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Differentiability Theory for Functions and Measures

As a preliminary to the discussion of differentiation of functions and measures, we need the following

important covering lemma, which we state and prove in Rn but which clearly has a natural extension

to metric spaces:

Lemma (5-times covering lemma). Let B be any collection of closed balls in Rn with the property

that ∪B∈BB is contained in a bounded set. Then there is a p.w.d. collection {Bρj (xj)}j=1,2,... ⊂ B
such that ∪B∈BB ⊂ ∪∞j=1B5ρj (xj). The subcollection {Bρj (xj)}j=1,2,... can in fact be chosen so that:

(∗) B ∈ B =⇒ ∃ j with B ∩Bρj (xj) 6= ∅ and ρj ≥
1

2
radiusB.

Terminology: As in lecture, “p.w.d.” is an abbreviation for “pairwise disjoint” and here Bρ(y)

denotes the closed ball with center y and radius ρ > 0 while B̆ρ(y) denotes the corresponding open

ball.

Proof of the 5-times Lemma: Let R0 = sup{radiusB : B ∈ B}(< ∞), and write B = ∪∞k=1Bk,
where Bk = {B ∈ B : 2−kR0 < radiusB ≤ 2−k+1R0}. We proceed to inductively select pairwise

disjoint subcollections Mk ⊂ Bk as follows:

M1 is any maximal p.w.d. subcollection of B1 (meaning contains a maximum number of balls

subject to the stated condition of being a p.w.d. collection). Assume now that k ≥ 2 and that

we have already selected Mj for j = 1, . . . , k − 1. Then select Mk to be a maximal p.w.d.

subcollection of {B : B ∈ Bk and B ∩ E = ∅ ∀E ∈ ∪k−1
j=1Mj}. Of course we take Mk = ∅ in case

{B ∈ Bk : B ∩ E = ∅ ∀E ∈ ∪k−1
j=1Mj} is empty. Now we define

M = ∪∞k=1Mk

and observe thatM is a countable p.w.d. collection by construction, so the balls in the collectionM
can be written as a sequence {Bρj (xj)}j=1,2,... of p.w.d. balls. We claim that in fact the additional

property (∗) holds. Indeed if B ∈ B then B ∈ Bk0 for some unique k0 ≥ 1, and we claim that in fact

then B∩E 6= ∅ for some E ∈ ∪k0j=1Mj . Otherwise for k0 ≥ 2 we would have both that B∩E = ∅ for

each ball E ∈ Mk0 and also B ∩ E = ∅ for each ball E ∈ ∪k0−1
j=1 Mj which means that Mk0 ∪ {B}

is a p.w.d. collection of balls in Bk0 which do not intersect any ball in the collection ∪k0−1
j=1 Mj ,

thus contradicting the maximality of Mk0 . For k0 = 1 the argument is even simpler: B ∩ E = ∅
for every E ∈ M1 implies that M1 ∪ {B} is a p.w.d. subcollection of B1, thus contradicting the

maximality of M1. Thus we have shown that B ∩ Bρ(x) 6= ∅ for some ball Bρ(x) ∈ ∪k0j=1Mj . But

then radiusBρ(x) ≥ 2−k0R0 = 1
221−k0R0 ≥ 1

2radiusB. Thus B ∩ Bρ(x) 6= ∅ and ρ ≥ 1
2radiusB

which is (∗). Now, since (∗) evidently implies that B ⊂ B5ρ(x), the proof is complete.

We have now the following important corollary of the 5-times covering lemma:

Corollary 1. Let B be any collection of closed balls in Rn with the property that ∪B∈BB is

contained in a bounded set, and suppose A ⊂ Rn. If B covers A finely in the sense that for each

x ∈ A and each ρ > 0 there is a ball B ∈ B such that x ∈ B and radiusB < ρ, then there is a

p.w.d. subcollection {Bρj (xj)}j=1,2,... ⊂ B with the properties that ∪B∈BB ⊂ ∪jB5ρj (xj) and

(‡) A \ (∪Nj=1Bρj (xj)) ⊂ ∪∞j=N+1B5ρj (xj) for each N ≥ 1.
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Proof: The 5-times covering lemma can be applied to B, giving a p.w.d. subcollection of closed

balls {Bρj (xj)}j=1,2,... ⊂ B1 such that

(1) B ∈ B =⇒ ∃ j with B ∩Bρj (xj) 6= ∅ (and hence B ⊂ B5ρj (xj)).

We claim that this sequence {Bρj (xj)}j=1,2,... automatically has the additional property (‡). To see

this, take any N ≥ 1 and let x ∈ A \ (∪Nj=1Bρj (xj)). Since Rn \ (∪Nj=1Bρj (xj)) is an open set and

since B covers A finely, we can certainly find a ball B ∈ B with x ∈ B ⊂ Rn \ (∪Nj=1Bρj (xj)) and

hence for this B the j in (1) must be ≥ N + 1. That is, x ∈ B ⊂ ∪∞j=N+1B5ρj (xj), which completes

the proof.

An important corollary of this is the following Vitali covering lemma.

Lemma (Vitali Covering Lemma). Let µ be any outer measure on Rn such that all Borel sets are

µ-measurable and such that there is a fixed constant β ∈ (0,∞) with µ(B2ρ(x)) ≤ βµ(Bρ(x)) <∞
for each closed ball Bρ(x) (note that these hypotheses hold with µ = Lebesgue outer measure λ in

case β = 2n), let A ⊂ Rn be bounded and let B be any collection of closed balls which cover A finely.

Then there is a p.w.d. subcollection {Bρj (xj)}j=1,2,... ⊂ B such that µ(A \ (∪Nj=1Bρj (xj))) → 0 as

N →∞.

Remark 1: Actually the conclusion holds without the hypothesis that µ(B2ρ(x)) ≤ βµ(Bρ(x)),

provided that the collection B not only covers A finely, but actually that for each point x ∈ A we

have balls Bρj (x) ∈ B (i.e. balls in B with center at x) with ρj ↓ 0. This result (which is important

in geometric analysis) requires a more powerful covering lemma (the Besicovich covering lemma)

in place of the 5-times covering lemma, and we will not discuss it here.

Proof of the Vitali Lemma: Let U be an open ball containing A and let B1 = {B ∈ B : B ⊂
U}. Evidently B1 still covers A finely, hence by the corollary above we can choose p.w.d. balls

Bρ1(x1), Bρ2(x2), . . . ∈ B1 such that

A \ (∪Nj=1Bρj (xj)) ⊂ ∪∞j=N+1B5ρj (xj) for each N ≥ 1.

Observe that for each j we have µ(B5ρj (xj)) ≤ µ(B8ρj (xj)) ≤ β3µ(Bρj (xj)) by definition of β.

So µ(∪∞j=N+1B5ρj (xj)) ≤
∑∞

j=N+1 µ(B5ρj (xj)) ≤ β3
∑∞

j=N+1 µ(Bρj (xj)) = β3µ(∪∞j=N+1Bρj (xj)) ≤
β3µ(U) < ∞, where we used the pairwise disjointness and µ-measurability of the Bρj (xj). Thus

µ(∪∞j=N+1B5ρj (xj))→ 0 as N →∞, and the proof is complete.

In the following lemmas f is an arbitrary function : [a, b]→ R, and for x ∈ (a, b) we let

Df(x) = lim sup
y→x

f(x)− f(y)

x− y
, Df(x) = lim inf

y→x

f(x)− f(y)

x− y
.

Notice that −∞ ≤ Df(x) ≤ Df(x) ≤ ∞, and f is classically differentiable at x if and only if

−∞ <Df(x) = Df(x) <∞. Also, Df(x) ≥ 0 if f is increasing.

Lemma 1. If ε > 0, β ∈ R, U ⊂ (a, b) is open, and if S ⊂ U is an arbitrary set such that

Df(x) > β at each point of S, then there are pairwise disjoint closed intervals {[xj , yj ]}j=1,...,N

such that

∪j [xj , yj ] ⊂ U, λ(S \ ∪Nj=1[xj , yj ]) < ε

β(yj − xj) ≤ f(yj)− f(xj), j = 1, . . . , N.
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Proof: We observe that by definition ofDf , for every x ∈ S we must have (zj−x)−1(f(zj)−f(x)) >

β for some sequence zj → x such that Ix,j ⊂ U for each j, where we let Ix,j = [x, zj ] if zj > x

and Ix,j = [zj , x] if zj < x. Notice that then the collection I = {Ix,j : x ∈ S, j = 1, 2, . . .}
covers S finely and each Ix,j ⊂ U . Then by the Vitali covering lemma there are pairwise disjoint

intervals {[xj , yj ]}j=1,...,N ⊂ I such that λ(S \ ∪Nj=1[xj , yj ]) < ε. Since by definition we have

f(yj)− f(xj) > β(yj − xj) for each j, this completes the proof.

Remark 2: Notice that if β > 0, a < b, and if f is increasing (i.e. a ≤ x ≤ y ≤ b⇒ f(x) ≤ f(y)),

then we can apply the above lemma with U = (a, b) to yield p.w.d. intervals [xi, yi] such that

[xi, yi] ⊂ (a, b), β(yi − xi) ≤ f(yi) − f(xi) and λ(S ∩ (a, b) \ (∪i[xi, yi])) < ε. Assuming that we

order these p.w.d. intervals [xi, yi] so that yi−1 < xi for i ∈ {2, . . . , N}, we then have

β λ(S) ≤ β λ(S \ ∪Nj=1(xj , yj)) + β
∑N

j=1(yj − xj)

≤ β ε+
∑N

j=1(f(yj)− f(xj))

≤ β ε+
∑N

j=1(f(yj)− f(yj−1)) (using notation y0 = x1)

= β ε+ f(yN )− f(x1) ≤ β ε+ f(b)− f(a),

which, since ε > 0 is arbitrary, gives

β λ(S) ≤ f(b)− f(a).

Notice particularly that if we take S = {x ∈ (a, b) :Df(x) = +∞} then we can apply this for each

β > 0 and hence conclude that λ(S) = 0, i.e.

f : [a, b]→ R increasing ⇒ Df(x) <∞, λ-a.e. x ∈ (a, b).

Observe that Lemma 1, with −f in place of f and β = −α, implies:

Lemma 2. If ε > 0, α ∈ R, U ⊂ (a, b) is open, and if S ⊂ U is an arbitrary set such that

Df(x) < α at each point of S, then there are pairwise disjoint closed intervals {[xj , yj ]}j=1,...,N

such that

∪j [xj , yj ] ⊂ U, λ(S \ ∪j [xj , yj ]) < ε

f(yj)− f(xj) ≤ α(yj − xj), j = 1, . . . , N.

We can now easily prove the following important differentiability theorem for increasing functions:

Theorem 1. Let f : [a, b] → R be an increasing function. Then f is differentiable λ-a.e. in (a, b)

(i.e. limy→x
f(y)−f(x)

y−x exists and is real for λ-a.e. x ∈ (a, b)). Furthermore the derivative f ′ (defined

to be e.g. zero on the set of measure zero where f is not differentiable) is a non-negative integrable

function and ∫ b

a
f ′(t) dt ≤ f(b)− f(a).

Proof: Let T = {x ∈ (a, b) :Df(x) > Df(x)}. Observe that (since Df(x) ≥ 0)

(1) T = ∪0<α<β, α,β rationalSαβ,

where Sαβ = {x ∈ [a, b] :Df(x) > β > α > Df(x)}.
Now let ε > 0, 0 < α < β, and choose an open set U ⊂ (a, b) with Sαβ ⊂ U and λ(U) < λ(Sαβ) + ε.

Then we can apply Lemma 2 with S = Sαβ; this gives p.w.d. intervals [xi, yi] with f(yi)− f(xi) ≤
α(yi−xi) and ∪i[xi, yi] ⊂ U , so that

∑
i(yi−xi) ≤ λ(U) ≤ λ(Sαβ)+ε and λ(Sαβ \ (∪j [xj , yj ])) < ε.
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Then we apply Remark 2 (following Lemma 1) with Sαβ ∩ (xi, yi) in place of S and with (xj , yj)

in place of (a, b), whence βλ(Sαβ ∩ (xj , yj)) ≤ f(yj)− f(xj) ≤ α(yj − xj) for each j. Then

βλ(Sαβ ∩ [xj , yj ]) ≤ f(yj)− f(xj) ≤ α(yj − xj), j = 1, . . . , N,

and hence summing on j we have

βλ(Sαβ ∩ (∪Nj=1[xj , yj ])) ≤ α
∑N

j=1(yj − xj) ≤ αλ(U) ≤ αλ(Sαβ) + αε,

and since λ(Sαβ \ (∪j [xj , yj ])) < ε we thus obtain

βλ(Sαβ) ≤ αλ(Sαβ) + (α+ β)ε.

Since ε > 0 is arbitrary we thus conclude βλ(Sαβ) ≤ αλ(Sαβ), so that λ(Sαβ) = 0 for each α < β,

whence by (1) we have λ(T ) = 0.

Keeping in mind thatDf(x) < ∞ a.e. x ∈ (a, b) by Remark 2, we have thus proved thatDf(x) =

Df(x) <∞ for a.e. x ∈ (a, b), which is the same as saying f ′ (the classical derivative of f) exists

for a.e. x ∈ (a, b), as required.

To prove the last part of the theorem, we first extend f to all of R by defining g(x) = f(x)

for x ∈ [a, b], g(x) = f(a) for x < a, and g(x) = f(b) for x > b. Then note that g ′(x) =

limn→∞ n(f(x + 1/n) − f(x)) for a.e. x ∈ R, and hence g ′ is a non-negative Lebesgue measurable

function on R, assuming we define it to e.g. be zero on the set of measure zero where g is not

differentiable, and of course g ′ = f ′ a.e. on (a, b). Also by Fatou’s lemma we have∫ b

a
f ′(t) dt ≤ lim inf

n→∞

∫ b

a
n
(
g(t+ 1/n)− g(t)

)
dt.

But evidently
∫ b
a g(t + 1/n) dt =

∫ b+1/n
a+1/n g(t) dt, so

∫ b
a n
(
g(t + 1/n) − g(t)

)
dt = n

∫ b+1/n
b g(t) dt −

n
∫ a+1/n
a g(t) dt ≤ f(b)− f(a), and hence∫ b

a
f ′(t) dt ≤ f(b)− f(a)

as claimed.

Next we want to discuss Lebesgue’s theorem on differentiation of the integral in Rn. As a key

preliminary, we need the following lemma.

Lemma 3. Suppose f : Rn → [0,∞) is locally Lebesgue integrable on Rn (i.e. λ-measurable and

integral over each ball is finite), and suppose E ⊂ Rn is λ-measurable. Then

lim
ρ↓0

ρ−n
∫
Bρ(ξ)∩E

f(x) dx = 0 for λ-a.e. ξ ∈ Rn \ E.

Proof: The proof as a simple application of the Vitali covering lemma.

Let k ∈ {1, 2, . . .}, α > 0, let K be any compact subset of E ∩ B̆k(0) (B̆k(0) the open ball of radius

k and center 0),

Sα = {ξ ∈ B̆k(0) \ E : lim sup
ρ↓0

ρ−n
∫
Bρ(ξ)∩E

f(x) dx > α}.
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Then for each ξ ∈ Sα there is a sequence ρj ↓ 0 with ρ−nj
∫
Bρj (ξ)∩E f(x) dx > α for each j, and

hence B = {Bρ(ξ) ⊂ B̆k(0) \K : ξ ∈ Sα and ω−1
n ρ−n

∫
Bρ(ξ)∩E f(x) dx > α} covers Sα finely, so by

the Vitali covering lemma there are p.w.d. balls Bρj (ξj) ∈ B with

λ(Sα \ (∪∞j=1Bρj (ξj))) = 0 and

∫
Bρi (ξi)∩E

f(x) dx > αωnρ
n
i , i = 1, 2, . . . .

Then by subadditivity of λ

αλ(Sα) ≤ αλ(Sα \ (∪∞j=1Bρj (xj))) + α
∑∞

j=1λ(Bρj (ξj))

≤
∑∞

j=1

∫
Bρj (ξj)∩E

f(x) dx =

∫
∪∞j=1Bρj (ξj)∩E

f(x) dx ≤
∫
B̆k(0)∩E\K

f(x) dx,

Now, as proved earlier, we can find an increasing sequence Kj ⊂ B̆k(0) ∩ E of compact sets with

λ(B̆k(0) ∩ E \Kj)→ 0, so we have actually proved

αλ(Sα) ≤
∫
Rn
χB̆k(0)∩E\Kjf(x) dx

and the right side → 0 as j →∞ by the dominated convergence theorem, hence λ(Sα) = 0. Thus

{ξ ∈ B̆k(0) \ E : lim supρ↓0 ρ
−n ∫

Bρ(ξ)∩E f(x) dx > 0} = ∪∞j=1S1/j is a countable union of sets of

measure zero, hence has measure zero, so we have proved

lim
ρ↓0

ρ−n
∫
Bρ(ξ)∩E

f(x) dx = 0 for λ-a.e. ξ ∈ B̆k(0) \ E.

Since k is arbitrary this proves the lemma.

The following corollary is important:

Corollary 2. Let E ⊂ Rn be λ-measurable. Then

lim
ρ↓0

ω−1
n ρ−nλ(E ∩Bρ(ξ)) =

{
0 for λ-a.e. ξ ∈ Rn \ E
1 for λ-a.e. ξ ∈ E.

Proof: To get the first conclusion simply apply Lemma 3 with f ≡ 1. For the second conclusion

observe that 1−ω−1
n ρ−nλ(E ∩Bρ(ξ)) = ω−1

n ρ−nλ(Bρ(ξ) \E) and so Lemma 3 with f ≡ 1 and with

Rn \ E in place of E gives the required result.

The Lebesgue differentiation theorem is then as follows:

Theorem 2. Let f : Rn → R be locally Lebesgue integrable (i.e. λ-measurable and integral of |f |
over each ball is finite). Then

lim
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx = f(ξ) for λ-a.e. ξ ∈ Rn(i)

lim
ρ↓0

ρ−n
∫
Bρ(ξ)

∣∣f(x)− f(ξ)
∣∣ dx = 0 for λ-a.e. ξ ∈ Rn.(ii)

Remarks (a) Notice that of course (ii) ⇒ (i) because

|ω−1
n ρ−n

∫
Bρ(ξ) f(x) dx− f(ξ)| = |ω−1

n ρ−n
∫
Bρ(ξ)(f(x)− f(ξ)) dx| ≤ ω−1

n ρ−n
∫
Bρ(ξ) |f(x)− f(ξ)| dx,
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but in the proof we first establish (i) and show that (ii) follows directly from it.

(b) The points ξ where the limit in (ii) is valid are called the Lebesgue points of the function f .

Proof of Theorem 2: For each i = 1, 2, . . . we have

Rn = ∪∞j=−∞Aij , where Aij = {x ∈ Rn : (j − 1)/i < f(x) ≤ j/i}.

Notice that then for each i = 1, 2, . . . the sets Aij , j = 1, 2, . . ., are p.w.d. λ-measurable, and

(1)

∫
Bρ(ξ)

f(x) dx =

∫
Bρ(ξ)∩Aij

f(x) dx+

∫
Bρ(ξ)\Aij

f(x) dx,

and of course

ω−1
n ρ−nλ(Bρ(ξ) ∩Aij)(j − 1)/i ≤ ω−1

n ρ−n
∫
Bρ(ξ)∩Aij

f(x) dx ≤ j/i,

hence (1) implies

(2) ω−1
n ρ−nλ(Bρ(ξ) ∩Aij)(j − 1)/i ≤ ω−1

n ρ−n
∫
Bρ(ξ)

f(x) dx− ω−1
n ρ−n

∫
Bρ(ξ)\Aij

f(x) dx ≤ j/i.

By Lemma 3 (with E = Rn \Aij) and Corollary 2 (with E = Aij) we then have

(3) (j − 1)/i ≤ lim inf
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx ≤ lim sup
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx ≤ j/i

for λ-a.e. ξ ∈ Aij , which means (3) holds for each ξ ∈ Aij \Eij , where λ(Eij) = 0. Since (j−1)/i <

f(ξ) ≤ j/i for all ξ ∈ Aij , (3) implies

(4) f(ξ)− 1/i ≤ lim inf
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx ≤ lim sup
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx ≤ f(ξ) + 1/i

for each ξ ∈ Aij \ E where E = ∪∞k=1 ∪∞`=−∞ Ek` has measure zero and does not depend on the

indices i, j. Since ∪∞j=−∞Aij = Rn we thus have

f(ξ)− 1/i ≤ lim inf
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx ≤ lim sup
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx ≤ f(ξ) + 1/i

for every i = 1, 2, . . . and every ξ ∈ Rn \ E, and hence

lim inf
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx = lim sup
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

f(x) dx = f(ξ), ∀ ξ ∈ Rn \ E,

so (i) is proved.

To prove (ii), let q1, q2, . . . be any countable dense subset of R. Applying (i) to |f(x)− qj | we have

lim
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

|f(x)− qj | = |f(ξ)− qj |, ∀ξ ∈ Rn \ Ej ,

where λ(Ej) = 0, hence

(5) lim
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

|f(x)− qj | = |f(ξ)− qj |, ∀ j = 1, 2, . . . and ∀ ξ ∈ Rn \ E,
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where E = ∪∞`=1E`, so that λ(E) = 0. If ε > 0 and ξ ∈ Rn \ E, we can select j such that

|f(ξ)− qj | < ε, and hence (5) gives

lim sup
ρ↓0

ω−1
n ρ−n

∫
Bρ(ξ)

|f(x)− f(ξ)| < 2ε ∀ ε > 0,

so limρ↓0 ω
−1
n ρ−n

∫
Bρ(ξ) |f(x)− f(ξ)| = 0 for each ξ ∈ Rn \ E, which is (ii).

The Lebesgue theorem (Theorem 2) has an important corollary in the case n = 1:

Corollary 3. If a, b ∈ R with a < b and if f : [a, b] → R is Lebesgue integrable, then the function

F (x) =
∫ x
a f(t) dt is differentiable a.e. on (a, b) and F ′(x) = f(x) for a.e. x ∈ (a, b).

Proof: If x ∈ (a, b) and 0 < |h| < min{b− x, x− a} then

|h−1(F (x+ h)− F (x))− f(x)| =
∣∣h−1

∫ x+h

x
f(t) dt− f(x)

∣∣ =
∣∣h−1

∫ x+h

x

(
f(t)− f(x)

)
dt
∣∣

≤ |h|−1

∫ x+|h|

x−|h|

∣∣f(t)− f(x)
∣∣ dt

which → 0 as h→ 0 for a.e. x ∈ (a, b) by part (ii) of Theorem 2.

The above corollary will play an important role in the theory of absolutely continuous functions

on [a, b] which we want to develop below, but first we need to introduce the notion of bounded

variation (BV):

Let P : x0 = a < x1 < x2 < · · · < xN = b be any partition of [a, b], f : [a, b]→ R, and define

Tf,P =
N∑
j=1

|f(xj)− f(xj−1)|

Tf = supTf,P ,

where the sup is over all partitions P of [a, b]. Tf is called the total variation of f over the interval

[a, b].

Observe that Tf = Tf,P = f(b)− f(a) for each partition P if f is increasing on [a, b].

Definition: f : [a, b]→ R has bounded variation (BV) on [a, b] if Tf <∞.

Lemma 4. f : [a, b]→ R is BV on [a, b] ⇐⇒ f can be written as the difference of two increasing

functions; i.e. there are increasing f1, f2 : [a, b]→ R such that f(x) = f1(x)−f2(x) for all x ∈ [a, b].

Proof “⇒”: For any partition P : a = x0 < x1 < x2 < · · · < xN = b we define

Pf,P =

N∑
j=1

(f(xj)− f(xj−1))+, Nf,P =

N∑
j=1

(f(xj)− f(xj−1))−,

where we use the notation a+ = max{a, 0}, a− = max{−a, 0}, so that

Pf,P −Nf,P =
N∑
j=1

(f(xj)− f(xj−1)) = f(b)− f(a)

Pf,P +Nf,P =

N∑
j=1

|f(xj)− f(xj−1)| = Tf,P .
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Observe that then supP Tf,P <∞ ⇐⇒ supP Pf,P <∞ ⇐⇒ supP Nf,P <∞ and

sup
P
Tf,P <∞⇒ f(b)− f(a) = sup

P
Pf,P − sup

P
Nf,P .

By applying the same argument on the interval [a, x] (where x ∈ (a, b]) we have

f(x) = f(a) + f1(x)− f2(x), x ∈ [a, b],

where f1(x) = supparitions P of [a,x] Pf |[a,x],P and f2(x) = supparitions P of [a,x]Nf |[a,x],P for x ∈ (a, b]

and f1(a) = f2(a) = 0 are non-negative increasing functions on [a, b], provided supP Tf,P <∞ (i.e.

provided f is BV on [a, b]).

Proof “⇐”: f = f1 − f2 with f1, f2 : [a, b] → R increasing ⇒ Tf,P ≤ Tf1,P + Tf2,P = f1(b) −
f1(a) + f2(b)− f2(a) for each partition P of [a, b], so

Tf ≤ f1(b)− f1(a) + f2(b)− f2(a) <∞.

Next we want to introduce the concept of an absolutely continuous (AC) function:

Definition: f : [a, b]→ R is AC if for each ε > 0 there is δ > 0 such that
∑N

i=1 |f(yi)− f(xi)| < ε

whenever [x1, y1], . . . , [xN , yN ] are p.w.d. closed intervals in [a, b] with
∑N

i=1(yi − xi) < δ.

Remarks: (1) f : [a, b] → R is AC ⇒ f is uniformly continuous on [a, b], as one sees simply by

using the above definition with just one interval (N = 1).

(2) For any f : [a, b]→ R, f is AC ⇒ f is BV.

To check (2) we let δ > 0 be the δ as in the definition of AC corresponding to ε = 1, and let

Q : a = y0 < y1 < · · · < yQ = b be any partition of [a, b] with yj − yj−1 < δ for each j = 1, . . . , Q.

Now let P be any partition of [a, b] and let P̃ = P∪Q. Since refinement evidently does not decrease

the value of Tf,P we then have

Tf,P ≤ Tf,P∪Q ≤ Tf |[yj−1,yj ],(P∪Q)∩[yj−1,yj ] ≤
Q∑
j=1

Tf |[yj−1,yj ] ≤ Q

since Tf |[yj−1,yj ] ≤ 1 (because yj − yj−1 < δ) for each j = 1, . . . , Q.

We now state a theorem which completely characterizes AC functions, as follows:

Theorem 3. Let f : [a, b]→ R. Then

f is AC on [a, b] ⇐⇒ ∃ a Lebesgue integrable g on [a, b] with f(x) = f(a) +
∫ x
a g(t) dt ∀x ∈ [a, b].

Before we begin the proof, we need a simple lemma about non-negative integrable functions on an

abstract measure space (X,A, µ).

Lemma 5. Let (X,A, µ) be any measure space and f : X → [0,∞) any µ-integrable function.

Then for each ε > 0 there is a δ > 0 such that
∫
A f dµ < ε for all A ∈ A with µ(A) < δ.

Proof: For N = 1, 2, . . ., let fN = min{f,N}, so that fN is an increasing sequence of non-

negative A-measurable functions which converges pointwise to f on X, and hence by the monotone

convergence theorem we have ∫
X

(
f − fN

)
→ 0 as N →∞.

Thus for given ε > 0 we can select N such that
∫
X

(
f − fN

)
< ε/2, and on the other hand trivially

for any set A ∈ A we have
∫
A fN < Nµ(A), and so∫

A
f =

∫
A
fN +

∫
A

(
f − fN

)
≤ Nµ(A) +

∫
X

(
f − fN

)
≤ Nµ(A) + ε/2 < ε

8



provided µ(A) < ε/2N , and so the lemma is proved with δ = ε/2N .

Proof of Theorem 3 “⇐”: We are given f(x) = f(a) +
∫ x
a g(t) dt where g : [a, b] → R is

Lebesgue integrable on [a, b]. According to Lemma 5, for a given ε > 0 we can choose δ > 0

such that if A is a λ-measurable subset of [a, b] with λ(A) < δ then
∫
A |g| dλ < ε. So, with

this δ, let [xi, yi], i = 1, . . . , N , be any p.w.d. intervals in [a, b] with
∑N

i=1(yi − xi) < δ. Then∑N
i=1 |f(yi) − f(xi)| =

∑N
i=1 |

∫ yi
xi
g(t) dt| ≤

∑N
i=1

∫
[xi,yi]

|g(t)| dt =
∫
∪Ni=1[xi,yi]

|g(t)| dt < ε, so we

have checked the definition of AC.

Proof of Theorem 3 “⇒”: Recall from the above discussion that AC⇒ BV⇒ f = f1−f2 where

f1, f2 are increasing on [a, b], so by Theorem 1 we have f ′ is Lebesgue integrable, so to complete the

proof we just need to show that f(x)−
∫ x
a f
′(t) dt is constant on [a, b] (then we have the required

conclusion with g = f ′). So let

F (x) = f(x)−
∫ x
a f
′(t) dt,

and observe that by Corollary 3 we have F ′(x) = 0 for λ-a.e. x ∈ (a, b). Thus with

S = {x ∈ (a, b) : F ′(x) exists and = 0}
we have λ([a, b] \ S) = 0 and of course, by definition of F ′(x) = 0, for any given ε > 0 the set S

is covered finely by the collection B of closed intervals [x, y] ⊂ (a, b) such that |F (y) − F (x)| ≤
ε(y − x). Then by the Vitali Covering Lemma, for each ε, δ > 0 there are p.w.d. closed intervals

[x1, y1], . . . , [xN , yN ] ⊂ (a, b) with

λ([a, b] \ (∪Nj=1[xj , yj ])) = λ(S \ (∪Nj=1[xj , yj ])) < δ

|F (yi)− F (xi)| ≤ ε(yi − xi), i = 1, . . . , N.

Without loss of generality we can assume that these intervals [xi, yi] are labelled so that a < x1 <

y1 < x2 < y2 · · · < xN < yN < b, and then

[a, b] \ (∪Ni=1(xi, yi)) = ∪Nk=0[yk, xk+1] and hence
∑N

k=0(xk+1 − yk) < δ,

where for convenience of notation we set y0 = a and xN+1 = b.

Now f is given to be AC and
∫ x
a f
′(t) dt is AC by the proof of “⇐” above, so F is AC, and hence

for any given ε > 0 we can choose the above δ > 0 such that
∑N

k=0 |F (xk+1) − F (yk)| < ε (notice

this inequality holds by definition of AC because
∑N

k=0(xk+1 − yk) = λ([a, b] \ ∪Ni=1[xi, yi]) < δ).

Then, with z0 = a, z1 = x1, z2 = y1, . . . , z2N−1 = xN , z2N = yN , z2N+1 = b, we have

|F (b)− F (a)| =
∣∣∑2N+1

j=1

(
F (zj)− F (zj−1)

)∣∣
=
∣∣∑N

i=1

(
F (yi)− F (xi)

)
+
∑N

k=0

(
F (xk+1)− F (yk)

)∣∣
≤ ε
∑N

i=1(yi − xi) + ε ≤ (b− a+ 1)ε.

Thus, since ε > 0 is arbitrary, we have proved F (b) = F (a). Since we can repeat the proof on the

interval [a, x] for any x ∈ (a, b], this shows that F (x) is constant (equal to f(a)) on [a, b].

We conclude this supplement by showing that the method used to prove Lemma 1 and Lemma 2

above easily modifies to give the following theorem about differentiation of locally finite Borel

measures in Rn.

Theorem 4. Let µ be a Borel measure on Rn which is finite on bounded Borel sets. Then the

density Θµ(x) = limρ↓0
µ(Bρ(x))
ωnρn

exists and is real for λ-a.e. x ∈ Rn.

Proof: We have to show that {x : Θµ∗(x) < Θ∗µ(x)} has measure zero and also that Θ∗µ(x) < ∞
for λ-a.e. x ∈ Rn, where Θ∗µ(x) = lim supρ↓0

µ(Bρ(x))
λ(Bρ(x)) and Θµ∗(x) = lim infρ↓0

µ(Bρ(x))
λ(Bρ(x)) .
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First observe that if β > 0, U ⊂ Rn is a bounded open set, and if and S ⊂ {x ∈ U : Θ∗µ(x) > β},

then (since x ∈ S ⇒ µ(Bρj (x))

λ(Bρj (x)) > β for some sequence ρj ↓ 0) the set of closed balls Bρ(x)

such that Bρ(x) ⊂ U and µ(Bρ(x)) > βλ(Bρ(x)) covers S finely. Hence by Vitali (for Lebesgue

measure), there is a p.w.d. collection Bρj (xj) ⊂ U such that µ(Bρj (xj)) > βλ(Bρj (xj)) and λ(S \
(∪Nj=1Bρj (xj)))→ 0 as N →∞. Thus if ε > 0 there is N such that

βλ(S) ≤ βλ(S ∩ (∪Nj=1Bρj (xj))) + βλ(S \ (∪Nj=1Bρj (xj)))

≤ β
∑N

j=1λ(S ∩Bρj (xj)) + βλ(S \ (∪Nj=1Bρj (xj)))

≤
∑N

j=1µ(Bρj (xj)) + βε = µ(∪jBρj (xj)) + βε.

Thus since ε > 0 is arbitrary and since ∪jBρj (xj) ⊂ U we thus have

(1) βλ(S) ≤ µ(U).

Notice that in particular if we take S to be the set of points x in the ball U = B̆j(0) where

Θ∗µ(x) = ∞ then we can apply this with each β, thus implying that λ(S) = 0. Thus (since j is

arbitary) we have

(2) Θ∗µ(x) <∞, λ a.e. x ∈ Rn.

Next observe that

{x ∈ Rn : Θµ∗(x) < Θ∗µ(x)} = ∪α,β rational,0<α<β,k∈{1,2,...}Sα,β,k

where

Sα,β,k = {x ∈ Rn : |x| < k, Θµ∗(x) < α < β < Θ∗µ(x)}

Now let V be an open set such that V ⊃ Sα,β,k and such that λ(V ) < λ(Sα,β,k)+ε, and let B be the

set of closed ballsBρ(x) ⊂ V such that µ(Bρ(x)) < αλ(Bρ(x)). Then evidently B covers Sα,β,k finely,

and so by the Vitali lemma there are p.w.d. balls Bρj (xj) in B with λ(Sα,β,k \ (∪Nj=1Bρj (xj)))→ 0

as N →∞, and for each j

µ(B̆ρj (xj)) ≤ µ(Bρj (xj)) ≤ αλ(Bρj (xj)).

But then for any given ε > 0 we can select N so that λ(Sα,β,k \ (∪Nj=1Bρj (xj))) < ε and then for

each j = 1, . . . , N use (1) with Sα,β,k ∩ B̆ρj (xj) in place of S and U = B̆ρj (xj), giving

βλ(Sα,β,k ∩ (∪Nj=1B̆ρj (xj))) ≤
∑N

j=1βλ(Sα,β,k ∩ B̆ρj (xj))

≤
∑N

j=1µ(B̆ρj (xj)) ≤ α
∑N

j=1λ(Bρj (xj)) ≤ αλ(∪Nj=1Bρj (xj))

≤ αλ(V ) ≤ αλ(Sα,β,k) + αε.

Since λ(Sα,β,k \ (∪Nj=1Bρj (xj))) < ε, this gives

βλ(Sα,β,k) ≤ αλ(Sα,β,k) + (α+ β)ε,

and letting ε→ 0 we thus have

βλ(Sα,β,k) ≤ αλ(Sα,β,k) <∞;

that is, λ(Sα,β,k) = 0 as required.
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