Stanford Mathematics Department
 Math 205A Lecture Supplement \#5
 Riesz Representation for $L^{p}(\mu)$

Here (X, \mathcal{A}, μ) is any measure space and $1 \leq p \leq \infty, 1 \leq q \leq \infty$ are "conjugate exponents," meaning that

(*)

$$
\frac{1}{p}+\frac{1}{q}=1
$$

where of course we take $\frac{1}{\infty}=0 . \mathcal{L}^{p}(\mu)$ will here, for $1 \leq p<\infty$, denote the real-valued \mathcal{A}-measurable functions f such that $\int_{X}|f|^{p} d \mu<\infty$, equipped with the seminorm

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

and $\mathcal{L}^{\infty}(\mu)$ denotes the set of μ-essentially bounded real-valued functions f (i.e. the \mathcal{A}-measurable functions $f: X \rightarrow \mathbb{R}$ such that there is $\lambda \in(0, \infty)$ with $|f| \leq \lambda \mu$-a.e.) and we let

$$
\|f\|_{\infty}=\inf \{\lambda \in(0, \infty):|f(x)| \leq \lambda \text { for } \mu \text {-a.e. } x \in X\}
$$

In this section we discuss the dual space $\left(L^{p}(\mu)\right)^{*}$ of $L^{p}(\mu)$. Thus $\left(L^{p}(\mu)\right)^{*}$ is the set of bounded linear functionals F on $L^{p}(\mu)$, so $F \in\left(L^{p}(\mu)\right)^{*}$ means that $F: L^{p}(\mu) \rightarrow \mathbb{R}$ is a linear map with $\|F\|=\sup _{\|f\|_{p} \leq 1}|F(f)|<\infty$.
To begin, recall the Hölder inequality

$$
\int_{X}|f g| d \mu \leq\|f\|_{p}\|g\|_{q}<\infty, \quad f \in \mathcal{L}^{p}(\mu), g \in \mathcal{L}^{q}(\mu)
$$

so if we define

$$
T_{g}(\widetilde{f})=\int_{X} f g d \mu, \quad f \in L^{p}(\mu)
$$

where \widetilde{f} denotes the L^{p} class of $f \in \mathcal{L}^{p}(\mu)(=\{h: h=f$ a.e. in $X\})$, then T_{g} is a bounded linear map of $L^{p}(\mu)$ into \mathbb{R}; that is $g \in L^{q}(\mu) \Rightarrow T_{g} \in\left(L^{p}(\mu)\right)^{*}$. Notice that we also have linearity in g; that is if $g_{1}, g_{2} \in L^{q}(\mu)$ and $\lambda, \eta \in \mathbb{R}$ then $T_{c_{1} g_{1}+c_{2} g_{2}}=c_{1} T_{g_{1}}+c_{2} T_{g_{2}}$. Thus map
(**)

$$
T: g \mapsto T_{g}
$$

defines a linear map $L^{q}(\mu) \rightarrow\left(L^{p}(\mu)\right)^{*}$. The following Riesz theorem claims that T, so defined, is an isometric isomorphism of $L^{q}(\mu)$ onto $\left(L^{p}(\mu)\right)^{*}$ provided that in the case $p=1$ we make the additional assumption that μ is σ-finite.

Theorem (Riesz Representation for $\boldsymbol{L}^{\boldsymbol{p}}$.) Let $1 \leq p<\infty$, and let (X, \mathcal{A}, μ) be any measure space for $p \neq 1$ and (x, \mathcal{A}, μ) be any σ-finite measure space in the case $p=1$, and let q be the exponent conjugate to p as in (*). Then the map T in $(* *)$ is an isometric isomorphism of $L^{q}(\mu)$ onto the dual space $\left(L^{p}(\mu)\right)^{*}$ of $L^{p}(\mu)$.

Proof: It was shown in Q. 6 of hw8 that, under the conditions stated in the above theorem, T defined as in $(* *)$ is an isometry of $L^{q}(\mu)$ into $\left(L^{p}(\mu)\right)^{*}$ (i.e. that $\left\|T_{g}\right\|=\|g\|_{q}$ where $\left.\left\|T_{g}\right\|=\sup _{\|f\|_{p} \leq 1}\left|T_{g}(f)\right|\right)$.

Thus we merely have to prove that T is onto. That is for any given bounded linear functional $F: L^{p}(\mu) \rightarrow \mathbb{R}$ we have to prove there is a $g \in L^{q}(\mu)$ with $F=T_{g}$. So assume a linear $F: L^{p}(\mu) \rightarrow \mathbb{R}$ is given with $\|F\|<\infty$, where as usual $\|F\|=\sup _{\|f\|_{p}=1}|F(f)|$. We consider cases, beginning with:
Case 1: $\mu(X)<\infty$. In this case we define $v: \mathcal{A} \rightarrow \mathbb{R}$ by

$$
v(A)=F\left(\widetilde{\chi_{A}}\right)
$$

where χ_{A} denotes the indicator function of A and \tilde{f} as usual denotes the $L^{p}(\mu)$ class of a function $f \in \mathcal{L}^{p}(\mu)$. We claim that v is a signed measure. To check this, first observe that $\widetilde{\chi_{\varnothing}}=0$, the zero class in $L^{p}(\mu)$, and hence $F\left(\widetilde{\chi_{\varnothing}}\right)=0$, so $v(\varnothing)=0$. Also, if A_{1}, A_{2}, \ldots are p.w.d. sets in \mathcal{A} then $\nu\left(\cup_{j=1}^{N} A_{j}\right)=F\left(\widetilde{\chi_{\cup_{j=1}^{N}}^{N} A_{j}}\right)=\sum_{j=1}^{N} F\left(\widetilde{\chi_{A_{j}}}\right)$ and taking limits as $N \rightarrow \infty$ we see that $v\left(\cup_{j=1}^{N} A_{j}\right)$ converges to both $\sum_{j=1}^{\infty} F\left(\widetilde{\chi_{A_{j}}}\right)$ and $F\left(\widetilde{\chi_{\cup_{j=1}^{\infty} A_{j}}}\right)$, so $v\left(\cup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} v\left(A_{j}\right)$, and hence indeed v is a signed measure. Furthermore it is finite (i.e. $|v(A)|<\infty$ for each $A \in \mathcal{A}$) and the argument above to prove $\nu(\varnothing)=0$ actually shows that $\nu(E)=0$ whenever $E \in \mathcal{A}$ with $\mu(E)=$ 0 , because the indicator function χ_{E} of any set of measure zero is in the L^{p} class of the zero function. Thus $E \in \mathcal{A}$ with $\mu(E)=0 \Rightarrow \nu(E)=0$. Thus if we let $P, X \backslash P$ be a Hahn decomposition for v then $v=v\llcorner P+v\llcorner(X \backslash P)$ and both $v_{1}=v\left\llcorner P\right.$ and $v_{2}=-v\llcorner(X \backslash P)$ are positive measures on \mathcal{A} which are AC with respect to μ, hence by the Radon-Nikodym Theorem there are \mathcal{A} measurable functions $g_{1}, g_{2}: X \rightarrow[0, \infty)$ with $v_{j}(A)=\int_{A} g_{j} d \mu, j=1,2$, hence

$$
\begin{equation*}
v(A)=F\left(\widetilde{\chi_{A}}\right)=\int_{A} g d \mu, \quad A \in \mathcal{A}, \quad g=g_{1}-g_{2} \tag{1}
\end{equation*}
$$

By the linearity of each side of (1) we then have

$$
\begin{equation*}
\int_{X} \varphi g d \mu=F(\widetilde{\varphi}), \quad \text { for any simple function } \varphi \tag{2}
\end{equation*}
$$

Next notice that if $f \in \mathcal{L}^{p}(\mu)$ then by a theorem of lecture we can find increasing sequences ψ_{i}, η_{i} of non-negative simple functions with $\psi_{i} \rightarrow f_{+}(=$ $\max \{f, 0\})$ and $\eta_{i} \rightarrow f_{-}(=\max \{-f, 0\})$ pointwise on all of X and hence $0 \leq\left(f_{+}-\psi_{i}\right)^{p} \rightarrow 0$ and $0 \leq\left(f_{+}-\psi_{i}\right)^{p} \leq f_{+}^{p}$ so by the Dominated Convergence Theorem $\left\|f_{+}-\psi_{i}\right\|_{p} \rightarrow 0$, and similarly $\left\|f_{-}-\eta_{i}\right\|_{p} \rightarrow 0$. Hence we have shown (with $\left.\varphi_{i}=\psi_{i}-\eta_{i}\right)$
(3) $\quad f \in \mathcal{L}^{p}(\mu) \Rightarrow \exists$ simple functions φ_{i} with $\left\|f-\varphi_{i}\right\|_{p} \rightarrow 0$.

If $1<p<\infty$, we apply (3) to $f=f_{k}$, where

$$
f_{k}=(\operatorname{sgn} g)|g|^{q / p} \chi_{G_{k}}, \quad \text { where } G_{k}=\{x \in X:|g(x)|<k\}
$$

In that case we can set $\varphi=\varphi_{i}$ on each side of (2) where $\left\|f_{k}-\varphi_{i}\right\|_{p} \rightarrow 0$ and hence by taking the limit of each side as $i \rightarrow \infty$ we obtain

$$
F\left(\widetilde{f_{k}}\right)=\int_{X} f_{k} g=\int_{G_{k}}|g|^{1+q / p} d \mu, \quad k=1,2, \ldots
$$

But $F\left(\widetilde{f_{k}}\right) \leq\|F\|\left\|f_{k}\right\|_{p}=\|F\|\left(\int_{G_{k}}|g|^{q} d \mu\right)^{1 / p}$ and hence

$$
\int_{G_{k}}|g|^{1+q / p} d \mu \leq\|F\|\left(\int_{G_{k}}|g|^{q} d \mu\right)^{1 / p}
$$

hence, since $1+q / p=q$,

$$
\left\|g \chi_{G_{k}}\right\|_{q} \leq\|F\|
$$

Letting $k \rightarrow \infty$ and using the Monotone Convergence Theorem we thus have $g \in L^{q}(\mu)$. In the case when $p=1, q=\infty$ the argument is similar except that we use $f_{k}=(\operatorname{sgn} g)|g|^{Q} \chi_{G_{k}}$, where again $G_{k}=\{x \in X:|g(x)|<k\}$, where $Q>0$ is arbitrary. Then using (2) as in the case $p>1$ we get this time that

$$
\int_{G_{k}}|g|^{1+Q} d \mu \leq\|F\| \int_{G_{k}}|g|^{Q} d \mu
$$

and by using Hölder to give $\int_{G_{k}}|g|^{Q} d \mu \leq\left(\int_{G_{k}}|g|^{1+Q} d \mu\right)^{Q /(1+Q)}\left(\mu\left(G_{k}\right)^{1 /(1+Q)}\right)$ we obtain

$$
\left(\int_{G_{k}}|g|^{1+Q} d \mu\right)^{1 /(1+Q)} \leq\|F\| \mu(X)^{1 /(1+Q)}
$$

and hence by letting $Q \rightarrow \infty$ we get (see Q. 2 of hw7)

$$
\left\|g \chi_{G_{k}}\right\|_{\infty} \leq\|F\|, \quad k=1,2, \ldots
$$

and hence $\|g\|_{\infty}<\infty$. Thus in either case $p=1, p>1$ we have proved $g \in \mathcal{L}^{q}(\mu)$, and for any $f \in \mathcal{L}^{p}(\mu)$ we can let $\varphi=\varphi_{i}$ in (2) and use (3) to pass to the limit, giving

$$
\int_{X} f g d \mu=F(\widetilde{f})
$$

so indeed (in both cases $p=1, p>1$) we have $F(\widetilde{f})=T_{g}(f)$. This completes the proof in the case $\mu(X)<\infty$.
Case 2: μ is σ-finite. Thus we assume $\mu(X)=\infty$ and that there are p.w.d. sets $B_{1}, B_{2}, \ldots \in \mathcal{A}$ with $\mu\left(B_{j}\right)<\infty$. Then we can apply Case 1 to the measure space $\left(B_{j}, \mathcal{A}_{j}, \mu_{j}\right)$, where $\mathcal{A}_{j}=\left\{A \cap B_{j}: A \in \mathcal{A}\right\}$ and $\mu_{j}=\mu \mid \mathcal{A}_{j}$ and with F_{j} in place of F, where $F_{j}(\widetilde{f})=F\left(\widetilde{f_{j}}\right)$ for $f \in \mathcal{L}^{p}\left(\mu_{j}\right)$, where f_{j} the $\mathcal{L}^{p}(\mu)$ function defined $f_{j} \mid B_{j}=f$ and $f_{j} \mid X \backslash B_{j}=0$. Thus there is $g_{j}^{0} \in \mathcal{L}^{q}\left(\mu_{j}\right)$ with $\int_{X} f_{j} g_{j} d \mu=F\left(f_{j}\right)$, where $g_{j} \mid B_{j}=g_{j}^{0}$ and $g_{j} \mid X \backslash B_{j}=0$. Thus

$$
\int_{X} f g_{j}=F\left(\widetilde{\chi_{B_{j}} f}\right), \quad f \in \mathcal{L}^{p}(\mu), j=1,2, \ldots
$$

Since the B_{j} are p.w.d. this can be written

$$
\int_{X} f \chi_{B_{j}} g=F\left(\widetilde{\chi_{B_{j}} f}\right), \quad f \in \mathcal{L}^{p}(\mu), j=1,2, \ldots
$$

where $g \mid B_{j}=g_{j}$ for each j and $g \mid X \backslash\left(\cup_{j=1}^{\infty} B_{j}\right)=0$, and by linearity this in turn gives
(*) $\quad \int_{X} f \chi_{\cup_{j=1}^{N} B_{j}} g=F\left(\widetilde{\chi_{\cup_{j=1}^{N} B_{j}} f}\right), \quad f \in \mathcal{L}^{p}(\mu), N=1,2, \ldots$,
and (Cf. the argument used in Case 1) we then have

$$
\left\|g \chi_{\cup_{j=1}^{N} B_{j}}\right\|_{q} \leq\|F\|, \quad N=1,2, \ldots
$$

and for $q<\infty$ we can apply the monotone convergence theorem on the left to give

$$
\|g\|_{q} \leq\|F\|<\infty
$$

Of course the same is trivially true in the case $q=\infty$ because $\cup_{j=1}^{\infty} B_{j}=X$ and hence $\left\|g \chi_{\cup_{j=1}^{N} B_{j}}\right\|_{\infty} \rightarrow\|g\|_{\infty}$. We can then let $N \rightarrow \infty$ in (*) to conclude $F(f)=\int_{X} f g d \mu$, so the proof is complete in Case 2.
Thus it remains to treat Case 3 , the case when $1<p<\infty, \mu(X)=\infty$, and when no σ-finite hypothesis is assumed. To give the proof in this case we let

$$
\mathcal{E}=\left\{E \in \mathcal{A}: E=\cup_{j=1}^{\infty} E_{j} \text { for some } E_{j} \in \mathcal{A} \text { with } \mu\left(E_{j}\right)<\infty \forall j\right\}
$$

Then for each $E \in \mathcal{E}$ we can apply Case 2 above to the measure space $\left(E, \mathcal{A}_{E}, \mu_{E}\right)$, where $\mathcal{A}_{E}=\{A \cap E: A \in \mathcal{A}\}$ and $\mu_{E}(A)=\mu(A \cap E)$ for each $A \in \mathcal{A}$, to give a $g_{E}^{0} \in \mathcal{L}^{q}\left(\mu_{E}\right)$ such that

$$
\int_{E} f g_{E}^{0} d \mu_{E}=F_{E}(\widetilde{f}), \quad f \in L^{p}\left(\mu_{E}\right)
$$

where $F_{E}(\widetilde{f})=F(\tilde{f} E)$, with $f_{E} \in \mathcal{L}^{p}(\mu)$ defined by $f_{E} \mid E=f$ on E and $f_{E} \mid X \backslash E=0$. Thus in fact

$$
\int_{X} f g_{E} d \mu=F\left(\widetilde{\chi_{E} f}\right), \quad f \in L^{p}(\mu), E \in \mathcal{E}
$$

where we use the notation $g_{E}=g_{E}^{0}$ on E and $g_{E}=0$ on $X \backslash E$ for each $E \in \mathcal{E}$. Then as in Case 2 we have $\left\|g_{E}\right\|_{q} \leq\|F\|$ for each $E \in \mathcal{E}$, so

$$
\alpha=\sup _{E \in \mathcal{E}}\left\|g_{E}\right\|_{q}<\infty
$$

and we can choose a sequence $E_{1}, E_{2}, \ldots \in \mathcal{E}$ with $\left\|g_{E_{j}}\right\|_{q} \rightarrow \alpha$.
Now observe that $E, H \in \mathcal{E}$ with $E \subset H \Rightarrow g_{H}=g_{E}$ a.e. in E which is easily checked because (\ddagger) implies that $\int_{E} f\left(g_{H}-g_{E}\right) d \mu=0$ for each $f \in \mathcal{L}^{p}(\mu)$, so we can choose $f=\operatorname{sgn}\left(g_{H}-g_{E}\right)\left|g_{H}-g_{E}\right|^{q / p} \chi_{E}$ (which is an $\mathcal{L}^{p}(\mu)$ function), and hence (since $1+q / p=q$)

$$
\int_{E}\left|g_{H}-g_{E}\right|^{q}=0 .
$$

Thus

$$
E, H \in \mathcal{E} \text { with } E \subset H \Rightarrow\left\|g_{E}\right\|_{q} \leq\left\|g_{H}\right\|_{q},
$$

with equality if and only if $g_{H}=0$ a.e. on $X \backslash E$. In particular $\left\|g_{E_{j}}\right\|_{q} \rightarrow \alpha$ implies $\left\|g_{\cup_{j=1}^{\infty} E_{j}}\right\|_{q}=\alpha$ and also $H \in \mathcal{E}$ with $H \supset \cup_{j=1}^{\infty} E_{j} \Rightarrow g_{H}=0$ a.e. on $X \backslash\left(\cup_{j=1}^{\infty} E_{j}\right)$, otherwise we contradict the definition of α. Since $f \in \mathcal{L}^{p}(\mu)$ evidently implies $H_{f}=\{x \in X:|f(x)| \neq 0\} \cup\left(\cup_{j=1}^{\infty} E_{j}\right)$ is in the collection \mathcal{E}, we must then in particular have $g_{H_{f}}=0$ a.e. on $X \backslash\left(\cup_{j=1}^{\infty} E_{j}\right)$ and so, with $g=g_{\cup_{j=1}^{\infty}}^{\infty} E_{j}$,

$$
F(\widetilde{f})=\int_{X} f g d \mu \forall f \in \mathcal{L}^{p}(\mu),
$$

and the proof is complete.

