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1 Borel Regular Measures

Recall that a Borel measure on a topological space X is a measure defined on
the collection of Borel sets, and an outer measure � on X is said to be a Borel-
regular outer measure if all Borel sets are �-measurable and if for each subset
A � X there is a Borel set B � A such that �(B) D �(A). (Notice that this
does not imply �(B nA) D 0 unless A is �-measurable and �(A) <1.) Also if
� is a Borel measure on X , then we get a Borel regular outer measure � on X
by defining �(Y ) D inf �(B) where the inf is taken over all Borel sets B with
B � Y , and this outer measure � coincides with � on all the Borel sets. (See
Q.1 of hw2.)

Also, if � is a Borel regular outer measure on X and if A � X is �-measurable
with �(A) < 1, then we claim � A is also Borel regular. Here � A is the
outer measure on X defined by

(� A)(Y ) D �(A \ Y ):

To check this claim first observe that if E is �-measurable and Y � X is
arbitrary then (� A)(Y ) D �(A \ Y ) D �(A \ Y \ E) C �(A \ Y n E) D

(� A)(Y \ E) C (� A)(Y n E), hence E is also (� A)-measurable. In
particular all Borel sets are (� A)-measurable, so it remains to prove that for
each Y � X there is a Borel set B � Y with (� A)(B) D (� A)(Y ). To
prove this, first use the Borel regularity of � and the fact that A is measurable
of finite measure to pick Borel sets B1 � Y \ A and B2 � A with �(B1) D
�(Y \ A) and �(B2 n A) D 0, and then pick a Borel set B3 � B2 n A with
�(B3) D 0. Then Y � B1 [ (X n A) � B1 [ (X n B2) [ B3 (which is a Borel
set) and (� A)(Y ) � (� A)(B1[(XnB2)[B3) D �((A\B1)[(A\B3)) �

�(B1) D �(Y \A) D (� A)(Y ).

2 �1 Borel Regular Measures

We now state and prove an important regularity property of Borel regular
outer measures:

1.1 Theorem. SupposeX is a topological space with the property that every closed
subset of X is the countable intersection of open sets (this trivially holds e.g. if X is
a metric space), suppose � is a Borel-regular outer measure on X , and suppose that
X D [1jD1Vj , where �(Vj ) <1 and Vj is open for each j D 1; 2; : : :. Then

(1) �(A) D inf
U open; U�A

�(U )

for each subset A � X , and

(2) �(A) D sup
C closed; C�A

�(C )

for each �-measurable subset A � X .

1.2 Remark: In case X is a locally compact separable metric space (thus for
each x 2 X there is � > 0 such that the closed ball B�(x) D {y 2 X W d (x; y) �
�} is compact, andX has a countable dense subset), the conditionX D [1jD1Vj
with Vj open and �(Vj ) <1 is automatically satisfied provided �(K) <1 for
each compact K. Furthermore in this case we have from (2) above that

�(A) D sup
K compact;K�A

�(K)

for each �-measurable subset A � K with �(A) <1, because under the above
conditions on X any closed set C can be written C D [1iD1Ki , Ki compact.

Proof of 1.1. We assume first that �(X) < 1. By Borel regularity of �, for
any given A � X we can select a Borel set B � A with �(B) D �(A), so it
clearly suffices to check (1) in the special case when A is a Borel set. Now let

A D { Borel sets A W (1) holds}:

Trivially A contains all open sets and one readily checks that A is closed under
both countable unions and intersections, as follows:

If A1;A2; : : : 2 A then for any given " > 0 there are open U1;U2; : : : with
Uj � Aj and �(Uj n Aj ) � 2�j ". Now one easily checks [jUj n ([kAk) �
[j (Uj n Aj ) and \jUj n (\kAk) � [j (Uj n Aj ) so by subadditivity we have
�([1jD1Uj n ([kAk)) < " and limN!1 �(\NjD1Uj n (\kAk)) D �(\1jD1Uj n

(\kAk)) < ", so both [kAk and \kAk are in A as claimed.

In particular A must also contain the closed sets, because any closed set in X
can be written as a countable intersection of open sets and all the open sets
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are in A. Thus if we let zA D {A 2 A W X n A 2 A} then zA is a � -algebra
containing all the closed sets, and hence zA contains all the Borel sets. Thus A
contains all the Borel sets and (1) is proved in case �(X) <1.

To check (2) in case �(X) < 1 we can just apply (1) to X n A: thus for
each i D 1; 2; : : : there is an open set Ui � X n A with �(X) � �(A) C 1=i D

�(XnA)C1=i > �(Ui ) D �(X)��(Ci ), whereCi D XnUi � Xn(XnA) D A.
Thus Ci � A is closed and �(Ci ) > �(A) � 1=i .

In case �(X) D 1, to prove (1) we first take a Borel set B with �(B) D �(A)

and then apply the above result for finite measures to the Borel regular measure
� Vj , j D 1; 2; : : :, thus obtaining, for given " > 0, open Uj � B with
(� Vj )(Uj nB) < "2�j and hence �(Uj \Vj nB) � "2j and by subadditivity
this gives

�([(Uj \ Vj ) nB) < ":

Since [(Uj \ Vj ) is an open set containing B (hence A), this is the required
result.

Similarly to check (2) in case �(X) D 1, we apply (2) for the finite measure
case to the Borel regular measure � Vj , giving closed Cj � X such that
Cj � A and (� Vj )(AnCj ) < "2�j for each j D 1; 2; : : :, and hence �(A\Vj n
[1
kD1

Ck) < "2
�j , so by subadditivity and the fact that [Vj D X we have �(An

([1
kD1

Ck)) < " and hence �(A) � �([1
kD1

Ck)C " D limN!1 �([NkD1Ck)C ".
Since [N

kD1
Ck is closed for each N this is the required result. �

Using the above lemma we now prove Lusin’s Theorem:

1.3 Theorem (Lusin’s Theorem.) Let � be a Borel regular outer measure on a
topological space X having the property that every closed set can be expressed as the
countable intersection of open sets (e.g. X is a metric space), let A be �-measurable
with �(A) <1, and let f W A! R be �-measurable. Then for each " > 0 there is
a closed set C � X with C � A, �(A n C ) < ", and f jC continuous.

Proof: For each i D 1; 2; : : : and j D 0;˙1;˙2; : : : let
Aij D f

�1((j � 1)=i; j=i ];

so that Aij ; j D 1; 2; : : :, are p.w.d. sets in A and [1jD�1Aij D A.

By the remarks preceding Theorem 1.1 we know that � A is a Borel regular
outer measure and since it is finite we can apply Theorem 1.1 to it, and hence
for given " > 0 there are closed sets Cij inX with Cij � Aij with (� A)(Aij n

Cij ) D �(Aij nCij ) < 2�i�jj j�1", hence �(Aij n ([1`D�1Ci`)) < 2
�i�jj j�1" and
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hence
�(A n ([1`D�1Ci`)) < 2

�i"

so for each i D 1; 2; : : : there is a positive integer J (i) such that

�(A n ([jj j�J (i)Cij )) < 2
�i"

Since An (\1iD1([jj j�J (i)Cij )) D [1iD1(An ([jj j�J (i)Cij ) (by De Morgan), this
implies

�(A n C ) < ";

where C D \1iD1([jj j�J (i)Cij ) is a closed subset of A.

Now define gi W [jj j�J (i)Cij ! R by setting gi (x) � (j � 1)=i on Cij , jj j �
J (i). Then gi is clearly continuous and its restriction to C is continuous for
each i ; furthermore by construction 0 � f (x) � gi (x) � 1=i for each x 2 C
and each i D 1; 2; : : :, so that gi jC converges uniformly to f jC on C and hence
f jC is continuous. �

2 Radon Measures, Representation Theorem

In this section we work mainly in locally compact Hausdorff spaces, and for
the reader’s convenience we recall some basic definitions and preliminary topo-
logical results for such spaces.

Recall that a topological space is said to be Hausdorff if it has the property that
for every pair of distinct points x; y 2 X there are open sets U ;V with x 2 U ,
y 2 V and U \ V D ∅. In such a space all compact sets are automatically closed,
the proof of which is as follows: observe that if x … K then for each y 2 K we
can (by definition of Hausdorff space) pick open Uy ;Vy with x 2 Uy , y 2 Vy
and Uy\Vy D ∅. By compactness ofK there is a finite set y1; : : : ; yN 2 K with
K � [NjD1Vyj

. But then \NjD1Uyj
is an open set containing x which is disjoint

from [jVyj
and hence disjoint from K, so that K is closed as claimed. In fact

we proved a bit more: that for each x … K there are disjoint open sets U ;V
with x 2 U and K � V . Then if L is another compact set disjoint from K we
can repeat this for each x 2 L thus obtaining disjoint open Ux ;Vx with x 2 Ux
and K � Vx , and then compactness of L implies 9x1; : : : ; xM 2 L such that
L � [MjD1Uxj

and then [MjD1Uxj
and \MjD1Vxj

are disjoint open sets containing
L and K respectively. By a simple inductive argument (left as an exercise) we
can extend this to finite pairwise disjoint unions of compact subsets:

2.1 Lemma. Let X be a Hausdorff space and K1; : : : ;KN be pairwise disjoint
compact subsets of X . Then there are pairwise disjoint open subsets U1; : : : ;UN
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with Kj � Uj for each j D 1; : : : ;N .

Notice in particular that we have the following corollary of Lemma 2.1:

2.2 Corollary. A compact Hausdorff space is normal: i.e. given closed disjoint
subsets K1;K2 of a compact Hausdorff space, we can find disjoint open U1;U2
with Kj � Uj for j D 1; 2.

Most of the rest of the discussion here takes place in locally compact Hausdorff
space: A space X is said to be locally compact if for each x 2 X there is a
neighborhood Ux of x such that the closure U x of Ux is compact.

An important preliminary lemma in such spaces is:

2.3 Lemma. If X is a locally compact Hausdorff space and V is a nhd. of a point
x, then there is a nhd. Ux of x such that U x is a compact subset of V .

Proof: First pick a neighborhood U0 of x such that U 0 is compact and define
W D U0 \ V . Then W is compact and hence so is the closed subset W nW .
Then W nW and {x} are disjoint compact sets so by Lemma 2.1 we can find
disjoint open U1;U2 with x 2 U1 and W nW � U2. Without loss of generality
we can assume U1 � W (otherwise replace U1 by U1 \ W ). Then U 1 �

X n U2 � X n (W nW ) and hence U 1 � W . Thus the lemma is proved with
Ux D U1. �

Remark: In locally compact Hausdorff space, using Lemmas 2.1 and 2.3 it is
easy to check that we can select the Uj in Lemma 2.1 above to have compact
pairwise disjoint closures.

The following lemma is a version of the Urysohn lemma valid in locally com-
pact Hausdorff space:

2.4 Lemma. Let X be a locally compact Hausdorff space, K � X compact, and
K � W ,W open. Then there is an open V � K with V � W , V compact, and an
f W X ! [0; 1] with f � 1 in a neighborhood of K and sptf � V .

Proof: By Lemma 2.3 each x 2 K has a neighborhood Ux with U x � W

and U x compact. Then by compactness of K we have K � V � [NjD1Uxj

for some finite collection x1; : : : ; xN 2 K and V D [NjD1U xj
� W . Now V

is compact, so by Corollary 2.2 it is a normal space and the Urysohn lemma
can be applied to give f0 W V ! [0; 1] with f0 � 1 on K and and f0 � 0 on
V nV . Then of course the function f1 defined by f1 � f0 on V and f1 � 0 on
X n V is continuous (check!) because f jV is continuous and f is identically
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zero (the value of f jX n V ) on the overlap set V n V � V \ (X n V ). Finally
we let f � 2min{f1; 12} and observe that f is then identically 1 in the set
where f1 > 1

2
, which is an open set containing K, and f evidently has all the

remaining stated properties. �

The following corollary of Lemma 2.4 is important:

2.5 Corollary (Partition of Unity.) If X is a locally compact Hausdorff space,
K � X is compact, and if U1; : : : ;UN is any open cover for K, then there exist
continuous 'j W X ! [0; 1] such that spt'j is a compact subset of Uj for each j ,
and

PN
jD1'j � 1 in a neighborhood of K.

Proof: By Lemma 2.3, for each x 2 K there is a j 2 {1; : : : ;N } and a neigh-
borhood Ux of x such that U x is a compact subset of this Uj . By compactness
of K we have finitely many of these neighborhoods, say Ux1

; : : : ;UxN
with

K � [NiD1Uxi
. Then for each j D 1; : : : ;N we define Vj to be the union of

all Uxi
such that U xi

� Uj . Then the V j is a compact subset of Uj for each
j , and the Vj cover K. So by Lemma 2.4 for each j D 1; : : : ;N we can select
 j W X ! [0; 1] with  j � 1 on V j and  j � 0 on X nWj for some open Wj
with W j a compact subset of Uj and Wj � V j . We can also use Lemma 2.4 to
select '0 W X ! [0; 1] with '0 � 0 in a neighborhood of K and '0 � 1 outside
a compact subset of [NjD1Vj . Then by construction

PN
iD0 i > 0 everywhere

on X , so we can define continuous functions 'j by

'j D
 jPN
iD0 i

; j D 1; : : : ;N :

Evidently these functions have the required properties. �

We now give the definition of Radon measure. Radon measures are typically
used only in locally compact Hausdorff space, but the definition and the first
two lemmas following it are valid in arbitrary Hausdorff space:

2.6 Definition: Given a Hausdorff space X , a “Radon measure” on X is an
outer measure � on X having the 3 properties:

� is Borel regular and �(K) <1 8 compact K � X (R1)

�(A) D inf
U open; U�A

�(U ) for each subset A � X (R2)

�(U ) D sup
K compact;K�U

�(K) for each open U � X : (R3)

Such measures automatically have a property like (R3) with an arbitrary �-
measurable subset of finite measure:
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2.7 Lemma. Let X be a Hausdorff space and � a Radon measure on X . Then �
automatically has the property

�(A) D sup
K�A;K compact

�(K)

for every �-measurable set A � X with �(A) <1.

Proof: Let " > 0. By definition of Radon measure we can choose an open U
containingAwith �(U nA) < ", and then a compactK � U with �(U nK) < "

and finally an open W containing U n A with �(W n (U n A)) < " (so that
�(W ) � "C�(U nA) < 2"). Then we have that K nW is a compact subset of
U nW , which is a subset of A, and also

�(A n (K nW )) � �(U n (K nW )) � �(U nK)C �(W ) � 3";

which completes the proof. �

The following lemma asserts that the defining property (R1) of Radon mea-
sures follows automatically from the remaining two properties ((R2) and (R3))
in case � is finite and additive on finite disjoint unions of compact sets.

2.8 Lemma. Let X be a Hausdorff space and assume that � is an outer measure
on X satisfying the properties (R2), (R3) above, and in addition assume that

�(K1 [K2) D �(K1)C �(K2) <1; K1;K2 compact, K1 \K2 D ∅.

Then � is Borel regular, hence (R1) holds, hence � is a Radon measure.

Proof: Note that (R2) implies that for every set A � X we can find open
sets Uj such that A � \jUj and �(A) D �(\jUj ). So to complete the proof
of (R1) we just have to check that all Borel sets are �-measurable; since the �-
measurable sets form a � -algebra and the Borel sets form the smallest � -algebra
which contains all the open sets, we thus need only to check that all open sets
are �-measurable.

Let " > 0 be arbitrary, Y an arbitrary subset of X with �(Y ) < 1 and let U
be an arbitrary open subset of X . By (R2) we can pick an open set V � Y

with �(V ) < �(Y ) C " and by (R3) we can pick a compact set K1 � V \ U
with �(V \ U ) � �(K1) C ", and then a compact set K2 � V n K1 with
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�(V nK1) � �(K2)C ". Then

�(V n U )C �(V \ U ) � �(V nK1)C �(K1)C "

� �(K2)C �(K1)C 2"

D �(K2 [K1)C 2" (by (i))
� �((V nK1) [K1)C 2"

D �(V )C 2" � �(Y )C 3";

hence �(Y nU )C�(Y \U ) � �(V nU )C�(V \U ) � �(Y )C 3" which by
arbitrariness of " gives �(Y n U ) C �(Y \ U ) � �(Y ), which establishes the
�-measurability of U . Thus all open sets are �-measurable, and hence all Borel
sets are �-measurable, and so (R1) is established. �

The following lemma guarantees the convenient fact that, in a locally compact
space such that all open subsets are � -compact, all locally finite Borel regular
outer measures are in fact Radon measures.

2.9 Lemma. Let X be a locally compact Hausdorff space and suppose that each
open set is the countable union of compact subsets. Then any Borel regular outer
measure on X which is finite on each compact set is automatically a Radon mea-
sure.

Proof: First observe that in a Hausdorff space X the statement “each open
set is the countable union of compact subsets” is equivalent to the statement
“X is � -compact (i.e. the countable union of compact sets) and every closed
set is the countable intersection of open sets” as one readily checks by using
De Morgan’s laws and the fact that a set is open if and only if its complement
is closed. Thus we have at our disposal the facts that X is � -compact and every
closed set is a countable intersection of open sets. The latter fact enables us to
apply Theorem 1.1 (1), and we can therefore assert that

�(A) D inf
U open;A�U

�(U ) whenever A � X has the property(1)
that 9 open Vj with A � [jVj and �(Vj ) <1 8j .

Also, by applying Theorem 1.1 (2) to the finite Borel regular measure � A,

(2) �(A) D sup
C closed; C�A

�(C ); provided A is �-measurable and �(A) <1.

Now observe that by the first part of the conclusion in Lemma 2.4 there is an
open set V � K such that V (the closure of V ) is compact. So since we are
given X D [1jD1Kj , where each Kj is compact, we can apply this with Kj in
place ofK, and we deduce that there are open sets Vj in X such that [jVj D X
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and �(Vj ) < 1 for each j , and so in this case (when X is � -compact) the
identity in (1) holds for every subset A � X ; that is

�(A) D inf
U open;A�U

�(U ) for every A � X ;

which is the property (R2). Next we note that if A � X is �-measurable,
then we can write A D [jAj , where Aj D A \ Kj (because X D [jKj ) and
�(Aj ) � �(Kj ) < 1 for each j , so (2) actually holds for every �-measurable
A in case X is � -compact (i.e. in case X D [1jD1Kj with Kj compact), and for
any closed set C we can write C D [jCj where Cj is the increasing sequence
of compact sets given by Cj D C \ ([jiD1Ki ) and so �(C ) D limj �(Cj ) and
hence �(C ) D supK�C;K compact �(K). Thus in the � -compact case (2) actually
tells us that �(A) D supK�A;K compact �(K) for any �-measurable set A. This
in particular holds for A D an open set, which is the remaining property (R3)
we needed. �

The following result is one of the main theorems related to Radon measures,
asserting that for a Radon measure � on a locally compact Hausdorff space, the
continuous functions with compact support are dense in Lp(�), 1 � p <1.

Here and subsequently we use the notation

Cc(X) D {f W X ! R W f is continuous with sptf compact};

where sptf D support of f D closure of {x 2 X W f (x) ¤ 0}.

2.10 Theorem. Let X be a locally compact Hausdorff space, � a Radon measure
on X and 1 � p <1. Then Cc(X) is dense in Lp(�); that is, for each " > 0 and
each f 2 Lp there is a g 2 Cc(X) such that kg � f kp < ".

In view of Lemma 2.9 and the fact that to every Borel measure � on a topolog-
ical space X (i.e. every map � W {all Borel sets of X} ! [0;1] with �(∅) D 0

and �([1jD1Bj ) D
P1
jD1 �(Bj ) for every pairwise disjoint collection of Borel

sets B1;B2; : : :), there is a Borel regular outer measure � on X defined by
�(A) D infB Borel;B�A �(B), we see that Theorem 2.10 directly implies the
following important corollary:

2.11 Corollary. If X is a locally compact Hausdorff space such that every open set
in X is the countable union of compact sets, and if � is any Borel measure on X
which is finite on each compact set, then the space Cc(X) is dense in L1(�) and �
is the restriction to the Borel sets of a Radon measure �.

Proof of Theorem 2.10: Let f W X ! R be �-measurable with kf kp < 1
and let " > 0. Observe that the simple functions are dense in Lp(�) (which
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one can check using the dominated convergence theorem and the fact that
both fC and f� can be expressed as the pointwise limits of increasing se-
quences of non-negative simple functions), so we can pick a simple function
' D

PN
jD1aj�Aj

, where the aj are distinct non-zero reals and Aj are pair-
wise disjoint �-measurable subsets of X , such that kf � 'kp < ". Since
k'kp � k' � f kp C kf kp < 1 we must then have �(Aj ) < 1 for each j .
Pick M > max{ja1j; : : : ; jaN j} and use Lemma 2.7 to select compact Kj � Aj
with �(Aj n Kj ) < "p=(2pC1MpN ). Also, using the definition of Radon
measure, we can find open Uj � Kj with �(Uj n Kj ) < "p=(2pC1MpN )

and by Lemma 2.7 we can assume without loss of generality that these open
sets U1; : : : ;UN are pairwise disjoint (otherwise replace Uj by Uj \U 0

j , where
U 0
1 ; : : : ;U

0
N are pairwise disjoint open sets with Kj � U 0

j ). By Lemma 2.4 we
have gj 2 Cc(X) with gj � aj on Kj , {x W gj (x) ¤ 0} contained in a compact
subset of Uj , and sup jgj j � jaj j, and hence by the pairwise disjointness of the
Uj we have that g �

PN
jD1gj agrees with ' on each Kj and sup jgj D sup j'j <

M . Then ' � g vanishes off the set [j ((Uj n Kj ) [ (Aj n Kj )) and we haveR
X
j' � gjp d� �

P
j

R
(Uj nKj )[(Aj�Kj ) j' � gj

p d� � (2M )p
P
j (�(Aj nKj )C

�(Uj nKj )) � "p, and hence kf �gkp � kf �'kpCk'�gkp � 2", as required.

We now state the Riesz representation theorem for non-negative functionals
on the space KC, where, here and subsequently, KC denotes the set of non-
negative Cc(X ;R) functions, i.e. the set of continuous functions f W X !
[0;1) with compact support.

2.12 Theorem (Riesz for non-negative functionals.) Suppose X is a locally
compact Hausdorff space, � W KC ! [0; 1) with �(cf ) D c�(f ), �(f C g) D
�(f ) C �(g) whenever c � 0 and f; g 2 KC, where KC is the set of all non-
negative continuous functions f on X with compact support. Then there is a
Radon measure � on X such that �(f ) D

R
X
f d� for all f 2 KC.

Before we begin the proof of 2.12 we the following preliminary observation:

2.13 Remark: Observe that if f; g 2 KC with f � g then g � f 2 KC and
hence �(g) D �(f C (g � f )) D �(f )C �(g � f ) � �(f ), so

f; g 2 KC with g � 1 on spt f )(�)
�(f ) � (supf ) �(g); f 2 KC; sptf � K:

because f g � f and f � (supf )g.

Proof of Theorem 2.12: For U � X open, we define

(1) �(U ) D sup
f 2KC;f�1;sptf�U

�(f );
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and for arbitrary A � X we define

(2) �(A) D inf
U�A;U open

�(U ):

Notice that these definitions are consistent when A is itself open, and of course
the definitions (1),(2) guarantee �(∅) D 0 and that � is monotone—i.e.

(3) A � B ) �(A) � �(B):

Also if f 2 KC with f � 1 and V is open with V � sptf then by (1)
�(f ) � �(V ), and hence, taking inf over such V and using (2), we see

(4) f 2 KC with f � 1) �(f ) � �(sptf );

and then for any open U we can use (1) and (4) to conclude

(5) �(U ) D sup
f 2KC;f�1;sptf�U

�(sptf );

Notice next that ifK is compact then, by Lemma 2.4, ifW � K is open there is
g 2 KC with g � 1 in a neighborhood V of K and with g � 1 and sptg � W .
Then by (3),(1) and (�) we have, for any such g,

(6) �(K) � �(V ) D sup
f 2KC;f�1;sptf�V

�(f ) � �(g) � �(W ):

To prove that � is an outer measure it still remains to check countable subad-
ditivity. To see this, first let U1;U2; : : : be open and U D [jUj , then for any
f 2 KC with supf � 1 and sptf � U we have, by compactness of sptf ,
that sptf � [NjD1Uj for some integer N , and by using a partition of unity
'1; : : : ; 'N for sptf subordinate to U1; : : : ;UN (see Corollary 2.5), we have
�(f ) D

PN
jD1�('jf ) �

PN
jD1�(Uj ). Taking sup over all such f we then have

�(U ) �
P1
jD1�(Uj ). It then easily follows by applying definitions (1),(2) that

�([jAj ) �
P
j�(Aj ). So indeed � is an outer measure on X .

Finally we want to show that � is a Radon measure. For this we are going
to use Lemma 2.8 above, so we have to check the hypotheses of Lemma 2.8.
Hypothesis (R2) needed for Lemma 2.8 is true by definition and (R3) is true
by (5). Since we also have finiteness of �(K) for compact K by (6), it remains
only to prove the additivity property

(7) K1;K2 disjoint compact sets in X ) �(K1 [K2) D �(K1)C �(K2):

To check this, let U be any open set containing K1[K2 and use Corollary 2.2
to choose disjoint open Vj � Kj with Vj � U , j D 1; 2. Then by (3) and (1)

�(K1)C �(K2) � �(V1)C �(V2) D sup
gj2KC;sptgj�Vj ;gj�1;jD1;2

(�(g1)C �(g2))

D sup
gj2KC;sptgj�Vj ;gj�1;jD1;2

�(g1 C g2)
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On the other hand g1 C g2 � 1 on X (because V1 \ V2 D ∅) and so

sup
gj2KC;sptgj�Vj ;gj�1;jD1;2

�(g1 C g2) � sup
f 2KC;sptf�U;f�1

�(f ) D �(U ):

Hence we have proved that �(K1) C �(K2) � �(U ), and taking inf over all
open U � K1 [K2 we have by (2) that �(K1)C�(K2) � �(K1 [K2), and of
course the reverse inequality holds by subadditivity of �, hence the hypotheses
of Lemma 2.8 are all established and � is a Radon measure.

Next observe that by (4) we have �(h) � �(spt h) sup h; h 2 KC, and hence

�(h) D lim
n!1

�(max{h � 1=n; 0}) � �({x W h(x) > 0}) sup h; h 2 K

since h is the uniform limit of max{h�1=n; 0} in X and spt max{h�1=n; 0} �
{x W h(x) > 0} for each n. For f 2 KC (f not identically zero) and " > 0,
we let M D supf can select points 0 D t0 < t1 < t2 < : : : < tN�1 < M < tN

with tj � tj�1 < " for each j D 1; : : : ;N and with �({f �1{tj }}) D 0 for
each j D 1; : : : ;N . Notice that the latter requirement is no problem because
�({f �1{t}}) D 0 for all but a countable set of t > 0, by virtue of the fact that
�{x 2 X W f (x) > 0} � �(sptf ) <1.

Now let Uj D f �1{(tj�1; tj )}, j D 1; : : : ;N . (Notice that then the Uj are
pairwise disjoint and each Uj � K, where K, compact, is the support of f .)
Now by the definition (1) we can find gj 2 KC such that gj � 1, sptgj � Uj ,
and �(gj ) � �(Uj ) � "=N . Also for any compact Kj � Uj we can construct a
function hj 2 KC with hj � 1 in a neighborhood of Kj [ sptgj , spt hj � Uj ,
and hj � 1 everywhere. Then hj � gj , hj � 1 everywhere and spthj is a
compact subset of Uj and so

(9) �(Uj ) � "=N � �(gj ) � �(hj ) � �(Uj ); j D 1; : : : ;N :

Since � is a Radon measure, we can in fact choose the compact Kj � Uj such
that �(Uj n Kj ) < "=N . Then, because {x W (f � f

PN
jD1hj )(x) > 0} �

[(Uj nKj ), by (8) we have

(10) �(f � f
PN
jD1hj ) �M

PN
jD1�(Uj nKj ) � "M :

Then by using (9); (10) and the linearity of � (together with the fact tj�1hj �
f hj � tjhj ) for each j D 1; : : : ;N ), we see thatPN

jD1tj�1�(Uj ) � "M � �(f
P
jhj ) � �(f ) � �(f

P
jhj )C "M

�
PN
jD1tj�(Uj )C "M :

Since trivially PN
jD1tj�1�(Uj ) �

R
X
f d� �

PN
jD1tj�(Uj );



Math 205A Lecture Supplement 13

we then have
�"
(
�(K)CM

)
� �

PN
jD1(tj � tj�1)�(Uj ) � "M

�
R
X
f d� � �(f )

�
PN
jD1(tj � tj�1)�(Uj )C "M

� "(�(K)CM );

where K D sptf . This completes the proof of 2.12. �

We can now state the Riesz Representation Theorem. In the statement, Cc(X ;Rn)
will denote the set of vector functions f W X ! Rn which are continuous and
which have compact support. (That is f � 0 outside a compact subset of X .)

2.14 Theorem (Riesz Representation Theorem.) Suppose X is a locally com-
pact Hausdorff space, and L W Cc(X ;Rn)! R is linear with

sup
f 2Cc (X;Rn);jf j�1;sptf�K

L(f ) <1 whenever K � X is compact.

Then there is a Radon measure � on X such that for each compact K � X there
is a vector function � W X ! Rn with j�j D 1 everywhere and �j �-measurable,
j D 1; : : : ; n, and with

L(f ) D

Z
X

f � � d� for any f 2 Cc(X ;Rn) with sptf � K:

In the cases when X is � -compact (i.e. 9 compact K1;K2; : : : with X D [jKj ) or
L is bounded (i.e. supf 2Cc (X;Rn);jf j�1 jL(f )j < 1), � can be chosen independent
of K.

Proof: We first define
�(h) D sup

f 2Cc (X;Rn); jf j�h

L(f )

for any h 2 KC. We claim that � has the linearity properties of Lemma 2.12.
Indeed it is clear that �(ch) D c�(h) for any constant c � 0 and any h 2 KC.
Now let g; h 2 KC, and notice that if f1; f2 2 Cc(X ;Rn) with jf1j � g and
jf2j � h, then jf1C f2j � gC h and hence �(gC h) � L(f1)CL(f2). Taking
sup over all such f1; f2 we then have �(g C h) � �(g) C �(h). To prove the
reverse inequality we let f 2 Cc(X ;Rn) with jf j � g C h, and define

f 1 D

{
g
gCh

f if g C h > 0
0 if g C h D 0;

f2 D

{
h

gCh
f if g C h > 0

0 if g C h D 0:

Then f1 C f2 D f , jf1j � g, jf2j � h and it is readily checked that f1; f2 2
Cc(X ;Rn). Then L(f ) D L(f1) C L(f2) � �(g) C �(h), and hence taking
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sup over all such f we have �(g C h) � �(g) C �(h). Therefore we have
�(g C h) D �(g) C �(h) as claimed. Thus � satisfies the conditions of the
Theorem 2.12, hence there is a Radon measure � on X such that

�(h) D

Z
X

h d�; h 2 KC; j D 1; : : : ; n:

That is, we have

(�) sup
f 2Cc (X;Rn); jf j�h

L(f ) D

Z
X

h d�; h 2 KC:

Thus if j 2 {1; : : : ; n} we have in particular (since jfej j D jf j 2 KC for any
f 2 Cc(X ;R)) that

jL(fej )j �

Z
X

jf j d� � kf kL1(�) 8f 2 Cc(X ;R):

Thus Lj (f ) � L(fej ) extends to a bounded linear functional on L1(�). In
either of the 3 cases (i) K compact is given and we use Riesz Representation
Theorem for L1(� K), or (ii) kLk(D �(X)) < 1 and we use Riesz Repre-
sentation Theorem for the finite measure case, or (iii) X D [1jD1Kj with Kj
compact for each j and we use Riesz Representation Theorem for the � -finite
case, we know that there is a bounded �-measurable function �j such that

L(fej ) D

Z
X

f �j d�; f 2 Cc(X ;R);

where in case (i) we impose the additional restriction sptf � K. Since any
f D (f1; : : : ; fn) can be expressed as f D

Pn
jD1fj ej , we thus deduce

(�) L(f ) D

Z
X

f � � d�; f 2 Cc(X ;Rn);

where � D (�1; : : : ; �n), and so by (�)Z
X

h d� D sup
f 2Cc (X;Rn);jf j�h

Z
X

f � � d� D sup
f 2Cc (X;Rn);jf jD1;g2KC;g�h

Z
X

gf � � d�

for every h 2 KC, where in case (i) we assume spt h � K. Now jf � �j � jf jj�j
so we have

sup
f 2Cc (X;Rn);jf jD1;g2KC;g�h

Z
X

gf � � d� � sup
g2KC;g�h

Z
X

gj�j d� D

Z
X

hj�j d�

Since Cc(X) is dense in L1(�), we can choose a sequence fk with jfkj D 1 and
fk � � ! j�j on spt h, so the bound on the right of the previous inequality is
attained and we have provedZ

X

h d� D

Z
X

hj�j d�

and again using the density of Cc(X) in L1(�) we have j�j D 1 �-a.e. �



Math 205A Lecture Supplement 15

We conclude with an important compactness theorem for Radon Measures.

Recall that Alaoglu’s theorem (see e.g. Royden, “Real Analysis” 3rd Edition,
Macmillan 1988, p.237), which is a corollary of Tychonoff’s theorem, tells us
that the closed unit ball in the dual space of a normed linear space must be
weak* compact: that is, given any normed linear space X with dual space X �

(i.e. X � is the normed space consisting of all the bounded linear functionals
F W X ! R), then {F 2 X � W kF k � 1} is weak* compact, meaning that for
any sequence Fj 2 X � with supj kFj k < 1 there is a subsequence Fjk

and an
F 2 X � with Fjk

(x)! F (x) for each fixed x 2 X .

In particular if X is compact and X D C (X) (the continuous real-valued func-
tions on X )

{
� 2 X � W k�k � 1

}
is weak* compact. That is, given a se-

quence {�k} of bounded linear functionals on C (X) with supk�1 k�kk < 1,
we can find a subsequence {�k 0} and bounded linear functional � such that
lim�k 0(f ) D �(f ) for each fixed f 2 C (X). Using the above Riesz Rep-
resentation 2.12, this implies the following assertion concerning sequences of
Radon measures on X , assuming X is � -compact.

2.15 Theorem (Compactness Theorem for Radon Measures.) Suppose {�k}
is a sequence of Radon measures on the locally compact, � -compact Hausdorff space
X with the property supk �k(K) < 1 for each compact K. Then there is a subse-
quence {�k 0} which converges to a Radon measure � on X in the sense that

lim
Z
X

f d�k 0 D

Z
X

f d�; for each f 2 Cc(X):

Proof: Let K1;K2; : : : be an increasing sequence of compact sets with X D
[jKj and let Fj;k W C (Kj ) ! R be defined by Fj;k(f ) D

R
Kj
f d�k , k D

1; 2; : : :. By the Alaoglu theorem there is a subsequence Fj;k 0 and a non-
negative bounded functional Fj W C (Kj ) ! R with Fj;k 0(f ) ! Fj (f ) for
each f 2 C (Kj ). By choosing the subsequences successively and taking a
diagonal sequence we then get a subsequence �k 0 and a non-negative linear
F W Cc(X) ! R with

R
X
f d�k 0 ! F (f ) for each f 2 Cc(X), where

F (f ) D Fj (f jKj ) whenever spt f � Kj . (Notice that this is unambiguous
because if spt f � Kj and ` > j then F`(f jK`) D Fj (f jKj ) by construction.)
Then by applying Theorem 2.12 we have a Radon measure � on X such that
F (f ) D

R
X
f d� for each f 2 Cc(X), and so

R
X
f d�k 0 !

R
X
f d� for each

f 2 Cc(X).


