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Here (X ;A; �) is any measure space and 1 � p � 1, 1 � q � 1 are “conjugate
exponents,” meaning that

(�)
1

p
C
1

q
D 1;

where of course we take 1
1
D 0. Lp(�) will here, for 1 � p < 1, denote

the real-valued A-measurable functions f such that
R
X
jf jp d� <1, equipped

with the seminorm
kf kp D

(Z
X

jf jp d�
)1=p

;

and L1(�) denotes the set of �-essentially bounded real-valued functions f
(i.e. the A-measurable functions f W X ! R such that there is � 2 (0;1) with
jf j � � �-a.e.) and we let

kf k1 D inf{� 2 (0;1) W jf (x)j � � for �-a.e. x 2 X}:

In this section we discuss the dual space (Lp(�))� of Lp(�). Thus (Lp(�))�

is the set of bounded linear functionals F on Lp(�), so F 2 (Lp(�))� means
that F W Lp(�)! R is a linear map with kF k D sup

kf kp�1 jF (f )j <1.

To begin, recall the Hölder inequalityZ
X

ˇ̌
fg
ˇ̌
d� � kf kpkgkq <1; f 2 Lp(�); g 2 Lq(�);

so if we define
Tg(f̃ ) D

Z
X

fg d�; f 2 Lp(�);

where f̃ denotes theLp class of f 2 Lp(�) (D {h W h D f a.e. in X}), then Tg

is a bounded linear map of Lp(�) into R; that is g 2 Lq(�)) Tg 2 (Lp(�))�.
Notice that we also have linearity in g; that is if g1; g2 2 L

q(�) and �; � 2 R
then Tc1g1Cc2g2

D c1Tg1
C c2Tg2

. Thus map

(��) T W g 7! Tg

defines a linear map Lq(�)! (Lp(�))�. The following Riesz theorem claims
that T , so defined, is an isometric isomorphism of Lq(�) onto (Lp(�))� pro-
vided that in the case p D 1 we make the additional assumption that � is
� -finite.
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Theorem (Riesz Representation for Lp.) Let 1 � p < 1, and let (X ;A; �)
be any measure space for p ¤ 1 and (x;A; �) be any � -finite measure space in the
case p D 1, and let q be the exponent conjugate to p as in (�). Then the map T
in (��) is an isometric isomorphism of Lq(�) onto the dual space (Lp(�))� of
Lp(�).

Proof: It was shown in Q.6 of hw8 that, under the conditions stated in the
above theorem, T defined as in (��) is an isometry of Lq(�) into (Lp(�))�

(i.e. that kTgk D kgkq where kTgk D sup
kf kp�1 jTg(f )j).

Thus we merely have to prove that T is onto. That is for any given bounded
linear functional F W Lp(�) ! R we have to prove there is a g 2 Lq(�) with
F D Tg . So assume a linear F W Lp(�)! R is given with kF k <1, where as
usual kF k D sup

kf kpD1 jF (f )j. We consider cases, beginning with:

Case 1: �(X) <1. In this case we define � W A! R by

�(A) D F (f�A);

where �A denotes the indicator function of A and f̃ as usual denotes the
Lp(�) class of a function f 2 Lp(�). We claim that � is a signed mea-
sure. To check this, first observe that f�∅ D 0, the zero class in Lp(�), and
hence F (f�∅) D 0, so �(∅) D 0. Also, if A1;A2; : : : are p.w.d. sets in A then
�([N

jD1Aj ) D F (C�
[N

j D1
Aj

) D
PN

jD1 F (e�Aj
) and taking limits as N ! 1

we see that �([N
jD1Aj ) converges to both

P1
jD1 F (e�Aj

) and F (C�[1
j D1

Aj
), so

�([1jD1Aj ) D
P1

jD1 �(Aj ), and hence indeed � is a signed measure. Further-
more it is finite (i.e. j�(A)j < 1 for each A 2 A) and the argument above to
prove �(∅) D 0 actually shows that �(E) D 0 whenever E 2 A with �(E) D

0, because the indicator function �E of any set of measure zero is in the Lp

class of the zero function. Thus E 2 A with �(E) D 0) �(E) D 0. Thus if
we let P ;X nP be a Hahn decomposition for � then � D � P C � (X nP )

and both �1 D � P and �2 D �� (X nP ) are positive measures on A which
are AC with respect to �, hence by the Radon-Nikodym Theorem there are
A measurable functions g1; g2 W X ! [0;1) with �j (A) D

R
A
gj d�, j D 1; 2,

hence

(1) �(A) D F (f�A) D

Z
A

g d�; A 2 A; g D g1 � g2:

By the linearity of each side of (1) we then have

(2)

Z
X

'g d� D F ('̃); for any simple function ':
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Next notice that if f 2 Lp(�) then by a theorem of lecture we can find in-
creasing sequences  i ; �i of non-negative simple functions with  i ! fC(D

max{f; 0}) and �i ! f�(D max{�f; 0}) pointwise on all of X and hence
0 � (fC �  i )p ! 0 and 0 � (fC �  i )p � f

p
C so by the Dominated Conver-

gence Theorem kfC� ikp ! 0, and similarly kf���ikp ! 0. Hence we have
shown (with 'i D  i � �i )

(3) f 2 Lp(�)) 9 simple functions 'i with kf � 'ikp ! 0:

If 1 < p <1, we apply (3) to f D fk , where

fk D (sgng)jgjq=p�
Gk
; where Gk D {x 2 X W jg(x)j < k}:

In that case we can set ' D 'i on each side of (2) where kfk � 'ikp ! 0 and
hence by taking the limit of each side as i !1 we obtain

F (f̃k) D

Z
X

fkg D

Z
Gk

jgj1Cq=p d�; k D 1; 2; : : : :

But F (f̃k) � kF kkfkkp D kF k(
R

Gk
jgjq d�)1=p and henceZ

Gk

jgj1Cq=p d� � kF k(

Z
Gk

jgjq d�)1=p;

hence, since 1C q=p D q,
kg�Gk

kq � kF k:

Letting k !1 and using the Monotone Convergence Theorem we thus have
g 2 Lq(�). In the case when p D 1; q D1 the argument is similar except that
we use fk D (sgng)jgjQ�Gk

, where again Gk D {x 2 X W jg(x)j < k}, where
Q > 0 is arbitrary. Then using (2) as in the case p > 1 we get this time thatZ

Gk

jgj1CQ d� � kF k

Z
Gk

jgjQ d�

and by using Hölder to give
R

Gk
jgjQ d� � (

R
Gk
jgj1CQ d�)Q=(1CQ)(�(Gk)

1=(1CQ))

we obtain (Z
Gk

jgj1CQ d�
)1=(1CQ)

� kF k�(X)1=(1CQ)

and hence by letting Q!1 we get (see Q.2 of hw7)

kg�Gk
k1 � kF k; k D 1; 2; : : : ;

and hence kgk1 < 1. Thus in either case p D 1; p > 1 we have proved
g 2 Lq(�), and for any f 2 Lp(�) we can let ' D 'i in (2) and use (3) to pass
to the limit, giving Z

X

fg d� D F (f̃ );
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so indeed (in both cases p D 1, p > 1) we have F (f̃ ) D Tg(f ). This completes
the proof in the case �(X) <1.

Case 2: � is � -finite. Thus we assume �(X) D1 and that there are p.w.d. sets
B1;B2; : : : 2 A with �(Bj ) < 1. Then we can apply Case 1 to the measure
space (Bj ;Aj ; �j ), where Aj D {A \ Bj W A 2 A} and �j D �jAj and with
Fj in place of F , where Fj (f̃ ) D F (f̃j ) for f 2 Lp(�j ), where fj the Lp(�)

function defined fj jBj D f and fj jX n Bj D 0. Thus there is g0
j 2 Lq(�j )

with
R
X
fjgj d� D F (fj ), where gj jBj D g

0
j and gj jX nBj D 0. ThusZ

X

fgj D F (A�Bj
f ); f 2 Lp(�); j D 1; 2; : : : :

Since the Bj are p.w.d. this can be writtenZ
X

f �Bj
g D F (A�Bj

f ); f 2 Lp(�); j D 1; 2; : : : ;

where gjBj D gj for each j and gjX n ([1jD1Bj ) D 0, and by linearity this in
turn gives

(�)

Z
X

f �
[N

j D1
Bj
g D F (D�

[N
j D1

Bj
f ); f 2 Lp(�); N D 1; 2; : : : ;

and (Cf. the argument used in Case 1) we then have

kg�
[N

j D1
Bj
kq � kF k; N D 1; 2; : : : ;

and for q <1 we can apply the monotone convergence theorem on the left to
give

kgkq � kF k <1:

Of course the same is trivially true in the case q D 1 because [1jD1Bj D X

and hence kg�
[N

j D1
Bj
k1 ! kgk1. We can then let N !1 in (�) to conclude

F (f ) D
R
X
fg d�, so the proof is complete in Case 2.

Thus it remains to treat Case 3, the case when 1 < p < 1, �(X) D 1, and
when no � -finite hypothesis is assumed. To give the proof in this case we let

E D {E 2 A W E D [1jD1Ej for some Ej 2 A with �(Ej ) <1 8j }:

Then for eachE 2 E we can apply Case 2 above to the measure space (E;AE ; �E ),
where AE D {A\E W A 2 A} and �E (A) D �(A\E) for each A 2 A, to give
a g0

E 2 Lq(�E ) such thatZ
E

fg0
E d�E D FE (f̃ ); f 2 Lp(�E );
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where FE (f̃ ) D F (f̃E ), with fE 2 Lp(�) defined by fE jE D f on E and
fE jX nE D 0. Thus in fact

(�)

Z
X

fgE d� D F (A�Ef ); f 2 Lp(�); E 2 E ;

where we use the notation gE D g0
E on E and gE D 0 on X n E for each

E 2 E . Then as in Case 2 we have kgEkq � kF k for each E 2 E , so

˛ D sup
E2E
kgEkq <1

and we can choose a sequence E1;E2; : : : 2 E with kgEj
kq ! ˛.

Now observe that E;H 2 E with E � H ) gH D gE a.e. in E which is easily
checked because (�) implies that

R
E
f (gH�gE ) d� D 0 for each f 2 Lp(�), so

we can choose f D sgn(gH�gE )jgH�gE j
q=p�

E (which is an Lp(�) function),
and hence (since 1C q=p D q)Z

E

jgH � gE j
q
D 0:

Thus
E;H 2 E with E � H ) kgEkq � kgHkq;

with equality if and only if gH D 0 a.e. on X n E. In particular kgEj
kq ! ˛

implies kg[1
j D1

Ej
kq D ˛ and also H 2 E with H � [1jD1Ej ) gH D 0 a.e. on

X n ([1jD1Ej ), otherwise we contradict the definition of ˛. Since f 2 Lp(�)

evidently implies Hf D {x 2 X W jf (x)j ¤ 0} [ ([1jD1Ej ) is in the collection
E , we must then in particular have g

Hf
D 0 a.e. on X n ([1jD1Ej ) and so, with

g D g[1
j D1

Ej
,

F (f̃ ) D

Z
X

fg d� 8f 2 Lp(�);

and the proof is complete. �


