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Lebesgue’s theorem on the Riemann integral

We let R = [a1, b1]× · · · × [an, bn] be any closed interval in Rn. Recall that by a partition P of

R we mean the collection of closed intervals I ⊂ R obtained by partitioning each of the edges

of R; thus for each j = 1, . . . , n we select points aj = tj,0 < tj,1 < · · · < tj,Nj = bj and then

P = {[t1,i1−1, t1,i1 ]× [t2,i2−1, t2,i2 ]× · · · × [tn,in−1, tn,in ] : ij ∈ {1, . . . , Nj} for each j = 1, . . . , n}.
The points tj,0, . . . , tj,Nj are called “the j-th edge points” of the partition P. For any I =

[t1,i1−1, t1,i1 ] × [t2,i2−1, t2,i2 ] × · · · × [tn,in−1, tn,in ] ∈ P we let Ĭ denote the corresponding open

interval (t1,i1−1, t1,i1)× (t2,i2−1, t2,i2)× · · · × (tn,in−1, tn,in), and ∂I = I \ Ĭ.

Corresponding to any such partition P of R, U(f,P) =
∑

I∈P(supI f) |I| is the “upper Riemann

sum” and L(f,P) =
∑

I∈P(infI f) |I| is the “lower Riemann sum,” where |I| is the volume of

I (i.e. the product of the edge lengths of I), and recall the a bounded function f : R → R is

Riemann integrable if −
∫
R f =

−∫
R f , where

−
∫
R f = suppartitions P of RL(f,P),

−∫
R f = infpartitions P of RU(f,P).

Recall also that then we have the “Riemann criterion,” which says that f is Riemann integrable

on R if and only if for each δ > 0 there is a partition P of R such that U(f,P)− L(f,P) < δ.

Theorem. Let f : [a1, b1]× · · · × [an, bn]→ R be a bounded function. f is Riemann integrable

⇐⇒ there is a set A ⊂ [a1, b1]×· · ·× [an, bn] of Lebesgue measure zero such that f is continuous

at each point of [a1, b1]× · · · × [an, bn] \A.
(i.e. A bounded function f on an interval R = [a1, b1] × · · · × [an, bn] is Riemann integrable if

and only if f is continuous a.e. in R.)

Cautionary Remark: “f : R → R is continuous at each x ∈ R \ A” is a much stronger

condition than “f |R \ A is a continuous function,” and indeed f |R \ A continuous is in general

not sufficient to ensure that f is Riemann integrable even if A has measure zero. For example

if we take R = [0, 1], A = the set of rationals in [0, 1], then A has measure zero but the function

f which is 1 on A and 0 on R \ A is not Riemann integrable because evidently −
∫
R f = 0 and

−∫
R f = 1.

Proof of ⇒: Observe, by the definition of continuity, that f discontinuous at y ∈ (a1, b1) ×
· · · × (an, bn) ⇐⇒ ∃ ε0 > 0 such that supI f − infI f > ε0 ∀ open interval I with y ∈ I ⊂
(a1, b1) × · · · × (an, bn), which is the same as saying there is a positive integer j such that

supI f − infI f > 1/j ∀ open interval I with y ∈ I ⊂ (a1, b1) × · · · × (an, bn). Thus the set of

discontinuities of f |(a1, b1)× · · · × (an, bn) can be written ∪∞j=1Sj , where

Sj = {y ∈ (a1, b1)× · · · × (an, bn) : supIf − infIf > 1/j

for every open interval I with y ∈ I ⊂ (a1, b1)× · · · × (an, bn)}.

Since the countable union of sets of Lebesgue measure zero again has Lebesgue measure zero, it

is thus enough to prove that Sj has Lebesgue measure zero for each j.
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Let ε > 0, j ∈ {1, 2, . . .}, and note that by the above Riemann criterion we can pick a partition

P of the R such that U(f,P)− L(f,P) < ε/j. That is,∑
I∈P

(
sup
I
f − inf

I
f
)
|I| < ε/j.

Since supI∈P f − infI f ≥ supĬ f − inf Ĭ f ≥ 1/j whenever Sj ∩ Ĭ 6= ∅ (by definition of Sj), where

Ĭ denotes the open interval I \ ∂I, the above evidently implies∑
{i : Sj∩Ĭ 6=∅}

(1/j)|I| < ε/j;

that is,

(‡)
∑

{I∈P:Sj∩Ĭ 6=∅}

|I| < ε.

But the intervals I, I ∈ P, cover the entire interval R, hence R \ ∪I∈P∂I = ∪I∈P Ĭ and trivially

therefore Sj \∪I∈P∂I ⊂ ∪{I∈P:Sj∩Ĭ 6=∅}Ĭ. Of course ∂I has Lebesgue measure zero for each I ∈ P,

so (‡) proves that Sj can be covered by a finite union of intervals of total length < ε and hence

Sj has Lebesgue measure zero as required.

Proof of ⇐: Let ε > 0 and cover the set S of discontinuities of f by a countable union Ij of

open intervals such that
∑

j |Ij | < ε. Then K ≡ R\∪∞j=1Ij is a compact set and f (as a function

of x ∈ R) is continuous at each point of this compact set. We can therefore assert that

(∗) ∃ δ > 0 such that |f(x)− f(y)| < ε whenever x ∈ K, y ∈ R, and |x− y| < δ.

Notice that the statement (∗) is stronger than the standard fact that a continuous function on a

compact set is uniformly continuous, because only the point x, and not necessarily the point y, is

required to be in the compact set K—on the other hand, the proof using the Bolzano-Weierstrass

theorem is almost identical to the usual Bolzano-Weierstrass proof of this standard fact, as

follows: If there is ε > 0 such that (∗) fails for each δ > 0 then it fails with δ = 1
k , k = 1, 2, . . .,

and hence there are points xk ∈ K, yk ∈ R such that |xk−yk| < 1
k but |f(xk)−f(yk)| ≥ ε. Then

by the Bolzano-Weierstrass theorem we can find a convergent subsequence xkj with x = limxkj ,

and x ∈ K because K is closed. Since |xkj − ykj | < 1
kj
≤ 1

j we also have lim ykj = x, and so by

continuity of f at x we have f(xkj ) − f(ykj ) → f(x) − f(x) = 0, contradicting the fact that

|f(xkj )− f(ykj )| ≥ ε for each j.

Now, with such a δ, we select any partition P of R with diam I < δ for each I ∈ P. For any

I ∈ P such that I ∩K 6= ∅ we have by (∗) that

supIf − infIf = supz1,z2∈I(f(z1)− f(z2))

= supz1,z2∈I((f(z1)− f(yI))− (f(z2)− f(yI))) ≤ ε+ ε = 2ε,

where yI is any point in I ∩K, while of course the sum of the volumes |I| over the remaining

I ∈ P is ≤ ε (because these remaining intervals I have the property I ∩ K = ∅ and hence

I ⊂ R \K = R \ (R \ (∪jIj)) ⊂ ∪jIj). Thus we have

U(f,P)− L(f,P) =
∑
I∈P

(supIf − infIf) |I|

≤ 2ε|R|+ (supRf − infRf)ε ≤ 2ε(|R|+M), M = supR|f |.

2


