Stanford Mathematics Department Math 205A Lecture Supplement #5 Riesz Representation for $L^{p}(\mu)$

Here (X, A, μ) is any measure space and $1 \le p \le \infty$, $1 \le q \le \infty$ are "conjugate exponents," meaning that

 $(*) \qquad \qquad \frac{1}{p} + \frac{1}{q} = 1,$

where of course we take $\frac{1}{\infty} = 0$. $\mathcal{L}^p(\mu)$ will here, for $1 \leq p < \infty$, denote the real-valued \mathcal{A} -measurable functions f such that $\int_X |f|^p d\mu < \infty$, equipped with the seminorm

$$\|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p},$$

and $\mathcal{L}^{\infty}(\mu)$ denotes the set of μ -essentially bounded real-valued functions f (i.e. the \mathcal{A} -measurable functions $f : X \to \mathbb{R}$ such that there is $\lambda \in (0, \infty)$ with $|f| \leq \lambda \mu$ -a.e.) and we let

$$||f||_{\infty} = \inf\{\lambda \in (0,\infty) : |f(x)| \le \lambda \text{ for } \mu\text{-a.e. } x \in X\}.$$

In this section we discuss the dual space $(L^p(\mu))^*$ of $L^p(\mu)$. Thus $(L^p(\mu))^*$ is the set of bounded linear functionals F on $L^p(\mu)$, so $F \in (L^p(\mu))^*$ means that $F: L^p(\mu) \to \mathbb{R}$ is a linear map with $||F|| = \sup_{||f||_p \le 1} |F(f)| < \infty$.

To begin, recall the Hölder inequality

$$\int_X \left| fg \right| d\mu \le \|f\|_p \|g\|_q < \infty, \quad f \in \mathcal{L}^p(\mu), \, g \in \mathcal{L}^q(\mu),$$

so if we define

$$T_g(\widetilde{f}) = \int_X fg \, d\mu, \quad f \in L^p(\mu),$$

where \tilde{f} denotes the L^p class of $f \in \mathcal{L}^p(\mu)$ (= {h : h = f a.e. in X}), then T_g is a bounded linear map of $L^p(\mu)$ into \mathbb{R} ; that is $g \in L^q(\mu) \Rightarrow T_g \in (L^p(\mu))^*$. Notice that we also have linearity in g; that is if $g_1, g_2 \in L^q(\mu)$ and $\lambda, \eta \in \mathbb{R}$ then $T_{c_1g_1+c_2g_2} = c_1T_{g_1} + c_2T_{g_2}$. Thus map

$$(**) T: g \mapsto T_g$$

defines a linear map $L^q(\mu) \to (L^p(\mu))^*$. The following Riesz theorem claims that *T*, so defined, is an isometric isomorphism of $L^q(\mu)$ onto $(L^p(\mu))^*$ provided that in the case p = 1 we make the additional assumption that μ is σ -finite. **Theorem (Riesz Representation for** L^p **.)** Let $1 \le p < \infty$, and let (X, A, μ) be any measure space for $p \ne 1$ and (x, A, μ) be any σ -finite measure space in the case p = 1, and let q be the exponent conjugate to p as in (*). Then the map T in (**) is an isometric isomorphism of $L^q(\mu)$ onto the dual space $(L^p(\mu))^*$ of $L^p(\mu)$.

Proof: It was shown in Q.6 of hw8 that, under the conditions stated in the above theorem, T defined as in (**) is an isometry of $L^q(\mu)$ into $(L^p(\mu))^*$ (i.e. that $||T_g|| = ||g||_q$ where $||T_g|| = \sup_{\|f\|_p \le 1} |T_g(f)|$).

Thus we merely have to prove that T is onto. That is for any given bounded linear functional $F : L^p(\mu) \to \mathbb{R}$ we have to prove there is a $g \in L^q(\mu)$ with $F = T_g$. So assume a linear $F : L^p(\mu) \to \mathbb{R}$ is given with $||F|| < \infty$, where as usual $||F|| = \sup_{\|f\|_p=1} |F(f)|$. We consider cases, beginning with:

Case 1: $\mu(X) < \infty$. In this case we define $\nu : \mathcal{A} \to \mathbb{R}$ by

2

$$\nu(A) = F(\widetilde{\chi_A}),$$

where χ_A denotes the indicator function of A and \tilde{f} as usual denotes the $L^{p}(\mu)$ class of a function $f \in \mathcal{L}^{p}(\mu)$. We claim that ν is a signed measure. To check this, first observe that $\widetilde{\chi_{O}} = 0$, the zero class in $L^{p}(\mu)$, and hence $F(\widetilde{\chi_{\emptyset}}) = 0$, so $\nu(\emptyset) = 0$. Also, if A_1, A_2, \ldots are p.w.d. sets in \mathcal{A} then $\nu(\bigcup_{j=1}^{N} A_j) = F(\widetilde{\chi_{\bigcup_{j=1}^{N} A_j}}) = \sum_{j=1}^{N} F(\widetilde{\chi_{A_j}})$ and taking limits as $N \to \infty$ we see that $\nu(\bigcup_{i=1}^{N} A_i)$ converges to both $\sum_{j=1}^{\infty} F(\widetilde{\chi}_{A_j})$ and $F(\widetilde{\chi}_{\bigcup_{i=1}^{\infty} A_i})$, so $\nu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$, and hence indeed ν is a signed measure. Furthermore it is finite (i.e. $|\nu(A)| < \infty$ for each $A \in A$) and the argument above to prove $\nu(\emptyset) = 0$ actually shows that $\nu(E) = 0$ whenever $E \in \mathcal{A}$ with $\mu(E) = 0$ 0, because the indicator function χ_E of any set of measure zero is in the L^p class of the zero function. Thus $E \in \mathcal{A}$ with $\mu(E) = 0 \Rightarrow \nu(E) = 0$. Thus if we let $P, X \setminus P$ be a Hahn decomposition for ν then $\nu = \nu \sqcup P + \nu \sqcup (X \setminus P)$ and both $v_1 = v \sqcup P$ and $v_2 = -v \sqcup (X \setminus P)$ are positive measures on \mathcal{A} which are AC with respect to μ , hence by the Radon-Nikodym Theorem there are A measurable functions $g_1, g_2 : X \to [0, \infty)$ with $\nu_j(A) = \int_A g_j d\mu$, j = 1, 2,hence

(1)
$$\nu(A) = F(\widetilde{\chi}_A) = \int_A g \, d\mu, \quad A \in \mathcal{A}, \quad g = g_1 - g_2.$$

By the linearity of each side of (1) we then have

(2)
$$\int_X \varphi g \, d\mu = F(\widetilde{\varphi}), \quad \text{for any simple function } \varphi.$$

Riesz in L^p

Next notice that if $f \in \mathcal{L}^p(\mu)$ then by a theorem of lecture we can find increasing sequences ψ_i, η_i of non-negative simple functions with $\psi_i \to f_+(= \max\{f, 0\})$ and $\eta_i \to f_-(= \max\{-f, 0\})$ pointwise on all of X and hence $0 \le (f_+ - \psi_i)^p \to 0$ and $0 \le (f_+ - \psi_i)^p \le f_+^p$ so by the Dominated Convergence Theorem $||f_+ - \psi_i||_p \to 0$, and similarly $||f_- - \eta_i||_p \to 0$. Hence we have shown (with $\varphi_i = \psi_i - \eta_i$)

(3)
$$f \in \mathcal{L}^p(\mu) \Rightarrow \exists \text{ simple functions } \varphi_i \text{ with } \|f - \varphi_i\|_p \to 0.$$

If $1 , we apply (3) to <math>f = f_k$, where

$$\mathcal{L}_{k} = (\operatorname{sgn} g)|g|^{q/p} \chi_{G_{k}}, \quad \text{where } G_{k} = \{x \in X : |g(x)| < k\}.$$

In that case we can set $\varphi = \varphi_i$ on each side of (2) where $||f_k - \varphi_i||_p \to 0$ and hence by taking the limit of each side as $i \to \infty$ we obtain

$$F(\tilde{f}_k) = \int_X f_k g = \int_{G_k} |g|^{1+q/p} \, d\mu, \quad k = 1, 2, \dots$$

But $F(\tilde{f}_k) \le ||F|| ||f_k||_p = ||F|| (\int_{G_k} |g|^q d\mu)^{1/p}$ and hence

$$\int_{G_k} |g|^{1+q/p} \, d\mu \le \|F\| (\int_{G_k} |g|^q \, d\mu)^{1/p},$$

hence, since 1 + q/p = q,

$$\|g\chi_{G_k}\|_q \le \|F\|$$

Letting $k \to \infty$ and using the Monotone Convergence Theorem we thus have $g \in L^q(\mu)$. In the case when $p = 1, q = \infty$ the argument is similar except that we use $f_k = (\operatorname{sgn} g)|g|^Q \chi_{G_k}$, where again $G_k = \{x \in X : |g(x)| < k\}$, where Q > 0 is arbitrary. Then using (2) as in the case p > 1 we get this time that

$$\int_{G_k} |g|^{1+Q} \, d\mu \le \|F\| \int_{G_k} |g|^Q \, d\mu$$

and by using Hölder to give $\int_{G_k} |g|^Q d\mu \leq (\int_{G_k} |g|^{1+Q} d\mu)^{Q/(1+Q)} (\mu(G_k)^{1/(1+Q)})$ we obtain

$$\left(\int_{G_k} |g|^{1+Q} \, d\mu\right)^{1/(1+Q)} \le \|F\| \, \mu(X)^{1/(1+Q)}$$

and hence by letting $Q \rightarrow \infty$ we get (see Q.2 of hw7)

$$\|g\chi_{G_k}\|_{\infty} \leq \|F\|, \quad k=1,2,\ldots,$$

and hence $||g||_{\infty} < \infty$. Thus in either case p = 1, p > 1 we have proved $g \in \mathcal{L}^{q}(\mu)$, and for any $f \in \mathcal{L}^{p}(\mu)$ we can let $\varphi = \varphi_{i}$ in (2) and use (3) to pass to the limit, giving

$$\int_X fg \, d\mu = F(\tilde{f}),$$

so indeed (in both cases p = 1, p > 1) we have $F(\tilde{f}) = T_g(f)$. This completes the proof in the case $\mu(X) < \infty$.

Case 2: μ is σ -finite. Thus we assume $\mu(X) = \infty$ and that there are p.w.d. sets $B_1, B_2, \ldots \in \mathcal{A}$ with $\mu(B_j) < \infty$. Then we can apply Case 1 to the measure space $(B_j, \mathcal{A}_j, \mu_j)$, where $\mathcal{A}_j = \{A \cap B_j : A \in \mathcal{A}\}$ and $\mu_j = \mu | \mathcal{A}_j$ and with F_j in place of F, where $F_j(\tilde{f}) = F(\tilde{f}_j)$ for $f \in \mathcal{L}^p(\mu_j)$, where f_j the $\mathcal{L}^p(\mu)$ function defined $f_j | B_j = f$ and $f_j | X \setminus B_j = 0$. Thus there is $g_j^0 \in \mathcal{L}^q(\mu_j)$ with $\int_X f_j g_j d\mu = F(f_j)$, where $g_j | B_j = g_j^0$ and $g_j | X \setminus B_j = 0$. Thus

$$\int_X fg_j = F(\widetilde{\lambda_{B_j}f}), \quad f \in \mathcal{L}^p(\mu), \ j = 1, 2, \dots$$

Since the B_j are p.w.d. this can be written

$$\int_X f \,\chi_{B_j} g = F(\widetilde{\chi_{B_j} f}), \quad f \in \mathcal{L}^p(\mu), \ j = 1, 2, \dots,$$

where $g|B_j = g_j$ for each j and $g|X \setminus (\bigcup_{j=1}^{\infty} B_j) = 0$, and by linearity this in turn gives

*)
$$\int_X f \chi_{\bigcup_{j=1}^N B_j} g = F(\widetilde{\chi_{\bigcup_{j=1}^N B_j}} f), \quad f \in \mathcal{L}^p(\mu), \ N = 1, 2, \dots,$$

and (Cf. the argument used in Case 1) we then have

$$||g\chi_{\bigcup_{i=1}^{N}B_{i}}||_{q} \leq ||F||, \quad N = 1, 2, \dots,$$

and for $q < \infty$ we can apply the monotone convergence theorem on the left to give

$$\|g\|_q \le \|F\| < \infty.$$

Of course the same is trivially true in the case $q = \infty$ because $\bigcup_{j=1}^{\infty} B_j = X$ and hence $\|g\chi_{\bigcup_{j=1}^{N} B_j}\|_{\infty} \to \|g\|_{\infty}$. We can then let $N \to \infty$ in (*) to conclude $F(f) = \int_X fg \, d\mu$, so the proof is complete in Case 2.

Thus it remains to treat Case 3, the case when $1 , <math>\mu(X) = \infty$, and when no σ -finite hypothesis is assumed. To give the proof in this case we let

 $\mathcal{E} = \{ E \in \mathcal{A} : E = \bigcup_{j=1}^{\infty} E_j \text{ for some } E_j \in \mathcal{A} \text{ with } \mu(E_j) < \infty \forall j \}.$

Then for each $E \in \mathcal{E}$ we can apply Case 2 above to the measure space $(E, \mathcal{A}_E, \mu_E)$, where $\mathcal{A}_E = \{A \cap E : A \in \mathcal{A}\}$ and $\mu_E(A) = \mu(A \cap E)$ for each $A \in \mathcal{A}$, to give a $g_E^0 \in \mathcal{L}^q(\mu_E)$ such that

$$\int_E fg_E^0 \, d\mu_E = F_E(\tilde{f}), \quad f \in L^p(\mu_E).$$

4

Riesz in L^p

5

where $F_E(\tilde{f}) = F(\tilde{f}_E)$, with $f_E \in \mathcal{L}^p(\mu)$ defined by $f_E|E = f$ on E and $f_E|X \setminus E = 0$. Thus in fact

(‡)
$$\int_X fg_E \, d\mu = F(\widetilde{\chi_E f}), \quad f \in L^p(\mu), E \in \mathcal{E}$$

where we use the notation $g_E = g_E^0$ on E and $g_E = 0$ on $X \setminus E$ for each $E \in \mathcal{E}$. Then as in Case 2 we have $||g_E||_q \leq ||F||$ for each $E \in \mathcal{E}$, so

$$\alpha = \sup_{E \in \mathcal{E}} \|g_E\|_q < \infty$$

and we can choose a sequence $E_1, E_2, \ldots \in \mathcal{E}$ with $||g_{E_i}||_q \to \alpha$.

Now observe that $E, H \in \mathcal{E}$ with $E \subset H \Rightarrow g_H = g_E$ a.e. in E which is easily checked because (‡) implies that $\int_E f(g_H - g_E) d\mu = 0$ for each $f \in \mathcal{L}^p(\mu)$, so we can choose $f = \operatorname{sgn}(g_H - g_E)|g_H - g_E|^{q/p}\chi_E$ (which is an $\mathcal{L}^p(\mu)$ function), and hence (since 1 + q/p = q)

$$\int_E |g_H - g_E|^q = 0$$

Thus

$$E, H \in \mathcal{E} \text{ with } E \subset H \Rightarrow ||g_E||_q \le ||g_H||_q$$

with equality if and only if $g_H = 0$ a.e. on $X \setminus E$. In particular $||g_{E_j}||_q \to \alpha$ implies $||g_{\bigcup_{j=1}^{\infty}E_j}||_q = \alpha$ and also $H \in \mathcal{E}$ with $H \supset \bigcup_{j=1}^{\infty}E_j \Rightarrow g_H = 0$ a.e. on $X \setminus (\bigcup_{j=1}^{\infty}E_j)$, otherwise we contradict the definition of α . Since $f \in \mathcal{L}^p(\mu)$ evidently implies $H_f = \{x \in X : |f(x)| \neq 0\} \cup (\bigcup_{j=1}^{\infty}E_j)$ is in the collection \mathcal{E} , we must then in particular have $g_{H_f} = 0$ a.e. on $X \setminus (\bigcup_{j=1}^{\infty}E_j)$ and so, with $g = g_{\bigcup_{j=1}^{\infty}E_j}$,

$$F(\tilde{f}) = \int_X fg \, d\mu \ \forall f \in \mathcal{L}^p(\mu),$$

and the proof is complete. \Box