Mathematics Department, Stanford University 205A Lecture Supplement #1, 2013 Lebesgue's theorem on the Riemann integral

We let $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ be any closed interval in \mathbb{R}^n . Recall that by a partition \mathcal{P} of R we mean the collection of closed intervals $I \subset R$ obtained by partitioning each of the edges of R; thus for each $j = 1, \ldots, n$ we select points $a_j = t_{j,0} < t_{j,1} < \cdots < t_{j,N_j} = b_j$ and then $\mathcal{P} = \{[t_{1,i_1-1}, t_{1,i_1}] \times [t_{2,i_2-1}, t_{2,i_2}] \times \cdots \times [t_{n,i_n-1}, t_{n,i_n}] : i_j \in \{1, \ldots, N_j\}$ for each $j = 1, \ldots, n\}$. The points $t_{j,0}, \ldots, t_{j,N_j}$ are called "the *j*-th edge points" of the partition \mathcal{P} . For any $I = [t_{1,i_1-1}, t_{1,i_1}] \times [t_{2,i_2-1}, t_{2,i_2}] \times \cdots \times [t_{n,i_n-1}, t_{n,i_n}] \in \mathcal{P}$ we let \check{I} denote the corresponding open interval $(t_{1,i_1-1}, t_{1,i_1}) \times (t_{2,i_2-1}, t_{2,i_2}) \times \cdots \times (t_{n,i_n-1}, t_{n,i_n})$, and $\partial I = I \setminus \check{I}$.

Corresponding to any such partition \mathcal{P} of R, $U(f, \mathcal{P}) = \sum_{I \in \mathcal{P}} (\sup_I f) |I|$ is the "upper Riemann sum" and $L(f, \mathcal{P}) = \sum_{I \in \mathcal{P}} (\inf_I f) |I|$ is the "lower Riemann sum," where |I| is the volume of I (i.e. the product of the edge lengths of I), and recall the a bounded function $f : R \to \mathbb{R}$ is Riemann integrable if $\underline{\int}_R f = \overline{\int}_R f$, where

$$\int_{R} f = \sup_{\text{partitions } \mathcal{P} \text{ of } R} L(f, \mathcal{P}), \ \int_{R} f = \inf_{\text{partitions } \mathcal{P} \text{ of } R} U(f, \mathcal{P}).$$

Recall also that then we have the "Riemann criterion," which says that f is Riemann integrable on R if and only if for each $\delta > 0$ there is a partition \mathcal{P} of R such that $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \delta$.

Theorem. Let $f : [a_1, b_1] \times \cdots \times [a_n, b_n] \to \mathbf{R}$ be a bounded function. f is Riemann integrable \iff there is a set $A \subset [a_1, b_1] \times \cdots \times [a_n, b_n]$ of Lebesgue measure zero such that f is continuous at each point of $[a_1, b_1] \times \cdots \times [a_n, b_n] \setminus A$.

(i.e. A bounded function f on an interval $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is Riemann integrable if and only if f is continuous a.e. in R.)

Cautionary Remark: " $f : R \to \mathbb{R}$ is continuous at each $x \in R \setminus A$ " is a much stronger condition than " $f|R \setminus A$ is a continuous function," and indeed $f|R \setminus A$ continuous is in general <u>not</u> sufficient to ensure that f is Riemann integrable even if A has measure zero. For example if we take R = [0, 1], A = the set of rationals in [0, 1], then A has measure zero but the function f which is 1 on A and 0 on $R \setminus A$ is not Riemann integrable because evidently $\int_R f = 0$ and \overline{f} for f

$$\int_R f = 1.$$

Proof of \Rightarrow : Observe, by the definition of continuity, that f discontinuous at $y \in (a_1, b_1) \times \cdots \times (a_n, b_n) \iff \exists \varepsilon_0 > 0$ such that $\sup_I f - \inf_I f > \varepsilon_0 \forall$ open interval I with $y \in I \subset (a_1, b_1) \times \cdots \times (a_n, b_n)$, which is the same as saying there is a positive integer j such that $\sup_I f - \inf_I f > 1/j \forall$ open interval I with $y \in I \subset (a_1, b_1) \times \cdots \times (a_n, b_n)$. Thus the set of discontinuities of $f|(a_1, b_1) \times \cdots \times (a_n, b_n)$ can be written $\bigcup_{j=1}^{\infty} S_j$, where

$$S_j = \{ y \in (a_1, b_1) \times \dots \times (a_n, b_n) : \sup_I f - \inf_I f > 1/j$$
for every open interval I with $y \in I \subset (a_1, b_1) \times \dots \times (a_n, b_n) \}.$

Since the countable union of sets of Lebesgue measure zero again has Lebesgue measure zero, it is thus enough to prove that S_j has Lebesgue measure zero for each j.

Let $\varepsilon > 0, j \in \{1, 2, ...\}$, and note that by the above Riemann criterion we can pick a partition \mathcal{P} of the R such that $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon/j$. That is,

$$\sum_{I \in \mathcal{P}} \Bigl(\sup_{I} f - \inf_{I} f \Bigr) |I| < \varepsilon/j$$

Since $\sup_{I \in \mathcal{P}} f - \inf_I f \ge \sup_{\check{I}} f - \inf_{\check{I}} f \ge 1/j$ whenever $S_j \cap \check{I} \neq \emptyset$ (by definition of S_j), where \check{I} denotes the open interval $I \setminus \partial I$, the above evidently implies

$$\sum_{\{i\,:\,S_j\cap \breve{I}\neq \emptyset\}}(1/j)|I|<\varepsilon/j;$$

that is,

$$(\ddagger) \qquad \sum_{\{I \in \mathcal{P}: S_j \cap \check{I} \neq \emptyset\}} |I| < \varepsilon.$$

But the intervals $I, I \in \mathcal{P}$, cover the entire interval R, hence $R \setminus \bigcup_{I \in \mathcal{P}} \partial I = \bigcup_{I \in \mathcal{P}} \check{I}$ and trivially therefore $S_j \setminus \bigcup_{I \in \mathcal{P}} \partial I \subset \bigcup_{\{I \in \mathcal{P}: S_j \cap \check{I} \neq \emptyset\}} \check{I}$. Of course ∂I has Lebesgue measure zero for each $I \in \mathcal{P}$, so (‡) proves that S_j can be covered by a finite union of intervals of total length $< \varepsilon$ and hence S_j has Lebesgue measure zero as required.

Proof of \Leftarrow : Let $\varepsilon > 0$ and cover the set S of discontinuities of f by a countable union I_j of open intervals such that $\sum_j |I_j| < \varepsilon$. Then $K \equiv R \setminus \bigcup_{j=1}^{\infty} I_j$ is a compact set and f (as a function of $x \in R$) is continuous at each point of this compact set. We can therefore assert that

(*)
$$\exists \delta > 0$$
 such that $|f(x) - f(y)| < \varepsilon$ whenever $x \in K, y \in R$, and $|x - y| < \delta$.

Notice that the statement (*) is stronger than the standard fact that a continuous function on a compact set is uniformly continuous, because only the point x, and not necessarily the point y, is required to be in the compact set K—on the other hand, the <u>proof</u> using the Bolzano-Weierstrass theorem is almost identical to the usual Bolzano-Weierstrass proof of this standard fact, as follows: If there is $\varepsilon > 0$ such that (*) fails for each $\delta > 0$ then it fails with $\delta = \frac{1}{k}, k = 1, 2, \ldots$, and hence there are points $x_k \in K, y_k \in R$ such that $|x_k - y_k| < \frac{1}{k}$ but $|f(x_k) - f(y_k)| \ge \varepsilon$. Then by the Bolzano-Weierstrass theorem we can find a convergent subsequence x_{k_j} with $x = \lim x_{k_j}$, and $x \in K$ because K is closed. Since $|x_{k_j} - y_{k_j}| < \frac{1}{k_j} \le \frac{1}{j}$ we also have $\lim y_{k_j} = x$, and so by continuity of f at x we have $f(x_{k_j}) - f(y_{k_j}) \to f(x) - f(x) = 0$, contradicting the fact that $|f(x_{k_j}) - f(y_{k_j})| \ge \varepsilon$ for each j.

Now, with such a δ , we select any partition \mathcal{P} of R with diam $I < \delta$ for each $I \in \mathcal{P}$. For any $I \in \mathcal{P}$ such that $I \cap K \neq \emptyset$ we have by (*) that

$$\sup_{I} f - \inf_{I} f = \sup_{z_{1}, z_{2} \in I} (f(z_{1}) - f(z_{2}))$$

=
$$\sup_{z_{1}, z_{2} \in I} ((f(z_{1}) - f(y_{I})) - (f(z_{2}) - f(y_{I}))) \le \varepsilon + \varepsilon = 2\varepsilon,$$

where y_I is any point in $I \cap K$, while of course the sum of the volumes |I| over the remaining $I \in \mathcal{P}$ is $\leq \varepsilon$ (because these remaining intervals I have the property $I \cap K = \emptyset$ and hence $I \subset R \setminus K = R \setminus (R \setminus (\cup_j I_j)) \subset \cup_j I_j)$. Thus we have

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) = \sum_{I \in \mathcal{P}} (\sup_{I} f - \inf_{I} f) |I|$$

$$\leq 2\varepsilon |R| + (\sup_{R} f - \inf_{R} f)\varepsilon \leq 2\varepsilon (|R| + M), \quad M = \sup_{R} |f|.$$