
-1
\end{array}\right]\right\} .
$$

Let

$$
Q=\left[\begin{array}{cc}
e^{x} & e^{x} \\
1 & -1
\end{array}\right]
$$

Then

$$
Q^{-1}=\frac{1}{2 e^{x}}\left[\begin{array}{cc}
1 & e^{x} \\
1 & -e^{x}
\end{array}\right]
$$

And, we have

$$
Q^{-1} A Q=\Lambda=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]
$$

Plugging in for $A=Q \Lambda Q^{-1}$, we have

$$
U_{t}+Q \Lambda Q^{-1} U_{x}=0 .
$$

Multiplying by Q^{-1}, we have

$$
Q^{-1} U_{t}+\Lambda Q^{-1} U_{x}=0
$$

This can be rewritten as

$$
\left(Q^{-1} U\right)_{t}+\Lambda\left(Q^{-1} U\right)_{x}-\Lambda\left(Q^{-1}\right)_{x} U=0
$$

Now let $V=Q^{-1} U$. Then, we arrive at

$$
V_{t}+\Lambda V_{x}=\Lambda\left(Q^{-1}\right)_{x} U
$$

Now

$$
\Lambda\left(Q^{-1}\right)_{x} U=\frac{1}{2} \Lambda\left[\begin{array}{ll}
-e^{-x} & 0 \\
-e^{-x} & 0
\end{array}\right] U=\frac{1}{2}\left[\begin{array}{c}
-3 e^{-x} u_{1} \\
-e^{-x} u_{1}
\end{array}\right] .
$$

Therefore, our equation for V becomes

$$
V_{t}+\Lambda V_{x}=\frac{1}{2}\left[\begin{array}{c}
-3 e^{-x} u_{1} \\
-e^{-x} u_{1}
\end{array}\right] .
$$

This system decouples into two initial-value problems for inhomogeneous transport equations,

$$
\left\{\begin{array}{l}
\left(v_{1}\right)_{t}+3\left(v_{1}\right)_{x}=-\frac{3}{2} e^{-x} u_{1} \\
v_{1}(x, 0)=\frac{1}{2} e^{-x} \sin (x)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left(v_{2}\right)_{t}-\left(v_{1}\right)_{x}=-e^{-x} u_{1} \\
v_{2}(x, 0)=\frac{1}{2} e^{-x} \sin (x)
\end{array}\right.
$$

The solutions of these equations are given by

$$
\begin{aligned}
& v_{1}(x, t)=\frac{1}{2} e^{-(x-3 t)} \sin (x-3 t)-\frac{3}{2} \int_{0}^{t} e^{-(x-(t-s))} u_{1}(x-(t-s), s) d s \\
& v_{2}(x, t)=\frac{1}{2} e^{-(x+t)} \sin (x+t)-\int_{0}^{t} e^{-(x-(t-s))} u_{1}(x-(t-s), s) d s
\end{aligned}
$$

Finally, the solution of our original system is given (implicitly) by $U=Q V$.
7. (10 points) Answer the following short-answer questions.
(a) (5 points) State the definition of a k th-order quasilinear partial differential equation for a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Answer: We say a k th-order partial differential equation is quasilinear if it is nonlinear, but not semilinear, and can be written in the following form,

$$
\sum_{|\alpha|=k} a_{\alpha}\left(x, u, \ldots, D^{k-1} u\right) D^{\alpha} u+a_{0}\left(x, u, \ldots, D^{k} u\right)=0
$$

where $D^{j} u$ denotes the collection of all partial derivatives of order j and α is a multi-index.
(b) (5 points) Give an example of an initial-value problem for a first-order semilinear equation in which the initial data is smooth, but the solution blows up in finite time.
Answer: Consider the following initial-value problem,

$$
\left\{\begin{array}{l}
u_{t}+u_{x}=u^{2} \\
u(x, 0)=\sin (x)
\end{array}\right.
$$

Now the characteristics are given by

$$
\begin{array}{ll}
\frac{d t}{d s}=1 & t(r, 0)=0 \\
\frac{d x}{d s}=1 & x(r, 0)=r \\
\frac{d z}{d s}=z^{2} & z(r, 0)=\sin (r) .
\end{array}
$$

The solutions of this system are given by

$$
\begin{aligned}
& t=s \\
& x=s+r \\
& \frac{-1}{z}=s-\frac{1}{\sin (r)} .
\end{aligned}
$$

Solving this system, we find that our solution is given by

$$
u(x, t)=\frac{\sin (x-t)}{1-t \sin (x-t)}
$$

We see that at $t=1, x=1+(2 n+1) \pi / 2$, the solution will blow up.
8. (18 points) Determine whether each of the following statements is True or False. Provide reasons for your answers.
(a) (3 points) Assume f is uniformly convex. Consider

$$
(*)\left\{\begin{array}{l}
u_{t}+[f(u)]_{x}=0 \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Suppose

$$
\phi(x)= \begin{cases}u^{-} & x<0 \\ u^{+} & x>0\end{cases}
$$

Suppose u is a weak solution of $\left({ }^{*}\right)$. Then $u(x, t)$ is continuous for $t>0$.
Answer: False Suppose $u^{-}>u^{+}$. Let

$$
u(x, t)= \begin{cases}u^{-} & x<\sigma t \\ u^{+} & x>\sigma t\end{cases}
$$

where $\sigma=[f(u)] /[u]$. Then u is a weak solution, but u is not continuous.
(b) (3 points) Let Ω be a bounded subset of \mathbb{R}^{n}. All linearly independent eigenfunctions of

$$
\left\{\begin{array}{l}
-\Delta X=\lambda X \quad x \in \Omega \subset \mathbb{R}^{n} \\
X(x)=0 \text { for } x \in \partial \Omega
\end{array}\right.
$$

are orthogonal.
Answer: False Consider the case when Ω is a rectangle in \mathbb{R}^{2}. In particular, consider $\Omega=(0, \pi) \times(0, \pi)$. Then the eigenvalues are given by $\lambda_{n m}=n^{2}+m^{2}$ with eigenfunctions $X_{n m}(x, y)=\sin (n x) \sin (m y)$. In particular, we see that $\lambda=5$ is an eigenvalue with multiplicity two. We note that $X_{12}=\sin (x) \sin (2 y)$ and $X_{21}=\sin (2 x) \sin (y)$ are both eigenfunctions associated with $\lambda=5$. In addition, any linear combination of these eigenfunctions is an eigenfunction with eigenvalue $\lambda=5$. But, clearly, not all of these eigenfunctions are orthogonal.
(c) (3 points) Suppose u is a solution of

$$
\begin{cases}u_{t t}-u_{x x}=1 & x \in \mathbb{R}^{3}, t>0 \\ u(x, 0)=0 & x \in \mathbb{R}^{3} \\ u_{t}(x, 0)=0 & x \in \mathbb{R}^{3}\end{cases}
$$

Then $u(x, t) \neq 0$ for all $t>0$, all $x \in \mathbb{R}^{3}$.
Answer: True The solution is given by

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t}(t-s) f_{\partial B(x, t-s)} d S(y) d s \\
& =\int_{0}^{t}(t-s) d s \\
& =t s-\left.\frac{s^{2}}{2}\right|_{s=0} ^{s=t}=\frac{t^{2}}{2} \neq 0
\end{aligned}
$$

for all $t>0$, all $x \in \mathbb{R}^{3}$.
(d) (3 points) Let $f(x)=1$ for $x \in[0, l]$. The Fourier sine series for f will converge uniformly to f on $[0,1]$.
Answer: False At $x=0, \sin (n \pi x / l)=0$ implies the Fourier sine series for f is zero at $x=0$, but $f(0)=1$. Therefore, the series cannot converge uniformly.
(e) (3 points) If A_{i} is an $m \times m$, constant-coefficent, diagonalizable matrix for $i=$ $1, \ldots, n$, then

$$
U_{t}+\sum_{i=1}^{n} A_{i} U_{x_{i}}=0
$$

is a hyperbolic system.
Answer: False The matrices A_{i} being diagonalizable does not imply that $A(\xi) \equiv \sum_{i=1}^{n} A_{i} \xi_{i}$ is diagonalizable for all $\xi \in \mathbb{R}^{n}$. In particular, consider $m=$ $n=2$ and let

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \\
& A_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Then A_{1} and A_{2} are both diagonalizable because they both have two distinct eigenvalues. But, letting $\xi=(1,-1)$, we see that

$$
A(\xi)=A_{1}-A_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

which is not diagonalizable.
(f) (3 points) Consider the initial-value problem for the hyperbolic equation

$$
\left\{\begin{array}{l}
u_{t t}-\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}=0 \quad x \in \mathbb{R}^{n}, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

where the eigenvalues of $A=\left(a_{i j}\right)$ are all positive. If ϕ and ψ have compact support, then u has compact support.
Answer: True By a change of variables this equation can be written as the wave equation in \mathbb{R}^{n},

$$
u_{t t}-\Delta u=0
$$

We know that if the initial data has compact support, then the solution has compact support (in x).

