Mathematics Department Stanford University Math 205A 2013—Lecture Supplement #3 Differentiability Theory for Functions and Measures

As a preliminary to the discussion of differentiation of functions and measures, we need the following important covering lemma, which we state and prove in \mathbb{R}^n but which clearly has a natural extension to metric spaces:

Lemma (5-times covering lemma). Let \mathcal{B} be any collection of closed balls in \mathbb{R}^n with the property that $\cup_{B \in \mathcal{B}} B$ is contained in a bounded set. Then there is a p.w.d. collection $\{B_{\rho_j}(x_j)\}_{j=1,2,...} \subset \mathcal{B}$ such that $\cup_{B \in \mathcal{B}} B \subset \bigcup_{j=1}^{\infty} B_{5\rho_j}(x_j)$. The subcollection $\{B_{\rho_j}(x_j)\}_{j=1,2,...}$ can in fact be chosen so that:

(*)
$$B \in \mathcal{B} \Longrightarrow \exists j \text{ with } B \cap B_{\rho_j}(x_j) \neq \emptyset \text{ and } \rho_j \geq \frac{1}{2} \text{ radius } B.$$

Terminology: As in lecture, "p.w.d." is an abbreviation for "pairwise disjoint" and here $B_{\rho}(y)$ denotes the closed ball with center y and radius $\rho > 0$ while $\breve{B}_{\rho}(y)$ denotes the corresponding open ball.

Proof of the 5-times Lemma: Let $R_0 = \sup\{\text{radius } B : B \in \mathcal{B}\}(<\infty)$, and write $\mathcal{B} = \bigcup_{k=1}^{\infty} \mathcal{B}_k$, where $\mathcal{B}_k = \{B \in \mathcal{B} : 2^{-k}R_0 < \text{radius } B \leq 2^{-k+1}R_0\}$. We proceed to inductively select pairwise disjoint subcollections $\mathcal{M}_k \subset \mathcal{B}_k$ as follows:

 \mathcal{M}_1 is any maximal p.w.d. subcollection of \mathcal{B}_1 (meaning contains a maximum number of balls subject to the stated condition of being a p.w.d. collection). Assume now that $k \geq 2$ and that we have already selected \mathcal{M}_j for $j = 1, \ldots, k - 1$. Then select \mathcal{M}_k to be a maximal p.w.d. subcollection of $\{B : B \in \mathcal{B}_k \text{ and } B \cap E = \emptyset \ \forall E \in \bigcup_{j=1}^{k-1} \mathcal{M}_j\}$. Of course we take $\mathcal{M}_k = \emptyset$ in case $\{B \in \mathcal{B}_k : B \cap E = \emptyset \ \forall E \in \bigcup_{j=1}^{k-1} \mathcal{M}_j\}$ is empty. Now we define

$$\mathcal{M} = \cup_{k=1}^{\infty} \mathcal{M}_k$$

and observe that \mathcal{M} is a countable p.w.d. collection by construction, so the balls in the collection \mathcal{M} can be written as a sequence $\{B_{\rho_j}(x_j)\}_{j=1,2,\ldots}$ of p.w.d. balls. We claim that in fact the additional property (*) holds. Indeed if $B \in \mathcal{B}$ then $B \in \mathcal{B}_{k_0}$ for some unique $k_0 \geq 1$, and we claim that in fact then $B \cap E \neq \emptyset$ for some $E \in \bigcup_{j=1}^{k_0} \mathcal{M}_j$. Otherwise for $k_0 \geq 2$ we would have both that $B \cap E = \emptyset$ for each ball $E \in \mathcal{M}_{k_0}$ and also $B \cap E = \emptyset$ for each ball $E \in \bigcup_{j=1}^{k_0-1} \mathcal{M}_j$ which means that $\mathcal{M}_{k_0} \cup \{B\}$ is a p.w.d. collection of balls in \mathcal{B}_{k_0} which do not intersect any ball in the collection $\bigcup_{j=1}^{k_0-1} \mathcal{M}_j$, thus contradicting the maximality of \mathcal{M}_{k_0} . For $k_0 = 1$ the argument is even simpler: $B \cap E = \emptyset$ for every $E \in \mathcal{M}_1$ implies that $\mathcal{M}_1 \cup \{B\}$ is a p.w.d. subcollection of \mathcal{B}_1 , thus contradicting the maximality of \mathcal{M}_1 . Thus we have shown that $B \cap B_\rho(x) \neq \emptyset$ for some ball $B_\rho(x) \in \bigcup_{j=1}^{k_0} \mathcal{M}_j$. But then radius $B_\rho(x) \geq 2^{-k_0}R_0 = \frac{1}{2}2^{1-k_0}R_0 \geq \frac{1}{2}$ radius B. Thus $B \cap B_\rho(x) \neq \emptyset$ and $\rho \geq \frac{1}{2}$ radius Bwhich is (*). Now, since (*) evidently implies that $B \subset B_{5\rho}(x)$, the proof is complete.

We have now the following important corollary of the 5-times covering lemma:

Corollary 1. Let \mathcal{B} be any collection of closed balls in \mathbb{R}^n with the property that $\cup_{B \in \mathcal{B}} B$ is contained in a bounded set, and suppose $A \subset \mathbb{R}^n$. If \mathcal{B} covers A finely in the sense that for each $x \in A$ and each $\rho > 0$ there is a ball $B \in \mathcal{B}$ such that $x \in B$ and radius $B < \rho$, then there is a p.w.d. subcollection $\{B_{\rho_j}(x_j)\}_{j=1,2,...} \subset \mathcal{B}$ with the properties that $\cup_{B \in \mathcal{B}} B \subset \cup_j B_{5\rho_j}(x_j)$ and

(‡)
$$A \setminus (\bigcup_{j=1}^{N} B_{\rho_j}(x_j)) \subset \bigcup_{j=N+1}^{\infty} B_{5\rho_j}(x_j) \text{ for each } N \ge 1.$$

Proof: The 5-times covering lemma can be applied to \mathcal{B} , giving a p.w.d. subcollection of closed balls $\{B_{\rho_j}(x_j)\}_{j=1,2,\ldots} \subset \mathcal{B}_1$ such that

(1)
$$B \in \mathcal{B} \Longrightarrow \exists j \text{ with } B \cap B_{\rho_j}(x_j) \neq \emptyset \text{ (and hence } B \subset B_{5\rho_j}(x_j)\text{)}.$$

We claim that this sequence $\{B_{\rho_j}(x_j)\}_{j=1,2,\dots}$ automatically has the additional property (‡). To see this, take any $N \ge 1$ and let $x \in A \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))$. Since $\mathbb{R}^n \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))$ is an open set and since \mathcal{B} covers A finely, we can certainly find a ball $B \in \mathcal{B}$ with $x \in B \subset \mathbb{R}^n \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))$ and hence for this B the j in (1) must be $\ge N+1$. That is, $x \in B \subset \bigcup_{j=N+1}^\infty B_{5\rho_j}(x_j)$, which completes the proof.

An important corollary of this is the following Vitali covering lemma.

Lemma (Vitali Covering Lemma). Let μ be any outer measure on \mathbb{R}^n such that all Borel sets are μ -measurable and such that there is a fixed constant $\beta \in (0, \infty)$ with $\mu(B_{2\rho}(x)) \leq \beta \mu(B_{\rho}(x)) < \infty$ for each closed ball $B_{\rho}(x)$ (note that these hypotheses hold with μ = Lebesgue outer measure λ in case $\beta = 2^n$), let $A \subset \mathbb{R}^n$ be bounded and let \mathcal{B} be any collection of closed balls which cover A finely. Then there is a p.w.d. subcollection $\{B_{\rho_j}(x_j)\}_{j=1,2,...} \subset \mathcal{B}$ such that $\mu(A \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))) \to 0$ as $N \to \infty$.

Remark 1: Actually the conclusion holds without the hypothesis that $\mu(B_{2\rho}(x)) \leq \beta \mu(B_{\rho}(x))$, provided that the collection \mathcal{B} not only covers A finely, but actually that for each point $x \in A$ we have balls $B_{\rho_j}(x) \in \mathcal{B}$ (i.e. balls in \mathcal{B} with center at x) with $\rho_j \downarrow 0$. This result (which is important in geometric analysis) requires a more powerful covering lemma (the Besicovich covering lemma) in place of the 5-times covering lemma, and we will not discuss it here.

Proof of the Vitali Lemma: Let U be an open ball containing A and let $\mathcal{B}_1 = \{B \in \mathcal{B} : B \subset U\}$. Evidently \mathcal{B}_1 still covers A finely, hence by the corollary above we can choose p.w.d. balls $B_{\rho_1}(x_1), B_{\rho_2}(x_2), \ldots \in \mathcal{B}_1$ such that

$$A \setminus (\bigcup_{j=1}^{N} B_{\rho_j}(x_j)) \subset \bigcup_{j=N+1}^{\infty} B_{5\rho_j}(x_j)$$
 for each $N \ge 1$.

Observe that for each j we have $\mu(B_{5\rho_j}(x_j)) \leq \mu(B_{8\rho_j}(x_j)) \leq \beta^3 \mu(B_{\rho_j}(x_j))$ by definition of β . So $\mu(\bigcup_{j=N+1}^{\infty} B_{5\rho_j}(x_j)) \leq \sum_{j=N+1}^{\infty} \mu(B_{5\rho_j}(x_j)) \leq \beta^3 \sum_{j=N+1}^{\infty} \mu(B_{\rho_j}(x_j)) = \beta^3 \mu(\bigcup_{j=N+1}^{\infty} B_{\rho_j}(x_j)) \leq \beta^3 \mu(U) < \infty$, where we used the pairwise disjointness and μ -measurability of the $B_{\rho_j}(x_j)$. Thus $\mu(\bigcup_{j=N+1}^{\infty} B_{5\rho_j}(x_j)) \to 0$ as $N \to \infty$, and the proof is complete.

In the following lemmas f is an arbitrary function : $[a, b] \to \mathbb{R}$, and for $x \in (a, b)$ we let

$$\overline{D}f(x) = \limsup_{y \to x} \frac{f(x) - f(y)}{x - y}, \quad \underline{D}f(x) = \liminf_{y \to x} \frac{f(x) - f(y)}{x - y}.$$

Notice that $-\infty \leq \underline{D}f(x) \leq \overline{D}f(x) \leq \infty$, and f is classically differentiable at x if and only if $-\infty < \overline{D}f(x) = \underline{D}f(x) < \infty$. Also, $\underline{D}f(x) \geq 0$ if f is increasing.

Lemma 1. If $\varepsilon > 0$, $\beta \in \mathbb{R}$, $U \subset (a, b)$ is open, and if $S \subset U$ is an arbitrary set such that $\overline{D}f(x) > \beta$ at each point of S, then there are pairwise disjoint closed intervals $\{[x_j, y_j]\}_{j=1,...,N}$ such that

$$\cup_{j} [x_{j}, y_{j}] \subset U, \quad \lambda(S \setminus \bigcup_{j=1}^{N} [x_{j}, y_{j}]) < \varepsilon$$
$$\beta(y_{j} - x_{j}) \leq f(y_{j}) - f(x_{j}), \quad j = 1, \dots, N.$$

Proof: We observe that by definition of $\overline{D}f$, for every $x \in S$ we must have $(z_j - x)^{-1}(f(z_j) - f(x)) > \beta$ for some sequence $z_j \to x$ such that $I_{x,j} \subset U$ for each j, where we let $I_{x,j} = [x, z_j]$ if $z_j > x$ and $I_{x,j} = [z_j, x]$ if $z_j < x$. Notice that then the collection $\mathcal{I} = \{I_{x,j} : x \in S, j = 1, 2, ...\}$ covers S finely and each $I_{x,j} \subset U$. Then by the Vitali covering lemma there are pairwise disjoint intervals $\{[x_j, y_j]\}_{j=1,...,N} \subset \mathcal{I}$ such that $\lambda(S \setminus \bigcup_{j=1}^N [x_j, y_j]) < \varepsilon$. Since by definition we have $f(y_j) - f(x_j) > \beta(y_j - x_j)$ for each j, this completes the proof.

Remark 2: Notice that if $\beta > 0$, a < b, and if f is increasing (i.e. $a \le x \le y \le b \Rightarrow f(x) \le f(y)$), then we can apply the above lemma with U = (a, b) to yield p.w.d. intervals $[x_i, y_i]$ such that $[x_i, y_i] \subset (a, b), \ \beta(y_i - x_i) \le f(y_i) - f(x_i)$ and $\lambda(S \cap (a, b) \setminus (\bigcup_i [x_i, y_i])) < \varepsilon$. Assuming that we order these p.w.d. intervals $[x_i, y_i]$ so that $y_{i-1} < x_i$ for $i \in \{2, \ldots, N\}$, we then have

$$\begin{split} \beta \lambda(S) &\leq \beta \lambda(S \setminus \bigcup_{j=1}^{N} (x_j, y_j)) + \beta \sum_{j=1}^{N} (y_j - x_j) \\ &\leq \beta \varepsilon + \sum_{j=1}^{N} (f(y_j) - f(x_j)) \\ &\leq \beta \varepsilon + \sum_{j=1}^{N} (f(y_j) - f(y_{j-1})) \text{ (using notation } y_0 = x_1) \\ &= \beta \varepsilon + f(y_N) - f(x_1) \leq \beta \varepsilon + f(b) - f(a), \end{split}$$

which, since $\varepsilon > 0$ is arbitrary, gives

$$\beta \lambda(S) \le f(b) - f(a).$$

Notice particularly that if we take $S = \{x \in (a, b) : Df(x) = +\infty\}$ then we can apply this for each $\beta > 0$ and hence conclude that $\lambda(S) = 0$, i.e.

$$f: [a,b] \to \mathbb{R}$$
 increasing $\Rightarrow \overline{D}f(x) < \infty$, λ -a.e. $x \in (a,b)$.

Observe that Lemma 1, with -f in place of f and $\beta = -\alpha$, implies:

Lemma 2. If $\varepsilon > 0$, $\alpha \in \mathbb{R}$, $U \subset (a, b)$ is open, and if $S \subset U$ is an arbitrary set such that $\underline{D}f(x) < \alpha$ at each point of S, then there are pairwise disjoint closed intervals $\{[x_j, y_j]\}_{j=1,...,N}$ such that

$$\bigcup_{j} [x_j, y_j] \subset U, \quad \lambda(S \setminus \bigcup_{j} [x_j, y_j]) < \varepsilon$$
$$f(y_j) - f(x_j) \le \alpha(y_j - x_j), \quad j = 1, \dots, N.$$

We can now easily prove the following important differentiability theorem for increasing functions:

Theorem 1. Let $f : [a, b] \to \mathbb{R}$ be an increasing function. Then f is differentiable λ -a.e. in (a, b)(i.e. $\lim_{y\to x} \frac{f(y)-f(x)}{y-x}$ exists and is real for λ -a.e. $x \in (a, b)$). Furthermore the derivative f' (defined to be e.g. zero on the set of measure zero where f is not differentiable) is a non-negative integrable function and

$$\int_{a}^{b} f'(t) dt \le f(b) - f(a).$$

Proof: Let $T = \{x \in (a, b) : \overline{D}f(x) > \underline{D}f(x)\}$. Observe that (since $\underline{D}f(x) \ge 0$)

(1)
$$T = \bigcup_{0 < \alpha < \beta, \alpha, \beta \text{ rational }} S_{\alpha\beta},$$

where $S_{\alpha\beta} = \{x \in [a,b] : \overline{D}f(x) > \beta > \alpha > \underline{D}f(x)\}.$

Now let $\varepsilon > 0$, $0 < \alpha < \beta$, and choose an open set $U \subset (a, b)$ with $S_{\alpha\beta} \subset U$ and $\lambda(U) < \lambda(S_{\alpha\beta}) + \varepsilon$. Then we can apply Lemma 2 with $S = S_{\alpha\beta}$; this gives p.w.d. intervals $[x_i, y_i]$ with $f(y_i) - f(x_i) \le \alpha(y_i - x_i)$ and $\cup_i [x_i, y_i] \subset U$, so that $\sum_i (y_i - x_i) \le \lambda(U) \le \lambda(S_{\alpha\beta}) + \varepsilon$ and $\lambda(S_{\alpha\beta} \setminus (\cup_j [x_j, y_j])) < \varepsilon$. Then we apply Remark 2 (following Lemma 1) with $S_{\alpha\beta} \cap (x_i, y_i)$ in place of S and with (x_j, y_j) in place of (a, b), whence $\beta\lambda(S_{\alpha\beta} \cap (x_j, y_j)) \leq f(y_j) - f(x_j) \leq \alpha(y_j - x_j)$ for each j. Then

$$\beta\lambda(S_{\alpha\beta}\cap[x_j,y_j])\leq f(y_j)-f(x_j)\leq\alpha(y_j-x_j),\quad j=1,\ldots,N,$$

and hence summing on j we have

$$\beta\lambda(S_{\alpha\beta}\cap(\cup_{j=1}^{N}[x_{j},y_{j}])) \leq \alpha\sum_{j=1}^{N}(y_{j}-x_{j}) \leq \alpha\lambda(U) \leq \alpha\lambda(S_{\alpha\beta}) + \alpha\varepsilon$$

and since $\lambda(S_{\alpha\beta} \setminus (\cup_j [x_j, y_j])) < \varepsilon$ we thus obtain

$$\beta\lambda(S_{\alpha\beta}) \le \alpha\lambda(S_{\alpha\beta}) + (\alpha + \beta)\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary we thus conclude $\beta \lambda(S_{\alpha\beta}) \leq \alpha \lambda(S_{\alpha\beta})$, so that $\lambda(S_{\alpha\beta}) = 0$ for each $\alpha < \beta$, whence by (1) we have $\lambda(T) = 0$.

Keeping in mind that $\overline{D}f(x) < \infty$ a.e. $x \in (a, b)$ by Remark 2, we have thus proved that $\overline{D}f(x) = \underline{D}f(x) < \infty$ for a.e. $x \in (a, b)$, which is the same as saying f' (the classical derivative of f) exists for a.e. $x \in (a, b)$, as required.

To prove the last part of the theorem, we first extend f to all of \mathbb{R} by defining g(x) = f(x)for $x \in [a,b]$, g(x) = f(a) for x < a, and g(x) = f(b) for x > b. Then note that $g'(x) = \lim_{n \to \infty} n(f(x+1/n) - f(x))$ for a.e. $x \in \mathbb{R}$, and hence g' is a non-negative Lebesgue measurable function on \mathbb{R} , assuming we define it to e.g. be zero on the set of measure zero where g is not differentiable, and of course g' = f' a.e. on (a, b). Also by Fatou's lemma we have

$$\int_{a}^{b} f'(t) dt \le \liminf_{n \to \infty} \int_{a}^{b} n \left(g(t+1/n) - g(t) \right) dt.$$

But evidently $\int_{a}^{b} g(t+1/n) dt = \int_{a+1/n}^{b+1/n} g(t) dt$, so $\int_{a}^{b} n \left(g(t+1/n) - g(t) \right) dt = n \int_{b}^{b+1/n} g(t) dt - n \int_{a}^{a+1/n} g(t) dt \le f(b) - f(a)$, and hence

$$\int_{a}^{b} f'(t) \, dt \le f(b) - f(a)$$

as claimed.

Next we want to discuss Lebesgue's theorem on differentiation of the integral in \mathbb{R}^n . As a key preliminary, we need the following lemma.

Lemma 3. Suppose $f : \mathbb{R}^n \to [0, \infty)$ is locally Lebesgue integrable on \mathbb{R}^n (i.e. λ -measurable and integral over each ball is finite), and suppose $E \subset \mathbb{R}^n$ is λ -measurable. Then

$$\lim_{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) \, dx = 0 \text{ for } \lambda \text{-a.e. } \xi \in \mathbb{R}^n \setminus E.$$

Proof: The proof as a simple application of the Vitali covering lemma.

Let $k \in \{1, 2, ...\}$, $\alpha > 0$, let K be any compact subset of $E \cap \check{B}_k(0)$ ($\check{B}_k(0)$ the open ball of radius k and center 0),

$$S_{\alpha} = \{\xi \in \breve{B}_{k}(0) \setminus E : \limsup_{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) \, dx > \alpha \}.$$

Then for each $\xi \in S_{\alpha}$ there is a sequence $\rho_j \downarrow 0$ with $\rho_j^{-n} \int_{B_{\rho_j}(\xi) \cap E} f(x) dx > \alpha$ for each j, and hence $\mathcal{B} = \{B_{\rho}(\xi) \subset \check{B}_k(0) \setminus K : \xi \in S_{\alpha} \text{ and } \omega_n^{-1} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) dx > \alpha\}$ covers S_{α} finely, so by the Vitali covering lemma there are p.w.d. balls $B_{\rho_j}(\xi_j) \in \mathcal{B}$ with

$$\lambda(S_{\alpha} \setminus (\bigcup_{j=1}^{\infty} B_{\rho_j}(\xi_j))) = 0 \text{ and } \int_{B_{\rho_i}(\xi_i) \cap E} f(x) \, dx > \alpha \omega_n \rho_i^n, \quad i = 1, 2, \dots$$

Then by subadditivity of λ

$$\begin{aligned} \alpha\lambda(S_{\alpha}) &\leq \alpha\lambda(S_{\alpha} \setminus (\bigcup_{j=1}^{\infty} B_{\rho_{j}}(x_{j}))) + \alpha\sum_{j=1}^{\infty}\lambda(B_{\rho_{j}}(\xi_{j})) \\ &\leq \sum_{j=1}^{\infty} \int_{B_{\rho_{j}}(\xi_{j})\cap E} f(x) \, dx = \int_{\bigcup_{j=1}^{\infty} B_{\rho_{j}}(\xi_{j})\cap E} f(x) \, dx \leq \int_{\check{B}_{k}(0)\cap E \setminus K} f(x) \, dx, \end{aligned}$$

Now, as proved earlier, we can find an increasing sequence $K_j \subset \check{B}_k(0) \cap E$ of compact sets with $\lambda(\check{B}_k(0) \cap E \setminus K_j) \to 0$, so we have actually proved

$$\alpha\lambda(S_{\alpha}) \leq \int_{\mathbb{R}^n} \chi_{\breve{B}_k(0)\cap E\setminus K_j} f(x) \, dx$$

and the right side $\to 0$ as $j \to \infty$ by the dominated convergence theorem, hence $\lambda(S_{\alpha}) = 0$. Thus $\{\xi \in \breve{B}_k(0) \setminus E : \limsup_{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) \, dx > 0\} = \bigcup_{j=1}^{\infty} S_{1/j}$ is a countable union of sets of measure zero, hence has measure zero, so we have proved

$$\lim_{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) \, dx = 0 \text{ for } \lambda \text{-a.e. } \xi \in \check{B}_{k}(0) \setminus E.$$

Since k is arbitrary this proves the lemma.

The following corollary is important:

Corollary 2. Let $E \subset \mathbb{R}^n$ be λ -measurable. Then

$$\lim_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \lambda(E \cap B_\rho(\xi)) = \begin{cases} 0 \text{ for } \lambda \text{-a.e. } \xi \in \mathbb{R}^n \setminus E \\ 1 \text{ for } \lambda \text{-a.e. } \xi \in E. \end{cases}$$

Proof: To get the first conclusion simply apply Lemma 3 with $f \equiv 1$. For the second conclusion observe that $1 - \omega_n^{-1} \rho^{-n} \lambda(E \cap B_\rho(\xi)) = \omega_n^{-1} \rho^{-n} \lambda(B_\rho(\xi) \setminus E)$ and so Lemma 3 with $f \equiv 1$ and with $\mathbb{R}^n \setminus E$ in place of E gives the required result.

The Lebesgue differentiation theorem is then as follows:

Theorem 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally Lebesgue integrable (i.e. λ -measurable and integral of |f| over each ball is finite). Then

(i)
$$\lim_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx = f(\xi) \text{ for } \lambda \text{-a.e. } \xi \in \mathbb{R}^n$$

(ii)
$$\lim_{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi)} \left| f(x) - f(\xi) \right| dx = 0 \text{ for } \lambda \text{-a.e. } \xi \in \mathbb{R}^n.$$

Remarks (a) Notice that of course (ii) \Rightarrow (i) because

$$|\omega_n^{-1}\rho^{-n}\int_{B_{\rho}(\xi)}f(x)\,dx - f(\xi)| = |\omega_n^{-1}\rho^{-n}\int_{B_{\rho}(\xi)}(f(x) - f(\xi))\,dx| \le \omega_n^{-1}\rho^{-n}\int_{B_{\rho}(\xi)}|f(x) - f(\xi)|\,dx,$$

but in the proof we first establish (i) and show that (ii) follows directly from it.

(b) The points ξ where the limit in (ii) is valid are called the Lebesgue points of the function f.

Proof of Theorem 2: For each i = 1, 2, ... we have

$$\mathbb{R}^n = \bigcup_{j=-\infty}^{\infty} A_{ij}, \text{ where } A_{ij} = \{x \in \mathbb{R}^n : (j-1)/i < f(x) \le j/i\}.$$

Notice that then for each i = 1, 2, ... the sets $A_{ij}, j = 1, 2, ...$, are p.w.d. λ -measurable, and

(1)
$$\int_{B_{\rho}(\xi)} f(x) \, dx = \int_{B_{\rho}(\xi) \cap A_{ij}} f(x) \, dx + \int_{B_{\rho}(\xi) \setminus A_{ij}} f(x) \, dx,$$

and of course

$$\omega_n^{-1} \rho^{-n} \lambda(B_{\rho}(\xi) \cap A_{ij})(j-1)/i \le \omega_n^{-1} \rho^{-n} \int_{B_{\rho}(\xi) \cap A_{ij}} f(x) \, dx \le j/i,$$

hence (1) implies

(2)
$$\omega_n^{-1}\rho^{-n}\lambda(B_\rho(\xi)\cap A_{ij})(j-1)/i \le \omega_n^{-1}\rho^{-n}\int_{B_\rho(\xi)}f(x)\,dx - \omega_n^{-1}\rho^{-n}\int_{B_\rho(\xi)\setminus A_{ij}}f(x)\,dx \le j/i.$$

By Lemma 3 (with $E = \mathbb{R}^n \setminus A_{ij}$) and Corollary 2 (with $E = A_{ij}$) we then have

(3)
$$(j-1)/i \le \liminf_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx \le \limsup_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx \le j/i$$

for λ -a.e. $\xi \in A_{ij}$, which means (3) holds for each $\xi \in A_{ij} \setminus E_{ij}$, where $\lambda(E_{ij}) = 0$. Since $(j-1)/i < f(\xi) \leq j/i$ for all $\xi \in A_{ij}$, (3) implies

(4)
$$f(\xi) - 1/i \le \liminf_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx \le \limsup_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx \le f(\xi) + 1/i$$

for each $\xi \in A_{ij} \setminus E$ where $E = \bigcup_{k=1}^{\infty} \bigcup_{\ell=-\infty}^{\infty} E_{k\ell}$ has measure zero and does not depend on the indices i, j. Since $\bigcup_{j=-\infty}^{\infty} A_{ij} = \mathbb{R}^n$ we thus have

$$f(\xi) - 1/i \le \liminf_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) \, dx \le \limsup_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) \, dx \le f(\xi) + 1/i$$

for every i = 1, 2, ... and every $\xi \in \mathbb{R}^n \setminus E$, and hence

$$\liminf_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx = \limsup_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} f(x) \, dx = f(\xi), \quad \forall \xi \in \mathbb{R}^n \setminus E,$$

so (i) is proved.

To prove (ii), let q_1, q_2, \ldots be any countable dense subset of \mathbb{R} . Applying (i) to $|f(x) - q_j|$ we have

$$\lim_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} |f(x) - q_j| = |f(\xi) - q_j|, \ \forall \xi \in \mathbb{R}^n \setminus E_j,$$

where $\lambda(E_j) = 0$, hence

(5)
$$\lim_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} |f(x) - q_j| = |f(\xi) - q_j|, \ \forall j = 1, 2, \dots \text{ and } \forall \xi \in \mathbb{R}^n \setminus E,$$

where $E = \bigcup_{\ell=1}^{\infty} E_{\ell}$, so that $\lambda(E) = 0$. If $\varepsilon > 0$ and $\xi \in \mathbb{R}^n \setminus E$, we can select j such that $|f(\xi) - q_j| < \varepsilon$, and hence (5) gives

$$\limsup_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_\rho(\xi)} |f(x) - f(\xi)| < 2\varepsilon \ \forall \varepsilon > 0,$$

so $\lim_{\rho \downarrow 0} \omega_n^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} |f(x) - f(\xi)| = 0$ for each $\xi \in \mathbb{R}^n \setminus E$, which is (ii).

The Lebesgue theorem (Theorem 2) has an important corollary in the case n = 1:

Corollary 3. If $a, b \in \mathbb{R}$ with a < b and if $f : [a, b] \to \mathbb{R}$ is Lebesgue integrable, then the function $F(x) = \int_a^x f(t) dt$ is differentiable a.e. on (a, b) and F'(x) = f(x) for a.e. $x \in (a, b)$.

Proof: If $x \in (a, b)$ and $0 < |h| < \min\{b - x, x - a\}$ then

$$\begin{aligned} |h^{-1}(F(x+h) - F(x)) - f(x)| &= \left| h^{-1} \int_{x}^{x+h} f(t) \, dt - f(x) \right| = \left| h^{-1} \int_{x}^{x+h} \left(f(t) - f(x) \right) dt \right| \\ &\leq |h|^{-1} \int_{x-|h|}^{x+|h|} \left| f(t) - f(x) \right| dt \end{aligned}$$

which $\rightarrow 0$ as $h \rightarrow 0$ for a.e. $x \in (a, b)$ by part (ii) of Theorem 2.

The above corollary will play an important role in the theory of absolutely continuous functions on [a, b] which we want to develop below, but first we need to introduce the notion of bounded variation (BV):

Let $\mathcal{P}: x_0 = a < x_1 < x_2 < \cdots < x_N = b$ be any partition of $[a, b], f: [a, b] \to \mathbb{R}$, and define

$$T_{f,\mathcal{P}} = \sum_{j=1}^{N} |f(x_j) - f(x_{j-1})|$$
$$T_f = \sup T_{f,\mathcal{P}},$$

where the sup is over all partitions \mathcal{P} of [a, b]. T_f is called the *total variation* of f over the interval [a, b].

Observe that $T_f = T_{f,\mathcal{P}} = f(b) - f(a)$ for each partition \mathcal{P} if f is increasing on [a, b].

Definition: $f : [a, b] \to \mathbb{R}$ has bounded variation (BV) on [a, b] if $T_f < \infty$.

Lemma 4. $f : [a, b] \to \mathbb{R}$ is BV on $[a, b] \iff f$ can be written as the difference of two increasing functions; i.e. there are increasing $f_1, f_2 : [a, b] \to \mathbb{R}$ such that $f(x) = f_1(x) - f_2(x)$ for all $x \in [a, b]$.

Proof " \Rightarrow **":** For any partition $\mathcal{P} : a = x_0 < x_1 < x_2 < \cdots < x_N = b$ we define

$$P_{f,\mathcal{P}} = \sum_{j=1}^{N} (f(x_j) - f(x_{j-1}))_+, \quad N_{f,\mathcal{P}} = \sum_{j=1}^{N} (f(x_j) - f(x_{j-1}))_-,$$

where we use the notation $a_{+} = \max\{a, 0\}, a_{-} = \max\{-a, 0\}$, so that

$$P_{f,\mathcal{P}} - N_{f,\mathcal{P}} = \sum_{j=1}^{N} (f(x_j) - f(x_{j-1})) = f(b) - f(a)$$
$$P_{f,\mathcal{P}} + N_{f,\mathcal{P}} = \sum_{j=1}^{N} |f(x_j) - f(x_{j-1})| = T_{f,\mathcal{P}}.$$

Observe that then $\sup_{\mathcal{P}} T_{f,\mathcal{P}} < \infty \iff \sup_{\mathcal{P}} P_{f,\mathcal{P}} < \infty \iff \sup_{\mathcal{P}} N_{f,\mathcal{P}} < \infty$ and

$$\sup_{\mathcal{P}} T_{f,\mathcal{P}} < \infty \Rightarrow f(b) - f(a) = \sup_{\mathcal{P}} P_{f,\mathcal{P}} - \sup_{\mathcal{P}} N_{f,\mathcal{P}}.$$

By applying the same argument on the interval [a, x] (where $x \in (a, b]$) we have

$$f(x) = f(a) + f_1(x) - f_2(x), \quad x \in [a, b],$$

where $f_1(x) = \sup_{\text{paritions } \mathcal{P} \text{ of } [a,x]} P_{f|[a,x],\mathcal{P}}$ and $f_2(x) = \sup_{\text{paritions } \mathcal{P} \text{ of } [a,x]} N_{f|[a,x],\mathcal{P}}$ for $x \in (a,b]$ and $f_1(a) = f_2(a) = 0$ are non-negative increasing functions on [a,b], provided $\sup_{\mathcal{P}} T_{f,\mathcal{P}} < \infty$ (i.e. provided f is BV on [a,b]).

Proof " \Leftarrow ": $f = f_1 - f_2$ with $f_1, f_2 : [a, b] \to \mathbb{R}$ increasing $\Rightarrow T_{f,\mathcal{P}} \leq T_{f_1,\mathcal{P}} + T_{f_2,\mathcal{P}} = f_1(b) - f_1(a) + f_2(b) - f_2(a)$ for each partition \mathcal{P} of [a, b], so

$$T_f \le f_1(b) - f_1(a) + f_2(b) - f_2(a) < \infty.$$

Next we want to introduce the concept of an absolutely continuous (AC) function:

Definition: $f:[a,b] \to \mathbb{R}$ is AC if for each $\varepsilon > 0$ there is $\delta > 0$ such that $\sum_{i=1}^{N} |f(y_i) - f(x_i)| < \varepsilon$ whenever $[x_1, y_1], \ldots, [x_N, y_N]$ are p.w.d. closed intervals in [a, b] with $\sum_{i=1}^{N} (y_i - x_i) < \delta$.

Remarks: (1) $f : [a, b] \to \mathbb{R}$ is AC $\Rightarrow f$ is uniformly continuous on [a, b], as one sees simply by using the above definition with just one interval (N = 1).

(2) For any $f : [a, b] \to \mathbb{R}$, f is AC \Rightarrow f is BV.

To check (2) we let $\delta > 0$ be the δ as in the definition of AC corresponding to $\varepsilon = 1$, and let $\mathcal{Q}: a = y_0 < y_1 < \cdots < y_Q = b$ be any partition of [a, b] with $y_j - y_{j-1} < \delta$ for each $j = 1, \ldots, Q$. Now let \mathcal{P} be any partition of [a, b] and let $\widetilde{\mathcal{P}} = \mathcal{P} \cup \mathcal{Q}$. Since refinement evidently does not decrease the value of $T_{f,\mathcal{P}}$ we then have

$$T_{f,\mathcal{P}} \leq T_{f,\mathcal{P}\cup\mathcal{Q}} \leq T_{f|[y_{j-1},y_j],(\mathcal{P}\cup\mathcal{Q})\cap[y_{j-1},y_j]} \leq \sum_{j=1}^Q T_{f|[y_{j-1},y_j]} \leq Q$$

since $T_{f|[y_{j-1},y_j]} \leq 1$ (because $y_j - y_{j-1} < \delta$) for each $j = 1, \ldots, Q$.

We now state a theorem which completely characterizes AC functions, as follows:

Theorem 3. Let $f : [a,b] \to \mathbb{R}$. Then f is AC on $[a,b] \iff \exists$ a Lebesgue integrable g on [a,b] with $f(x) = f(a) + \int_a^x g(t) dt \quad \forall x \in [a,b]$.

Before we begin the proof, we need a simple lemma about non-negative integrable functions on an abstract measure space (X, \mathcal{A}, μ) .

Lemma 5. Let (X, \mathcal{A}, μ) be any measure space and $f : X \to [0, \infty)$ any μ -integrable function. Then for each $\varepsilon > 0$ there is a $\delta > 0$ such that $\int_A f d\mu < \varepsilon$ for all $A \in \mathcal{A}$ with $\mu(A) < \delta$.

Proof: For $N = 1, 2, ..., let f_N = min\{f, N\}$, so that f_N is an increasing sequence of nonnegative \mathcal{A} -measurable functions which converges pointwise to f on X, and hence by the monotone convergence theorem we have

$$\int_X (f - f_N) \to 0 \text{ as } N \to \infty.$$

Thus for given $\varepsilon > 0$ we can select N such that $\int_X (f - f_N) < \varepsilon/2$, and on the other hand trivially for any set $A \in \mathcal{A}$ we have $\int_A f_N < N\mu(A)$, and so

$$\int_{A} f = \int_{A} f_{N} + \int_{A} (f - f_{N}) \leq N\mu(A) + \int_{X} (f - f_{N}) \leq N\mu(A) + \varepsilon/2 < \varepsilon$$

provided $\mu(A) < \varepsilon/2N$, and so the lemma is proved with $\delta = \varepsilon/2N$.

Proof of Theorem 3 "(\Leftarrow ": We are given $f(x) = f(a) + \int_a^x g(t) dt$ where $g : [a,b] \to \mathbb{R}$ is Lebesgue integrable on [a,b]. According to Lemma 5, for a given $\varepsilon > 0$ we can choose $\delta > 0$ such that if A is a λ -measurable subset of [a,b] with $\lambda(A) < \delta$ then $\int_A |g| d\lambda < \varepsilon$. So, with this δ , let $[x_i, y_i], i = 1, \ldots, N$, be any p.w.d. intervals in [a,b] with $\sum_{i=1}^N (y_i - x_i) < \delta$. Then $\sum_{i=1}^N |f(y_i) - f(x_i)| = \sum_{i=1}^N |\int_{x_i}^{y_i} g(t) dt| \leq \sum_{i=1}^N \int_{[x_i, y_i]} |g(t)| dt = \int_{\bigcup_{i=1}^N [x_i, y_i]} |g(t)| dt < \varepsilon$, so we have checked the definition of AC.

Proof of Theorem 3 "\Rightarrow": Recall from the above discussion that AC \Rightarrow BV \Rightarrow $f = f_1 - f_2$ where f_1, f_2 are increasing on [a, b], so by Theorem 1 we have f' is Lebesgue integrable, so to complete the proof we just need to show that $f(x) - \int_a^x f'(t) dt$ is constant on [a, b] (then we have the required conclusion with g = f'). So let

$$F(x) = f(x) - \int_a^x f'(t) dt,$$

and observe that by Corollary 3 we have F'(x) = 0 for λ -a.e. $x \in (a, b)$. Thus with

 $S = \{x \in (a,b) : F'(x) \text{ exists and } = 0\}$

we have $\lambda([a,b] \setminus S) = 0$ and of course, by definition of F'(x) = 0, for any given $\varepsilon > 0$ the set Sis covered finely by the collection \mathcal{B} of closed intervals $[x,y] \subset (a,b)$ such that $|F(y) - F(x)| \le \varepsilon(y-x)$. Then by the Vitali Covering Lemma, for each $\varepsilon, \delta > 0$ there are p.w.d. closed intervals $[x_1, y_1], \ldots, [x_N, y_N] \subset (a, b)$ with

$$\lambda([a,b] \setminus (\bigcup_{j=1}^{N} [x_j, y_j])) = \lambda(S \setminus (\bigcup_{j=1}^{N} [x_j, y_j])) < \delta$$
$$|F(y_i) - F(x_i)| \le \varepsilon(y_i - x_i), \quad i = 1, \dots, N.$$

Without loss of generality we can assume that these intervals $[x_i, y_i]$ are labelled so that $a < x_1 < y_1 < x_2 < y_2 \cdots < x_N < y_N < b$, and then

$$[a,b] \setminus (\bigcup_{i=1}^{N} (x_i, y_i)) = \bigcup_{k=0}^{N} [y_k, x_{k+1}]$$
 and hence $\sum_{k=0}^{N} (x_{k+1} - y_k) < \delta$,

where for convenience of notation we set $y_0 = a$ and $x_{N+1} = b$.

Now f is given to be AC and $\int_a^x f'(t) dt$ is AC by the proof of " \Leftarrow " above, so F is AC, and hence for any given $\varepsilon > 0$ we can choose the above $\delta > 0$ such that $\sum_{k=0}^N |F(x_{k+1}) - F(y_k)| < \varepsilon$ (notice this inequality holds by definition of AC because $\sum_{k=0}^N (x_{k+1} - y_k) = \lambda([a, b] \setminus \bigcup_{i=1}^N [x_i, y_i]) < \delta$). Then, with $z_0 = a, z_1 = x_1, z_2 = y_1, \ldots, z_{2N-1} = x_N, z_{2N} = y_N, z_{2N+1} = b$, we have

$$|F(b) - F(a)| = \left| \sum_{j=1}^{2N+1} \left(F(z_j) - F(z_{j-1}) \right) \right|$$

= $\left| \sum_{i=1}^{N} \left(F(y_i) - F(x_i) \right) + \sum_{k=0}^{N} \left(F(x_{k+1}) - F(y_k) \right) \right|$
 $\leq \varepsilon \sum_{i=1}^{N} (y_i - x_i) + \varepsilon \leq (b - a + 1)\varepsilon.$

Thus, since $\varepsilon > 0$ is arbitrary, we have proved F(b) = F(a). Since we can repeat the proof on the interval [a, x] for any $x \in (a, b]$, this shows that F(x) is constant (equal to f(a)) on [a, b].

We conclude this supplement by showing that the method used to prove Lemma 1 and Lemma 2 above easily modifies to give the following theorem about differentiation of locally finite Borel measures in \mathbb{R}^n .

Theorem 4. Let μ be a Borel measure on \mathbb{R}^n which is finite on bounded Borel sets. Then the density $\Theta_{\mu}(x) = \lim_{\rho \downarrow 0} \frac{\mu(B_{\rho}(x))}{\omega_n \rho^n}$ exists and is real for λ -a.e. $x \in \mathbb{R}^n$.

Proof: We have to show that $\{x : \Theta_{\mu*}(x) < \Theta^*_{\mu}(x)\}$ has measure zero and also that $\Theta^*_{\mu}(x) < \infty$ for λ -a.e. $x \in \mathbb{R}^n$, where $\Theta^*_{\mu}(x) = \limsup_{\rho \downarrow 0} \frac{\mu(B_{\rho}(x))}{\lambda(B_{\rho}(x))}$ and $\Theta_{\mu*}(x) = \liminf_{\rho \downarrow 0} \frac{\mu(B_{\rho}(x))}{\lambda(B_{\rho}(x))}$.

First observe that if $\beta > 0$, $U \subset \mathbb{R}^n$ is a bounded open set, and if and $S \subset \{x \in U : \Theta^*_{\mu}(x) > \beta\}$, then (since $x \in S \Rightarrow \frac{\mu(B_{\rho_j}(x))}{\lambda(B_{\rho_j}(x))} > \beta$ for some sequence $\rho_j \downarrow 0$) the set of closed balls $B_{\rho}(x)$ such that $B_{\rho}(x) \subset U$ and $\mu(B_{\rho}(x)) > \beta\lambda(B_{\rho}(x))$ covers S finely. Hence by Vitali (for Lebesgue measure), there is a p.w.d. collection $B_{\rho_j}(x_j) \subset U$ such that $\mu(B_{\rho_j}(x_j)) > \beta\lambda(B_{\rho_j}(x_j))$ and $\lambda(S \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))) \to 0$ as $N \to \infty$. Thus if $\varepsilon > 0$ there is N such that

$$\beta\lambda(S) \leq \beta\lambda(S \cap (\cup_{j=1}^{N} B_{\rho_j}(x_j))) + \beta\lambda(S \setminus (\cup_{j=1}^{N} B_{\rho_j}(x_j)))$$

$$\leq \beta\sum_{j=1}^{N} \lambda(S \cap B_{\rho_j}(x_j)) + \beta\lambda(S \setminus (\cup_{j=1}^{N} B_{\rho_j}(x_j)))$$

$$\leq \sum_{j=1}^{N} \mu(B_{\rho_j}(x_j)) + \beta\varepsilon = \mu(\cup_j B_{\rho_j}(x_j)) + \beta\varepsilon.$$

Thus since $\varepsilon > 0$ is arbitrary and since $\cup_j B_{\rho_j}(x_j) \subset U$ we thus have

(1)
$$\beta\lambda(S) \le \mu(U).$$

Notice that in particular if we take S to be the set of points x in the ball $U = \check{B}_j(0)$ where $\Theta^*_{\mu}(x) = \infty$ then we can apply this with each β , thus implying that $\lambda(S) = 0$. Thus (since j is arbitrary) we have

(2)
$$\Theta_{\mu}^{*}(x) < \infty, \quad \lambda \text{ a.e. } x \in \mathbb{R}^{n}.$$

Next observe that

$$\{x \in \mathbb{R}^n : \Theta_{\mu*}(x) < \Theta^*_{\mu}(x)\} = \cup_{\alpha,\beta \text{ rational}, 0 < \alpha < \beta, k \in \{1, 2, \dots\}} S_{\alpha, \beta, k}$$

where

$$S_{\alpha,\beta,k} = \{ x \in \mathbb{R}^n : |x| < k, \ \Theta_{\mu*}(x) < \alpha < \beta < \Theta^*_{\mu}(x) \}$$

Now let V be an open set such that $V \supset S_{\alpha,\beta,k}$ and such that $\lambda(V) < \lambda(S_{\alpha,\beta,k}) + \varepsilon$, and let \mathcal{B} be the set of closed balls $B_{\rho}(x) \subset V$ such that $\mu(B_{\rho}(x)) < \alpha\lambda(B_{\rho}(x))$. Then evidently \mathcal{B} covers $S_{\alpha,\beta,k}$ finely, and so by the Vitali lemma there are p.w.d. balls $B_{\rho_j}(x_j)$ in \mathcal{B} with $\lambda(S_{\alpha,\beta,k} \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))) \to 0$ as $N \to \infty$, and for each j

$$\mu(\mathring{B}_{\rho_j}(x_j)) \le \mu(B_{\rho_j}(x_j)) \le \alpha \lambda(B_{\rho_j}(x_j)).$$

But then for any given $\varepsilon > 0$ we can select N so that $\lambda(S_{\alpha,\beta,k} \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))) < \varepsilon$ and then for each $j = 1, \ldots, N$ use (1) with $S_{\alpha,\beta,k} \cap \check{B}_{\rho_j}(x_j)$ in place of S and $U = \check{B}_{\rho_j}(x_j)$, giving

$$\begin{split} \beta\lambda(S_{\alpha,\beta,k}\cap(\cup_{j=1}^{N}\breve{B}_{\rho_{j}}(x_{j}))) &\leq \sum_{j=1}^{N}\beta\lambda(S_{\alpha,\beta,k}\cap\breve{B}_{\rho_{j}}(x_{j}))\\ &\leq \sum_{j=1}^{N}\mu(\breve{B}_{\rho_{j}}(x_{j})) \leq \alpha\sum_{j=1}^{N}\lambda(B_{\rho_{j}}(x_{j})) \leq \alpha\lambda(\cup_{j=1}^{N}B_{\rho_{j}}(x_{j}))\\ &\leq \alpha\lambda(V) \leq \alpha\lambda(S_{\alpha,\beta,k}) + \alpha\varepsilon. \end{split}$$

Since $\lambda(S_{\alpha,\beta,k} \setminus (\bigcup_{j=1}^N B_{\rho_j}(x_j))) < \varepsilon$, this gives

$$\beta\lambda(S_{\alpha,\beta,k}) \le \alpha\lambda(S_{\alpha,\beta,k}) + (\alpha + \beta)\varepsilon,$$

and letting $\varepsilon \to 0$ we thus have

$$\beta\lambda(S_{\alpha,\beta,k}) \le \alpha\lambda(S_{\alpha,\beta,k}) < \infty;$$

that is, $\lambda(S_{\alpha,\beta,k}) = 0$ as required.