Mathematics Department Stanford University
 Math 205A Autumn 2013, Lecture Supplement \#2
 Product measures and Fubini's theorem

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be arbitrary measure spaces.
Definition: By an \mathcal{A}, \mathcal{B}-rectangle we mean any set of the form $A \times B$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$.
The product outer measure γ on $X \times Y$ corresponding to the two given measure spaces is defined as follows. For any set $S \subset X \times Y$,

$$
\gamma(S)=\inf \sum_{i} \mu\left(A_{i}\right) \nu\left(B_{i}\right),
$$

where the inf is taken over all countable collections $\left\{A_{i} \times B_{i}\right\}$ of \mathcal{A}, \mathcal{B}-rectangles such that $S \subset$ $\cup_{i} A_{i} \times B_{i}$. It is left as an exercise to check that γ is indeed an outer measure on $X \times Y$, and where the usual convention that $0 . \infty=\infty .0=0$ is adopted.
We aim to prove that the σ-algebra of γ-measurable sets (in the sense of Caratheodory) contains all the \mathcal{A}, \mathcal{B}-rectangles. The first non-trivial thing to check is the following countable additivity property:

Lemma 1. If $A_{1} \times B_{1}, A_{2} \times B_{2}, \ldots$ are pairwise-disjoint \mathcal{A}, \mathcal{B}-rectangles, then

$$
\gamma\left(\cup_{i} A_{i} \times B_{i}\right)=\sum_{i} \mu\left(A_{i}\right) \nu\left(B_{i}\right) .
$$

Proof: Notice that the inequality $\gamma\left(A_{i} \times B_{i}\right) \leq \mu\left(A_{i}\right) \nu\left(B_{i}\right) \forall i$ is trivial by the definition of γ, so by the subadditivity of outer measure we have $\gamma\left(\cup_{i} A_{i} \times B_{i}\right) \leq \sum_{i} \mu\left(A_{i}\right) \nu\left(B_{i}\right)$ and we have only to prove the reverse inequality. So let $\left\{C_{i} \times D_{i}\right\}$ be any countable collection with $\cup_{j} A_{j} \times B_{j} \subset \cup_{i} C_{i} \times D_{i}$, and notice that then

$$
\sum_{i} \chi_{A_{i}}(x) \chi_{B_{i}}(y) \equiv \sum_{i} \chi_{A_{i} \times B_{i}}(x, y) \leq \sum_{i} \chi_{C_{i} \times D_{i}} \equiv \sum_{i} \chi_{C_{i}}(x) \chi_{D_{i}}(y) .
$$

Taking fixed $x \in X$, and integrating with respect to $y \in Y$ we then deduce that

$$
\sum_{i} \chi_{A_{i}}(x) \nu\left(B_{i}\right) \leq \sum_{i} \chi_{C_{i}}(x) \nu\left(D_{i}\right),
$$

whence integrating with respect to $x \in X$ we conclude

$$
\sum_{i} \mu\left(A_{i}\right) \nu\left(B_{i}\right) \leq \sum_{i} \mu\left(C_{i}\right) \nu\left(D_{i}\right),
$$

and by taking the inf over all such collections $\left\{C_{i} \times D_{i}\right\}$ we then conclude by definition of γ that

$$
\sum_{i} \mu\left(A_{i}\right) \nu\left(B_{i}\right) \leq \gamma\left(\cup_{i} A_{i} \times B_{i}\right)
$$

as required.
Next we have the fact that \mathcal{A}, \mathcal{B}-rectangles are γ-measurable:
Lemma 2. Any \mathcal{A}, \mathcal{B}-rectangle $A \times B$ is γ-measurable in the sense of Caratheodory.
Before we begin the proof, we need the facts in the following remarks:
Remarks: (1) A countable (or finite) intersection of \mathcal{A}, \mathcal{B}-rectangles is again an \mathcal{A}, \mathcal{B}-rectangle, and if S_{1}, \ldots, S_{j}, T are \mathcal{A}, \mathcal{B}-rectangles, then $T \backslash \cup_{i=1}^{j} S_{j}$ is a union of a finite collection of pairwise disjoint \mathcal{A}, \mathcal{B}-rectangles, as one easily checks by induction on j. (Check: For $j=1$ it is true because $A \times B \backslash C \times D$ can be written as the disjoint union of the \mathcal{A}, \mathcal{B} rectangles $(A \cap C) \times(B \backslash D),(A \backslash C) \times B$, while for $j \geq 2$ we can write $T \backslash \cup_{i=1}^{j} S_{i}=\left(T \backslash \cup_{i=1}^{j-1} S_{i}\right) \backslash S_{j}$, and we can apply the case $j=1$ and induction on j to show that this is indeed a disjoint union of \mathcal{A}, \mathcal{B}-rectangles.)
(2) Notice that it follows from (1) that if $\left\{A_{i} \times B_{i}\right\}$ are given \mathcal{A}, \mathcal{B}-rectangles for $i=1,2, \ldots$, then $\cup_{i} A_{i} \times B_{i}$ can be written as the pairwise-disjoint union $\cup_{i} C_{i} \times D_{i}$ of \mathcal{A}, \mathcal{B}-rectangles, because $\cup_{i=1}^{\infty} A_{i} \times B_{i}=\cup_{i=1}^{\infty}\left(A_{i} \times B_{i} \backslash\left(\cup_{j=0}^{i-1} A_{j} \times B_{j}\right)\right)$, where we use the notation that $A_{0}=B_{0}=\emptyset$.

Proof of Lemma 2: Let $Z \subset X \times Y$ be arbitrary, and let $A_{i} \times B_{i}$ be \mathcal{A}, \mathcal{B}-rectangles with $Z \subset \cup_{i} A_{i} \times B_{i}$. Then by monotonicity and subadditivity of the outer measure γ we have $\gamma(Z \cap(A \times$ $B)+\gamma(Z \backslash(A \times B)) \leq \gamma\left(\left(\cup_{i} A_{i} \times B_{i}\right) \cap(A \times B)\right)+\gamma\left(\left(\cup_{i} A_{i} \times B_{i}\right) \backslash(A \times B)\right) \leq \sum_{i}\left(\gamma\left(\left(A_{i} \times B_{i}\right) \cap(A \times B)\right)+\right.$ $\left.\gamma\left(\left(A_{i} \times B_{i}\right) \backslash(A \times B)\right)\right)$, and by Remarks 1 and 2 above we have $\left.\left(A_{i} \times B_{i}\right) \cap(A \times B)\right) \cup\left(\left(A_{i} \times B_{i}\right) \backslash(A \times B)\right)$ is a pairwise pairwise disjoint union of $3 \mathcal{A}, \mathcal{B}$-rectangles, and the union is equal to $A_{i} \times B_{i}$, so by Lemma $1 \gamma\left(\left(A_{i} \times B_{i}\right) \cap(A \times B)\right)+\gamma\left(\left(A_{i} \times B_{i}\right) \backslash(A \times B)\right)=\mu\left(A_{i}\right) \nu\left(B_{i}\right)$ for each i. Thus we have shown $\gamma\left(Z \cap(A \times B)+\gamma(Z \backslash(A \times B)) \leq \sum_{i} \mu\left(A_{i}\right) \nu\left(B_{i}\right)\right.$, and by taking inf over all such collections $\left\{A_{i} \times B_{i}\right\}$ we have $\gamma(Z \cap(A \times B)+\gamma(Z \backslash(A \times B)) \leq \gamma(Z)$ as required.
In view of the fact that the sets which are measurable with respect to a given outer measure form a σ-algebra, we thus have:

Corollary. The collection of γ-measurable sets contains the σ-algebra generated by all the \mathcal{A}, \mathcal{B} rectangles.

Remark 3: Observe that now we can check that if $(X, \mathcal{A}, \mu)=\left(\mathbb{R}^{n-1}, \mathcal{M}_{n-1}, \lambda_{n-1}\right)$ and $(Y, \mathcal{B}, \nu)=$ $\left(\mathbb{R}, \mathcal{M}_{1}, \lambda_{1}\right)$ (where \mathcal{M}_{j} denotes the Lebesgue measurable subsets of \mathbb{R}^{j} and λ_{j} denotes the restriction to \mathcal{M}_{j} of Lebesgue outer measure on \mathbb{R}^{j}), then γ is just Lebesgue outer measure on \mathbb{R}^{n}. Since we proved in lecture that for each $A \subset \mathbb{R}^{j}$ we can find a countable intersection $E=\cap_{j} U_{j}$ of open sets with $U_{j} \supset A$ for each j and $\lambda(E)=\lambda(A)$, it is straightforward then to check that γ is Borel regular in case $(X, \mathcal{A}, \mu)=\left(\mathbb{R}^{n-1}, \mathcal{M}_{n-1}, \lambda_{n-1}\right)$ and $(Y, \mathcal{B}, \nu)=\left(\mathbb{R}, \mathcal{M}_{1}, \lambda_{1}\right)$. Of course all open sets are also γ-measurable in this case by Corollary 1 , because any open set is a countable union of open intervals, which are \mathcal{A}, \mathcal{B} rectangles in the present setting. Thus in this case γ is a Borel regular outer measure on \mathbb{R}^{n} with $\gamma(I)=|I|$ for each open interval $I \subset \mathbb{R}^{n}$ (by Lemma 1), and hence $\gamma=\lambda$ by virtue of Q. 5 of Homework 4.

The following lemma provides the main ingredient in the proof of Fubini's theorem.
Lemma 3. If $\left\{A_{i} \times B_{i}\right\}$ is any countable collection of \mathcal{A}, \mathcal{B} rectangles, then

$$
\gamma\left(\cup_{i} A_{i} \times B_{i}\right)=\int_{X \times Y} \chi_{\cup_{i} A_{i} \times B_{i}} d \gamma=\int_{Y}\left(\int_{X} \chi_{\cup A_{i} \times B_{i}}(x, y) d \mu(x)\right) d \nu(y)
$$

(and all integrals are well-defined).
Proof: Indeed the γ-measurability of $\cup_{i} A_{i} \times B_{i}$ is guaranteed by Lemma 2, so the integral $\int_{X \times Y} \chi_{\cup_{i} A_{i} \times B_{i}} d \gamma$ is defined and is equal to $\gamma\left(\cup_{i} A_{i} \times B_{i}\right)$. But by Remark 1 above we can write $\cup_{i} A_{i} \times B_{i}=\cup_{i} C_{i} \times D_{i}$ where $C_{i} \times D_{i}$ are p.w.d. \mathcal{A}, \mathcal{B} rectangles. So by Lemma $1 \gamma\left(\cup_{i} A_{i} \times B_{i}\right)=$ $\sum_{i} \mu\left(C_{i}\right) \nu\left(D_{i}\right)$ which of course can be written as $\sum_{i} \int_{Y}\left(\int_{X} \chi_{C_{i} \times D_{i}}(x, y) d \mu(x)\right) d \nu(y)$, which by two applications of the monotone convergence theorem is the same as $\int_{Y}\left(\int_{X} \sum_{i} \chi_{C_{i} \times D_{i}}(x, y) d \mu(x)\right) d \nu(y)$, which is just $\int_{Y}\left(\int_{X} \chi_{\cup A_{i} \times B_{i}}(x, y) d \mu(x)\right) d \mu(y)$, so the identity of Lemma 3 is proved.

We can now state Fubini's Theorem. In the statement we require that the measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be complete; a measure space (X, \mathcal{A}, μ) is said be complete if $E \in \mathcal{A}, \mu(E)=0 \Rightarrow$ all subsets of E are also in \mathcal{A}. (Of course all such subsets must then trivially have μ-measure zero.) Observe also that such completeness trivially holds if $\mu=\mu_{0} \mid \mathcal{A}$, where μ_{0} is an outer measure on X and \mathcal{A} is the collection of all subsets which are μ_{0}-measurable in the sense of Caratheodory. (Because all sets with μ_{0}-measure zero are trivially μ_{0}-measurable in the sense of Caratheodory.)
Remark 4: Observe that in a complete measure space (X, \mathcal{A}, μ) we have the very convenient fact that if $f, g: X \rightarrow[-\infty, \infty]$, if g is \mathcal{A}-measurable, and if $f=g \mu$-a.e. (i.e. there is a set $E \in \mathcal{A}$ of
measure zero such that $f \equiv g$ on $X \backslash E$), then f is automatically \mathcal{A}-measurable. Because of this we can make perfectly good sense of integration of functions which are almost everywhere equal to an integrable function but which may not even be defined on some set of measure zero; in this case we simply arbitrarily define the function to be (for example) zero on the set of measure zero where it is not otherwise defined. We subsequently adopt this convention whenever we are in a complete measure space.

Theorem (Fubini's Theorem). Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be complete measure spaces, let γ be the product outer measure on $X \times Y$ constructed above, and suppose that $f: X \times Y \rightarrow \mathbb{R}$ is γ-integrable. Then
(i) $f(x, y)$ is a μ-integrable function of x for ν-a.e. $y \in Y$;
(ii) $\int_{X} f(x, y) d \mu(x)$ is a ν-integrable function of y;
(iii) $\int_{Y}\left(\int_{X} f(x, y) d \mu(x)\right) d \nu(y)=\int_{X \times Y} f(x, y) d \gamma$.

Remark 5: Notice that the integral in (ii) exists by virtue of conclusion (i) and the iterated integral on the left in (iii) exists by virtue of conclusion (ii); also (in accordance with Remark 4 above) it is understood in (ii), (iii) that we adopt the convention that $\int_{X} f(x, y) d \mu(x)$ is defined to be zero at the (ν-measure zero) set of points y where it is not otherwise defined.
Proof: We first show this is correct when $f=\chi_{\cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)}$, where each $A_{i}^{j} \times B_{i}^{j}$ is an \mathcal{A}, \mathcal{B} rectangle and $\gamma\left(\cup_{i} A_{i}^{1} \times B_{i}^{1}\right)<\infty$. Indeed, since for each $k=1,2, \ldots \cap_{j=1}^{k}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)$ is a countable union of \mathcal{A}, \mathcal{B} rectangles, Lemma 3 tells us that

$$
\int_{X \times Y} \chi_{\cap_{j=1}^{k}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)} d \gamma=\int_{Y}\left(\int_{X} \chi_{\cap_{j=1}^{k}\left(\cup A_{i}^{j} \times B_{i}^{j}\right)}(x, y) d \mu(x)\right) d \nu(y)
$$

and so we can make 3 applications of the dominated convergence theorem (once on the left side of (1) and twice on the right side) to conclude that
(1) $\left.\gamma\left(\cap_{j=1}^{\infty}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)\right)\right)=\int_{X \times Y} \chi_{\cap_{j=1}^{\infty}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)} d \gamma=\int_{Y}\left(\int_{X} \chi_{\cap_{j=1}^{\infty}\left(\cup A_{i}^{j} \times B_{i}^{j}\right)}(x, y) d \mu(x)\right) d \nu(y)$.

Next notice that using the definition of the outer measure γ, we additionally conclude the following: For every γ-measurable set C of finite measure, we can select, for each $j=1,2, \ldots$, p.w.d. families $\left\{A_{i}^{j} \times B_{i}^{j}: i=1,2, \ldots\right\}$ of \mathcal{A}, \mathcal{B} rectangles with

$$
C \subset \cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right) \text { and } \gamma\left(\cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j} \backslash C\right)=0\right.
$$

Then by applying the same reasoning with $E=\cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right) \backslash C$ in place of C we also get families $\left\{E_{i}^{j} \times F_{i}^{j}: i=1,2, \ldots\right\}$ of \mathcal{A}, \mathcal{B} rectangles with

$$
E \subset\left(\cap_{j}\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)\right)
$$

and

$$
0=\gamma\left(\cap_{j}\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)\right)=\int_{X \times Y} \chi_{\cap_{j}\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)} d \gamma=\int_{Y}\left(\int_{X} \chi_{\cap_{j}\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)} d \mu\right) d \nu
$$

which implies that $\int_{X} \chi_{\cap_{j}\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)}(x, y) d \mu(x)=0$ for ν-a.e. $y \in Y$. That is the " y-slice" $\{x \in$ $\left.X:(x, y) \in \cap_{j}\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)\right\}$ (which is a set in \mathcal{A}) has ν-measure zero for ν-a.e. $y \in Y$. But $\left.E \subset \cap\left(\cup_{i} E_{i}^{j} \times F_{i}^{j}\right)\right)$ and ν is a complete measure, so the slice $\{x:(x, y) \in E\}$ is also in \mathcal{A} and also has μ-measure zero for ν-a.e. $y \in E$. Thus $\int_{Y}\left(\int_{X} \chi_{E}(x, y) d \mu(x)\right) d \nu(y)=0$ (and the integrals are well-defined), because ν is a complete measure and hence we can use the convention discussed in Remark 4 above. Thus we have

$$
\begin{equation*}
\int_{X \times Y} \chi_{E} d \gamma=\int_{Y}\left(\int_{X} \chi_{E}(x, y) d \mu(x)\right) d \nu(y)=0 \tag{2}
\end{equation*}
$$

Since $E=\cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right) \backslash C$ and $C \subset \cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)$, we then have $\chi_{C}=\chi_{\cap_{j}\left(\cup_{i} A_{i}^{j} \times B_{i}^{j}\right)}-\chi_{E}$ and in view of (1), (2) and the linearity of the integral we have

$$
\begin{equation*}
\int_{X \times Y} \chi_{C} d \gamma=\int_{Y}\left(\int_{X} \chi_{C}(x, y) d \mu(x)\right) d \nu(y) \tag{3}
\end{equation*}
$$

(and all integrals are well-defined), provided C is γ-measurable and has finite measure.
We can now easily complete the proof because (3) plus the linearity of the integral implies

$$
\begin{equation*}
\int_{X \times Y} \varphi d \gamma=\int_{Y}\left(\int_{X} \varphi(x, y) d \mu(x)\right) d \nu(y) \tag{4}
\end{equation*}
$$

for any simple function $\varphi=\sum_{j=1}^{N} c_{j} \chi_{C_{j}}$ with $c_{j}>0$ for each $j=1, \ldots, N$, provided the C_{j} are γ measurable and $\gamma\left(C_{j}\right)<\infty$. So suppose without loss of generality (since we can write $f=f_{+}-f_{-}$ and use the linearity of the integral) that $f \geq 0$ and select an increasing sequence of non-negative simple functions $\varphi_{k}=\sum_{j=1}^{N_{k}} c_{j}^{k} \chi_{C_{j}^{k}}$ with $c_{j}^{k} \geq 0$, each C_{j}^{k} is γ-measurable, and $\varphi_{k} \rightarrow f$. Observe that then $\gamma\left(C_{j}^{k}\right)<\infty$ for each j, k such that $c_{j}^{k}>0$ because $\int_{X \times Y} \varphi_{k} d \gamma \leq \int_{X \times Y} f d \gamma<\infty$, so we can apply (4) with φ_{k} in place of φ. Then by applying the monotone convergence theorem (once on the left side, and twice on the right side) we conclude Fubini's Theorem as claimed.

If f is non-negative the hypothesis in Fubini's Theorem that f is integrable can be replaced by the weaker hypothesis that $f: X \times Y \rightarrow[0, \infty]$ is merely γ-measurable, provided that the given measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ-finite. This is known as Tonelli's theorem:

Corollary (Tonelli's Theorem). If the spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ-finite complete measure spaces, and if $f: X \times Y \rightarrow[0, \infty]$ is γ-measurable, then

$$
\int_{X \times Y} f d \gamma=\int_{Y}\left(\int_{X} f(x, y) d \mu(x)\right) d \nu(y)
$$

(and all integrals are well-defined).
Remark 6: Notice that here, unlike Fubini's Theorem, we allow the possibility that $\int_{X \times Y} f d \gamma=$ ∞, so for a given γ-measurable function $f: X \times Y \rightarrow \mathbb{R}$, integrable or not, we can apply Tonelli's Theorem to $|f|$, enabling us to actually check whether f is integrable or not. If it is integrable then we can of course apply Fubini's theorem to evaluate the integral.
Proof of Tonelli's Theorem: Let $A_{k} \in \mathcal{A}, B_{k} \in \mathcal{B}$ be increasing sequences with $\mu\left(A_{k}\right)<\infty$, $\nu\left(B_{k}\right)<\infty$ for each k and $\cup_{k} A_{k}=X$ and $\cup_{k} B_{k}=Y$, and let $f_{k}(x)=\min \{f, k\} \chi_{A_{k} \times B_{k}}$. Then f_{k} is an increasing sequence of γ-integrable functions with $\lim f_{k}=f$, and so Fubini's theorem gives

$$
\int_{X \times Y} f_{k} d \gamma=\int_{Y}\left(\int_{X} f_{k}(x, y) d \mu(x)\right) d \nu(y)
$$

and by applying the monotone convergence theorem (once on the left and twice on the right) we deduce the required result.

