
Math 220A Final Exam Solutions December 12, 2002

1. (10 points) Consider the following eigenvalue problem,



−X ′′ = λX 0 < x < l
X(0) = 0
X ′(l) + X(l) = 0

(a) Find all positive eigenvalues.

Answer: If λ = β2 > 0, then we have

X(x) = A cos(βx) + B sin(βx).

The boundary condition
X(0) = 0 =⇒ A = 0.

The boundary condition

X ′(l) + X(l) = 0 =⇒ Bβ cos(βl) + B sin(βl) = 0.

Since we do not want B = 0, as that would imply X ≡ 0, we need β cos(βl) +
sin(βl) = 0. Therefore, our positive eigenvalues are given by

λn = β2
n where βn = − tan(βnl).

(b) Show that zero is not an eigenvalue, and that there are no negative eigenvalues.

Answer: If λ = 0, then we have

X(x) = A + Bx.

The boundary condition
X(0) = 0 =⇒ A = 0.

The boundary condition

X ′(l) + X(l) = 0 =⇒ B + Bl = 0.

Now 1 + l 6= 0 as l > 0. Therefore, we conclude that B = 0 which implies
X(x) ≡ 0, but the zero function is not an eigenfunction. Therefore, we have no
negative eigenvalues.

If λ = −γ2 < 0, then we have

X(x) = A cosh(γx) + B sinh(γx).

The boundary condition
X(0) = 0 =⇒ A = 0.

The boundary condition

X ′(l) + X(l) = 0 =⇒ Bγ cosh(γl) + B sinh(γl) = 0.

Now, γ cosh(γl)+sinh(γl) 6= 0, because the curves f(γ) = γ and g(γ) = − tanh(γl)
do not intersect for γ 6= 0. Therefore, in order to satisfy the condition above, we
need B = 0. But, this implies X(x) ≡ 0. Again, the zero function is not an
eigenfunction. Therefore, we have no negative eigenvalues.
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2. (18 points) Consider the following initial/boundary value problem,

(∗)





utt − uxx + u = f(x, t) 0 < x < l

u(x, 0) = 0

ut(x, 0) = 0

u(0, t) = 0

ux(l, t) + u(l, t) = 0

(a) (10 points) Let {Xn(x), λn} denote the eigenfunctions and eigenvalues found in
the previous problem. Solve (*) in terms of Xn and λn. (You do not need to use
your answer from problem 1.)

Answer: First, we will solve the homogeneous problem above, and then we will
use Duhamel’s principle. We can rewrite this equation as a system as follows.
Letting v = ut, we get the following system,

[
u
v

]

t

=

[
0 1

∂2
x − 1 0

] [
u
v

]
+

[
0
f

]
.

If S(t) is the solution operator associated with the homogeneous equation, then
the solution of the inhomogeneous problem (*) will be given by

∫ t

0

S(t− s)F (s) ds

using the fact that the initial conditions are zero. Therefore, we will look for S(t).
To do so, we will use separation of variables.

Consider the homogeneous problem. Looking for a solution of the form u(x, t) =
X(x)T (t), we are led to the equation

XT ′′ −X ′′T + XT = 0.

Dividing by XT , we get
T ′′

T
+ 1 =

X ′′

X
= −λ.

By assumption, the eigenvalues and eigenfunctions of

{
X ′′ = −λX 0 < x < l

X(0) = 0 X ′(l) + X(l) = 0.

are given by Xn(x) and λn(x). Now we look for solutions of

T ′′
n

Tn

+ 1 = −λ

or rewritten as
T ′′

n + (1 + λn)Tn = 0.
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By problem 1, we know all eigenvalues are positive. Therefore, the solutions of
this equation are given by

Tn(t) = A cos(
√

1 + λnt) + B sin(
√

1 + λnt).

Let

u(x, t) =
∞∑

n=1

[An cos(
√

1 + λnt) + Bn sin(
√

1 + λnt)]Xn(x).

For general initial conditions u(x, 0) = φ(x) and ut(x, 0) = ψ(x), our coefficients
will be given by

An =
〈φ,Xn〉|[0,l]

〈Xn, Xn〉|[0,1]

√
1 + λnBn =

〈ψ, Xn〉|[0,l]

〈Xn, Xn〉|[0,l]

.

We conclude that the solution of (*) is given by

u(x, t) =

∫ t

0

∞∑
n=1

Dn(s) sin(
√

1 + λnt)Xn(x)

where

Dn(s) =
〈f(x, s), Xn(x)〉|[0,l]√
1 + λn〈Xn, Xn〉|[0,l]

.

(b) (8 points) Prove uniqueness of the solution to (*).

Answer: Suppose there were two solutions u and v. Let w = u − v. Then w
satisfies 




wtt − wxx + w = 0 0 < x < l

w(x, 0) = 0

wt(x, 0) = 0

w(0, t) = 0

wx(l, t) + w(l, t) = 0.

Multiply this equation by wt and integrate over [0, l] with respect to x. We have

0 =

∫ l

0

wt[wtt − wxx + w] dx

=

∫ l

0

1

2
∂t(w

2
t ) + wxtwx +

1

2
∂t(w

2) dx− wtwx|x=l
x=0

=
1

2
∂t

(∫ l

0

[w2
t + w2

x + w2] dx

)
+ wt(l, t)w(l, t) + wt(0, t)wx(0, t)

=
1

2
∂t

(∫ l

0

[w2
t + w2

x + w2] dx + w2(l, t)

)
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using the fact that w(0, t) = 0 implies wt(0, t) = 0 and wx(l, t) = −w(l, t).
Integrating this equation with respect to t, we have

∫ l

0

[w2
t (x, t) + w2

x(x, t) + w2(x, t)] dx + w2(l, t)

=

∫ l

0

[w2
t (x, 0) + w2

x(x, 0) + w2(x, 0)] dx + w2(l, 0).

By the initial conditions, we conclude that the right-hand side is zero, and, there-
fore, the left-hand side is identically zero. Therefore, we conclude that w2(x, t) ≡ 0
for all x ∈ [0, l], which implies that w(x, t) ≡ 0, and, thus, u = v.

3. (8 points) Use the method of reflection to show that the solution of





utt − c2uxx = 0 0 < x < l, t > 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

u(0, t) = 0 = u(l, t)

is periodic in t. That is, show that there exists p ∈ R such that for all x ∈ (0, l),
u(x, t) = u(x, t + p). Specifically, find the period p.

Answer: Since φext is 2L-periodic,

φext(x + ct) = φext(x + ct + 2L) = φext(x + c(t + 2L/c))

so φext is periodic in t with period 2L/c. Since ψext is odd and 2L-periodic, the integral
of ψext over any interval of length 2L is zero. Thus

u(x, t + 2L/c) =
1

2
[φext(x + ct + 2L) + φext(x− ct− 2L)] +

1

2c

∫ x+ct+2L

x−ct−2L

ψext(y) dy

=
1

2
[φext(x + ct) + φext(x− ct)] +

1

2c

∫ x−ct

x−ct−2L

ψext(y) dy

+
1

2c

∫ x+ct

x−ct

ψext(y) dy +
1

2c

∫ x+ct+2L

x+ct

ψext(y) dy

=
1

2
[φext(x + ct) + φext(x− ct)] +

1

2c

∫ x+ct

x−ct

ψext(y) dy

= u(x, t)

so u is periodic in t with period 2L/c.

4. (14 points) Consider the following equation for u = u(x, y, z),

4uxy + 4uxz + 4uyz = 0.
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(a) (6 points) Show the equation is hyperbolic.

Answer: The equation can be rewritten as

3∑
i,j=1

aijuxixj
= 0

where A = (aij) is the symmetric matrix,

A =




0 2 2
2 0 2
2 2 0


 .

The eigenvalues of A are given by the roots of the characteristic equation det(A−
λI) = 0. This equation is given by (λ + 2)2(λ − 4) = 0. Therefore, we see that
λ = −2 and λ = 4 are the eigenvalues of this equation. As none of them are zero,
and one has the opposite sign of the other two, the equation is hyperbolic.

(b) (8 points) Make a change of variables to reduce it to

α1uξ1ξ1 + α2uξ2ξ2 + α3uξ3ξ3 = 0

where αi ∈ R. In particular, find a matrix B such that defining

ξ ≡



ξ1

ξ2

ξ3


 = B




x
y
z


 ,

our equation can written in the form above. Determine the values for αi.

Answer: We will define the matrix B as B = ST where S is the matrix whose column
vectors are orthonormal eigenvectors of A. First, for λ1 = −2, we see that

A− λ1I = A + 2I =




2 2 2
2 2 2
2 2 2


 →




1 1 1
0 0 0
0 0 0




(where → denotes row-reduction). An orthonormal basis for the eigenspace of A−λ1I
is given by 




1√
2



−1
0
1


 ,

1√
6




1
−2
1






 .

For λ2 = 4,we see that

A− λ2I = A− 4I =



−4 2 2
2 −4 2
2 2 −4


 →




1 0 −1
0 1 −1
0 0 0


 .
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A basis for the eigenspace of A− λ2I is given by




1√
3




1
1
1






 .

Let

S =



− 1√

2
1√
6

1√
3

0 −2√
6

1√
3

1√
2

1√
6

1√
3


 .

Now let B = ST . The coefficients αi = −2,−2, 4.

5. (10 points) Consider the following initial-value problem,
{

ut + [f(u)]x = 0 x ∈ R, t > 0

u(x, 0) = φ(x)

Assume f is uniformly convex and φ is a smooth function. Show that if φ(x) = −x,
then |ux| → +∞ in finite time.

Answer: The characteristic equations are given by

dt

ds
= 1 t(r, 0) = 0

dx

ds
= f ′(z) x(r, 0) = r

dz

ds
= 0 z(r, 0) = φ(r).

Solving this system, we get

t = s

x = f ′(φ(r))s + r

z = φ(r).

We arrive at the following implicit equation for u(x, t),

u(x, t) = φ(x− f ′(u)t).

Differentiating this equation with respect to x, we see that ux is given by

ux =
φ′(x− f ′(u)t)

1 + φ′(x− f ′(u)t)f ′′(u)t
.

Now if φ(x) = −x, then φ′(x) = −1, which implies

ux =
−1

1− f ′′(u)t
.

Now if 1− f ′′(u)t = 0 in some finite time, then |ux| → +∞. By the uniform convexity
assumption, we know that there exists θ such that f ′′(u) ≥ θ > 0 for all u. Therefore,
0 < 1/f ′′(u) ≤ C. Therefore, there exists a time t < +∞ such that t = 1/f ′′(u), and
ux blows up.
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6. (14 points) Consider the system

Ut + AUx = 0

where

A =

[
1 2ex

2e−x 1

]
.

(a) (6 points) Show that this system is hyperbolic.

Answer: We need to show that the matrix A is diagonalizable. First, we
compute the eigenvalues of A. The eigenvalues are given by the roots of det(A−
λI) = λ2 − 2λ− 3 = 0. The roots of this equation are given by λ = 3,−1. Since
the roots are distinct, we know the eigenvectors associated with them are linearly
independent, and, thus A is diagonalizable. Therefore, this system is hyperbolic.

(b) (8 points) Solve the initial-value problem,





Ut +

[
1 2ex

2e−x 1

]
Ux = 0

U(x, 0) =

[
sin(x)

0

]
.

Answer: We begin by diagonalizing the system. For λ1 = 3,

A− λ1I =

[ −2 2ex

2e−x −2

]
→

[
1 −ex

0 0

]
.

Therefore, an eigenvector for λ1 = 3 is given by
{[

ex

1

]}
.

For λ2 = −1,

A− λ2I =

[
2 2ex

2e−x 2

]
→

[
1 ex

0 0

]
.

Therefore, an eigenvector for λ2 = −1 is given by
{[

ex

−1

]}
.

Let

Q =

[
ex ex

1 −1

]
.

Then

Q−1 =
1

2ex

[
1 ex

1 −ex

]
.

And, we have

Q−1AQ = Λ =

[
3 0
0 −1

]
.
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Plugging in for A = QΛQ−1, we have

Ut + QΛQ−1Ux = 0.

Multiplying by Q−1, we have

Q−1Ut + ΛQ−1Ux = 0.

This can be rewritten as

(Q−1U)t + Λ(Q−1U)x − Λ(Q−1)xU = 0.

Now let V = Q−1U . Then, we arrive at

Vt + ΛVx = Λ(Q−1)xU.

Now

Λ(Q−1)xU =
1

2
Λ

[−e−x 0
−e−x 0

]
U =

1

2

[−3e−xu1

−e−xu1

]
.

Therefore, our equation for V becomes

Vt + ΛVx =
1

2

[−3e−xu1

−e−xu1

]
.

This system decouples into two initial-value problems for inhomogeneous transport
equations, 




(v1)t + 3(v1)x = −3

2
e−xu1

v1(x, 0) =
1

2
e−x sin(x)

and 



(v2)t − (v1)x = −e−xu1

v2(x, 0) =
1

2
e−x sin(x).

The solutions of these equations are given by

v1(x, t) =
1

2
e−(x−3t) sin(x− 3t)− 3

2

∫ t

0

e−(x−(t−s))u1(x− (t− s), s) ds

v2(x, t) =
1

2
e−(x+t) sin(x + t)−

∫ t

0

e−(x−(t−s))u1(x− (t− s), s) ds.

Finally, the solution of our original system is given (implicitly) by U = QV .

7. (10 points) Answer the following short-answer questions.
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(a) (5 points) State the definition of a kth-order quasilinear partial differential equa-
tion for a function u : Rn → R.

Answer: We say a kth-order partial differential equation is quasilinear if it is
nonlinear, but not semilinear, and can be written in the following form,

∑

|α|=k

aα(x, u, . . . , Dk−1u)Dαu + a0(x, u, . . . , Dku) = 0,

where Dju denotes the collection of all partial derivatives of order j and α is a
multi-index.

(b) (5 points) Give an example of an initial-value problem for a first-order semilinear
equation in which the initial data is smooth, but the solution blows up in finite
time.

Answer: Consider the following initial-value problem,
{

ut + ux = u2

u(x, 0) = sin(x).

Now the characteristics are given by

dt

ds
= 1 t(r, 0) = 0

dx

ds
= 1 x(r, 0) = r

dz

ds
= z2 z(r, 0) = sin(r).

The solutions of this system are given by

t = s

x = s + r

−1

z
= s− 1

sin(r)
.

Solving this system, we find that our solution is given by

u(x, t) =
sin(x− t)

1− t sin(x− t)
.

We see that at t = 1, x = 1 + (2n + 1)π/2, the solution will blow up.

8. (18 points) Determine whether each of the following statements is True or False. Pro-
vide reasons for your answers.

(a) (3 points) Assume f is uniformly convex. Consider

(∗)
{

ut + [f(u)]x = 0 x ∈ R, t > 0

u(x, 0) = φ(x).
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Suppose

φ(x) =

{
u− x < 0

u+ x > 0

Suppose u is a weak solution of (*). Then u(x, t) is continuous for t > 0.

Answer: False Suppose u− > u+. Let

u(x, t) =

{
u− x < σt

u+ x > σt

where σ = [f(u)]/[u]. Then u is a weak solution, but u is not continuous.

(b) (3 points) Let Ω be a bounded subset of Rn. All linearly independent eigenfunc-
tions of {

−∆X = λX x ∈ Ω ⊂ Rn

X(x) = 0 for x ∈ ∂Ω

are orthogonal.

Answer: False Consider the case when Ω is a rectangle in R2. In particular,
consider Ω = (0, π) × (0, π). Then the eigenvalues are given by λnm = n2 + m2

with eigenfunctions Xnm(x, y) = sin(nx) sin(my). In particular, we see that λ = 5
is an eigenvalue with multiplicity two. We note that X12 = sin(x) sin(2y) and
X21 = sin(2x) sin(y) are both eigenfunctions associated with λ = 5. In addition,
any linear combination of these eigenfunctions is an eigenfunction with eigenvalue
λ = 5. But, clearly, not all of these eigenfunctions are orthogonal.

(c) (3 points) Suppose u is a solution of




utt − uxx = 1 x ∈ R3, t > 0
u(x, 0) = 0 x ∈ R3

ut(x, 0) = 0 x ∈ R3.

Then u(x, t) 6= 0 for all t > 0, all x ∈ R3.

Answer: True The solution is given by

u(x, t) =

∫ t

0

(t− s)−
∫

∂B(x,t−s)

dS(y) ds

=

∫ t

0

(t− s) ds

= ts− s2

2

∣∣∣∣
s=t

s=0

=
t2

2
6= 0

for all t > 0, all x ∈ R3.

(d) (3 points) Let f(x) = 1 for x ∈ [0, l]. The Fourier sine series for f will converge
uniformly to f on [0, 1].

Answer: False At x = 0, sin(nπx/l) = 0 implies the Fourier sine series for f
is zero at x = 0, but f(0) = 1. Therefore, the series cannot converge uniformly.
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(e) (3 points) If Ai is an m × m, constant-coefficent, diagonalizable matrix for i =
1, . . . , n, then

Ut +
n∑

i=1

AiUxi
= 0

is a hyperbolic system.

Answer: False The matrices Ai being diagonalizable does not imply that
A(ξ) ≡ ∑n

i=1 Aiξi is diagonalizable for all ξ ∈ Rn. In particular, consider m =
n = 2 and let

A1 =

[
1 2
1 1

]

A2 =

[
1 1
1 1

]
.

Then A1 and A2 are both diagonalizable because they both have two distinct
eigenvalues. But, letting ξ = (1,−1), we see that

A(ξ) = A1 − A2 =

[
0 1
0 0

]
,

which is not diagonalizable.

(f) (3 points) Consider the initial-value problem for the hyperbolic equation





utt −
∑n

i,j=1 aijuxixj
= 0 x ∈ Rn, t > 0

u(x, 0) = φ(x)
ut(x, 0) = ψ(x)

where the eigenvalues of A = (aij) are all positive. If φ and ψ have compact
support, then u has compact support.

Answer: True By a change of variables this equation can be written as the
wave equation in Rn,

utt −∆u = 0.

We know that if the initial data has compact support, then the solution has
compact support (in x).
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