
Mathematics Department Stanford University
Math 205A Autumn 2013, Lecture Supplement #2

Product measures and Fubini’s theorem

Let (X,A, µ) and (Y,B, ν) be arbitrary measure spaces.

Definition: By an A,B-rectangle we mean any set of the form A×B with A ∈ A and B ∈ B.

The product outer measure γ on X × Y corresponding to the two given measure spaces is defined
as follows. For any set S ⊂ X × Y ,

γ(S) = inf
∑
i

µ(Ai)ν(Bi),

where the inf is taken over all countable collections {Ai × Bi} of A,B-rectangles such that S ⊂
∪iAi×Bi. It is left as an exercise to check that γ is indeed an outer measure on X×Y , and where
the usual convention that 0.∞ =∞.0 = 0 is adopted.

We aim to prove that the σ-algebra of γ-measurable sets (in the sense of Caratheodory) contains
all the A,B-rectangles. The first non-trivial thing to check is the following countable additivity
property:

Lemma 1. If A1 ×B1, A2 ×B2, . . . are pairwise-disjoint A,B-rectangles, then

γ(∪iAi ×Bi) =
∑
i

µ(Ai)ν(Bi).

Proof: Notice that the inequality γ(Ai×Bi) ≤ µ(Ai)ν(Bi) ∀i is trivial by the definition of γ, so by
the subadditivity of outer measure we have γ(∪iAi×Bi) ≤

∑
i µ(Ai)ν(Bi) and we have only to prove

the reverse inequality. So let {Ci ×Di} be any countable collection with ∪jAj × Bj ⊂ ∪iCi ×Di,
and notice that then∑

i

χAi(x)χBi(y) ≡
∑
i

χAi×Bi(x, y) ≤
∑
i

χCi×Di ≡
∑
i

χCi(x)χDi(y).

Taking fixed x ∈ X, and integrating with respect to y ∈ Y we then deduce that∑
i

χAi(x)ν(Bi) ≤
∑
i

χCi(x)ν(Di),

whence integrating with respect to x ∈ X we conclude∑
i

µ(Ai)ν(Bi) ≤
∑
i

µ(Ci)ν(Di),

and by taking the inf over all such collections {Ci ×Di} we then conclude by definition of γ that∑
i

µ(Ai)ν(Bi) ≤ γ(∪iAi ×Bi)

as required.

Next we have the fact that A,B-rectangles are γ-measurable:

Lemma 2. Any A,B-rectangle A×B is γ-measurable in the sense of Caratheodory.

Before we begin the proof, we need the facts in the following remarks:

Remarks: (1) A countable (or finite) intersection of A,B-rectangles is again an A,B-rectangle,
and if S1, . . . , Sj , T are A,B-rectangles, then T \ ∪ji=1Sj is a union of a finite collection of pairwise
disjoint A,B-rectangles, as one easily checks by induction on j. (Check: For j = 1 it is true because
A×B\C×D can be written as the disjoint union of the A,B rectangles (A∩C)×(B\D), (A\C)×B,
while for j ≥ 2 we can write T \ ∪ji=1Si = (T \ ∪j−1i=1Si) \ Sj , and we can apply the case j = 1 and
induction on j to show that this is indeed a disjoint union of A,B-rectangles.)
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(2) Notice that it follows from (1) that if {Ai × Bi} are given A,B-rectangles for i = 1, 2, . . .,
then ∪iAi ×Bi can be written as the pairwise-disjoint union ∪iCi ×Di of A,B-rectangles, because
∪∞i=1Ai ×Bi = ∪∞i=1(Ai ×Bi \ (∪i−1j=0Aj ×Bj)), where we use the notation that A0 = B0 = ∅.

Proof of Lemma 2: Let Z ⊂ X × Y be arbitrary, and let Ai × Bi be A,B-rectangles with
Z ⊂ ∪iAi×Bi. Then by monotonicity and subadditivity of the outer measure γ we have γ(Z∩(A×
B)+γ(Z\(A×B)) ≤ γ((∪iAi×Bi)∩(A×B))+γ((∪iAi×Bi)\(A×B)) ≤

∑
i(γ((Ai×Bi)∩(A×B))+

γ((Ai×Bi)\(A×B))), and by Remarks 1 and 2 above we have (Ai×Bi)∩(A×B))∪((Ai×Bi)\(A×B))
is a pairwise pairwise disjoint union of 3 A,B-rectangles, and the union is equal to Ai × Bi, so by
Lemma 1 γ((Ai ×Bi) ∩ (A×B)) + γ((Ai ×Bi) \ (A×B)) = µ(Ai)ν(Bi) for each i. Thus we have
shown γ(Z ∩ (A×B) + γ(Z \ (A×B)) ≤

∑
i µ(Ai)ν(Bi), and by taking inf over all such collections

{Ai ×Bi} we have γ(Z ∩ (A×B) + γ(Z \ (A×B)) ≤ γ(Z) as required.

In view of the fact that the sets which are measurable with respect to a given outer measure form
a σ-algebra, we thus have:

Corollary. The collection of γ-measurable sets contains the σ-algebra generated by all the A,B-
rectangles.

Remark 3: Observe that now we can check that if (X,A, µ) = (Rn−1,Mn−1, λn−1) and (Y,B, ν) =
(R,M1, λ1) (whereMj denotes the Lebesgue measurable subsets of Rj and λj denotes the restric-
tion toMj of Lebesgue outer measure on Rj), then γ is just Lebesgue outer measure on Rn. Since
we proved in lecture that for each A ⊂ Rj we can find a countable intersection E = ∩jUj of open
sets with Uj ⊃ A for each j and λ(E) = λ(A), it is straightforward then to check that γ is Borel
regular in case (X,A, µ) = (Rn−1,Mn−1, λn−1) and (Y,B, ν) = (R,M1, λ1). Of course all open
sets are also γ-measurable in this case by Corollary 1, because any open set is a countable union
of open intervals, which are A,B rectangles in the present setting. Thus in this case γ is a Borel
regular outer measure on Rn with γ(I) = |I| for each open interval I ⊂ Rn (by Lemma 1), and
hence γ = λ by virtue of Q.5 of Homework 4.

The following lemma provides the main ingredient in the proof of Fubini’s theorem.

Lemma 3. If {Ai ×Bi} is any countable collection of A,B rectangles, then

γ(∪iAi ×Bi) =

∫
X×Y

χ∪iAi×Bi dγ =

∫
Y

(∫
X

χ∪Ai×Bi(x, y) dµ(x)
)
dν(y)

(and all integrals are well-defined).

Proof: Indeed the γ-measurability of ∪iAi × Bi is guaranteed by Lemma 2, so the integral∫
X×Y

χ∪iAi×Bi dγ is defined and is equal to γ(∪iAi × Bi). But by Remark 1 above we can write
∪iAi ×Bi = ∪iCi ×Di where Ci ×Di are p.w.d. A,B rectangles. So by Lemma 1 γ(∪iAi ×Bi) =∑

i µ(Ci)ν(Di) which of course can be written as
∑

i

∫
Y

(∫
X
χCi×Di(x, y) dµ(x)

)
dν(y), which by two

applications of the monotone convergence theorem is the same as
∫
Y

(∫
X

∑
i
χCi×Di(x, y) dµ(x)

)
dν(y),

which is just
∫
Y

(∫
X
χ∪Ai×Bi(x, y) dµ(x)

)
dµ(y), so the identity of Lemma 3 is proved.

We can now state Fubini’s Theorem. In the statement we require that the measure spaces (X,A, µ)
and (Y,B, ν) be complete; a measure space (X,A, µ) is said be complete if E ∈ A, µ(E) = 0⇒ all
subsets of E are also in A. (Of course all such subsets must then trivially have µ-measure zero.)
Observe also that such completeness trivially holds if µ = µ0|A, where µ0 is an outer measure on
X and A is the collection of all subsets which are µ0-measurable in the sense of Caratheodory.
(Because all sets with µ0-measure zero are trivially µ0-measurable in the sense of Caratheodory.)

Remark 4: Observe that in a complete measure space (X,A, µ) we have the very convenient fact
that if f, g : X → [−∞,∞], if g is A-measurable, and if f = g µ-a.e. (i.e. there is a set E ∈ A of
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measure zero such that f ≡ g on X \ E), then f is automatically A-measurable. Because of this
we can make perfectly good sense of integration of functions which are almost everywhere equal to
an integrable function but which may not even be defined on some set of measure zero; in this case
we simply arbitrarily define the function to be (for example) zero on the set of measure zero where
it is not otherwise defined. We subsequently adopt this convention whenever we are in a complete
measure space.

Theorem (Fubini’s Theorem). Let (X,A, µ) and (Y,B, ν) be complete measure spaces, let γ
be the product outer measure on X × Y constructed above, and suppose that f : X × Y → R is
γ-integrable. Then
(i) f(x, y) is a µ-integrable function of x for ν-a.e. y ∈ Y ;
(ii)

∫
X f(x, y) dµ(x) is a ν-integrable function of y;

(iii)
∫
Y (
∫
X f(x, y) dµ(x)) dν(y) =

∫
X×Y f(x, y) dγ.

Remark 5: Notice that the integral in (ii) exists by virtue of conclusion (i) and the iterated
integral on the left in (iii) exists by virtue of conclusion (ii); also (in accordance with Remark 4
above) it is understood in (ii), (iii) that we adopt the convention that

∫
X f(x, y) dµ(x) is defined

to be zero at the (ν-measure zero) set of points y where it is not otherwise defined.

Proof: We first show this is correct when f = χ
∩j(∪iAj

i×B
j
i )

, where each Aj
i×B

j
i is an A,B rectangle

and γ(∪iA1
i × B1

i ) < ∞. Indeed, since for each k = 1, 2, . . . ∩kj=1(∪iA
j
i × B

j
i ) is a countable union

of A,B rectangles, Lemma 3 tells us that∫
X×Y

χ
∩kj=1(∪iA

j
i×B

j
i )
dγ =

∫
Y

(∫
X

χ
∩kj=1(∪A

j
i×B

j
i )

(x, y) dµ(x)
)
dν(y)

and so we can make 3 applications of the dominated convergence theorem (once on the left side
of (1) and twice on the right side) to conclude that

(1) γ(∩∞j=1(∪iA
j
i ×B

j
i ))) =

∫
X×Y

χ
∩∞j=1(∪iA

j
i×B

j
i )
dγ =

∫
Y

(∫
X

χ
∩∞j=1(∪A

j
i×B

j
i )

(x, y) dµ(x)
)
dν(y).

Next notice that using the definition of the outer measure γ, we additionally conclude the following:
For every γ-measurable set C of finite measure, we can select, for each j = 1, 2, . . ., p.w.d. families
{Aj

i ×B
j
i : i = 1, 2, . . .} of A,B rectangles with

C ⊂ ∩j(∪iAj
i ×B

j
i ) and γ(∩j(∪iAj

i ×B
j
i \ C) = 0.

Then by applying the same reasoning with E = ∩j(∪iAj
i ×B

j
i )\C in place of C we also get families

{Ej
i × F

j
i : i = 1, 2, . . .} of A,B rectangles with

E ⊂ (∩j(∪iEj
i × F

j
i ))

and

0 = γ(∩j(∪iEj
i × F

j
i )) =

∫
X×Y

χ
∩j(∪iEj

i×F
j
i )
dγ =

∫
Y

(∫
X

χ
∩j(∪iEj

i×F
j
i )
dµ
)
dν,

which implies that
∫
X
χ
∩j(∪iEj

i×F
j
i )

(x, y) dµ(x) = 0 for ν−a.e. y ∈ Y . That is the “y-slice” {x ∈
X : (x, y) ∈ ∩j(∪iEj

i × F j
i )} (which is a set in A) has ν-measure zero for ν-a.e. y ∈ Y . But

E ⊂ ∩(∪iEj
i × F

j
i )) and ν is a complete measure, so the slice {x : (x, y) ∈ E} is also in A and also

has µ-measure zero for ν-a.e. y ∈ E. Thus
∫
Y

(∫
X
χE(x, y) dµ(x)

)
dν(y) = 0 (and the integrals are

well-defined), because ν is a complete measure and hence we can use the convention discussed in
Remark 4 above. Thus we have

(2)

∫
X×Y

χE dγ =

∫
Y

(∫
X

χE(x, y) dµ(x)
)
dν(y) = 0.
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Since E = ∩j(∪iAj
i ×B

j
i ) \ C and C ⊂ ∩j(∪iAj

i ×B
j
i ), we then have χC = χ

∩j(∪iAj
i×B

j
i )
− χE and

in view of (1), (2) and the linearity of the integral we have

(3)

∫
X×Y

χC dγ =

∫
Y

(∫
X

χC(x, y) dµ(x)
)
dν(y)

(and all integrals are well-defined), provided C is γ-measurable and has finite measure.

We can now easily complete the proof because (3) plus the linearity of the integral implies

(4)

∫
X×Y

ϕdγ =

∫
Y

(∫
X
ϕ(x, y) dµ(x)

)
dν(y)

for any simple function ϕ =
∑N

j=1 cjχCj with cj > 0 for each j = 1, . . . , N , provided the Cj are γ-
measurable and γ(Cj) <∞. So suppose without loss of generality (since we can write f = f+− f−
and use the linearity of the integral) that f ≥ 0 and select an increasing sequence of non-negative
simple functions ϕk =

∑Nk
j=1 c

k
j
χ
Ck

j
with ckj ≥ 0, each Ck

j is γ-measurable, and ϕk → f . Observe

that then γ(Ck
j ) < ∞ for each j, k such that ckj > 0 because

∫
X×Y ϕk dγ ≤

∫
X×Y f dγ < ∞, so we

can apply (4) with ϕk in place of ϕ. Then by applying the monotone convergence theorem (once
on the left side, and twice on the right side) we conclude Fubini’s Theorem as claimed.

If f is non-negative the hypothesis in Fubini’s Theorem that f is integrable can be replaced by
the weaker hypothesis that f : X × Y → [0,∞] is merely γ-measurable, provided that the given
measure spaces (X,A, µ) and (Y,B, ν) are σ-finite. This is known as Tonelli’s theorem:

Corollary (Tonelli’s Theorem). If the spaces (X,A, µ) and (Y,B, ν) are σ-finite complete mea-
sure spaces, and if f : X × Y → [0,∞] is γ-measurable, then∫

X×Y
f dγ =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y)

(and all integrals are well-defined).

Remark 6: Notice that here, unlike Fubini’s Theorem, we allow the possibility that
∫
X×Y f dγ =

∞, so for a given γ-measurable function f : X × Y → R, integrable or not, we can apply Tonelli’s
Theorem to |f |, enabling us to actually check whether f is integrable or not. If it is integrable then
we can of course apply Fubini’s theorem to evaluate the integral.

Proof of Tonelli’s Theorem: Let Ak ∈ A, Bk ∈ B be increasing sequences with µ(Ak) < ∞,
ν(Bk) <∞ for each k and ∪kAk = X and ∪kBk = Y , and let fk(x) = min{f, k}χAk×Bk

. Then fk
is an increasing sequence of γ-integrable functions with lim fk = f , and so Fubini’s theorem gives∫

X×Y
fk dγ =

∫
Y

(∫
X
fk(x, y) dµ(x)

)
dν(y),

and by applying the monotone convergence theorem (once on the left and twice on the right) we
deduce the required result.
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