Mathematics Department Stanford University
 Math 205A 2013-Lecture Supplement \#3
 Differentiability Theory for Functions and Measures

As a preliminary to the discussion of differentiation of functions and measures, we need the following important covering lemma, which we state and prove in \mathbb{R}^{n} but which clearly has a natural extension to metric spaces:

Lemma (5-times covering lemma). Let \mathcal{B} be any collection of closed balls in \mathbb{R}^{n} with the property that $\cup_{B \in \mathcal{B}} B$ is contained in a bounded set. Then there is a p.w.d. collection $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots} \subset \mathcal{B}$ such that $\cup_{B \in \mathcal{B}} B \subset \cup_{j=1}^{\infty} B_{5 \rho_{j}}\left(x_{j}\right)$. The subcollection $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots}$. can in fact be chosen so that:

$$
\begin{equation*}
B \in \mathcal{B} \Longrightarrow \exists j \text { with } B \cap B_{\rho_{j}}\left(x_{j}\right) \neq \emptyset \text { and } \rho_{j} \geq \frac{1}{2} \text { radius } B . \tag{*}
\end{equation*}
$$

Terminology: As in lecture, "p.w.d." is an abbreviation for "pairwise disjoint" and here $B_{\rho}(y)$ denotes the closed ball with center y and radius $\rho>0$ while $\breve{B}_{\rho}(y)$ denotes the corresponding open ball.

Proof of the 5-times Lemma: Let $R_{0}=\sup \{$ radius $B: B \in \mathcal{B}\}(<\infty)$, and write $\mathcal{B}=\cup_{k=1}^{\infty} \mathcal{B}_{k}$, where $\mathcal{B}_{k}=\left\{B \in \mathcal{B}: 2^{-k} R_{0}<\right.$ radius $\left.B \leq 2^{-k+1} R_{0}\right\}$. We proceed to inductively select pairwise disjoint subcollections $\mathcal{M}_{k} \subset \mathcal{B}_{k}$ as follows:
\mathcal{M}_{1} is any maximal p.w.d. subcollection of \mathcal{B}_{1} (meaning contains a maximum number of balls subject to the stated condition of being a p.w.d. collection). Assume now that $k \geq 2$ and that we have already selected \mathcal{M}_{j} for $j=1, \ldots, k-1$. Then select \mathcal{M}_{k} to be a maximal p.w.d. subcollection of $\left\{B: B \in \mathcal{B}_{k}\right.$ and $\left.B \cap E=\emptyset \forall E \in \cup_{j=1}^{k-1} \mathcal{M}_{j}\right\}$. Of course we take $\mathcal{M}_{k}=\emptyset$ in case $\left\{B \in \mathcal{B}_{k}: B \cap E=\emptyset \forall E \in \cup_{j=1}^{k-1} \mathcal{M}_{j}\right\}$ is empty. Now we define

$$
\mathcal{M}=\cup_{k=1}^{\infty} \mathcal{M}_{k}
$$

and observe that \mathcal{M} is a countable p.w.d. collection by construction, so the balls in the collection \mathcal{M} can be written as a sequence $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots}$ of p.w.d. balls. We claim that in fact the additional property ($*$) holds. Indeed if $B \in \mathcal{B}$ then $B \in \mathcal{B}_{k_{0}}$ for some unique $k_{0} \geq 1$, and we claim that in fact then $B \cap E \neq \emptyset$ for some $E \in \cup_{j=1}^{k_{0}} \mathcal{M}_{j}$. Otherwise for $k_{0} \geq 2$ we would have both that $B \cap E=\emptyset$ for each ball $E \in \mathcal{M}_{k_{0}}$ and also $B \cap E=\emptyset$ for each ball $E \in \cup_{j=1}^{k_{0}-1} \mathcal{M}_{j}$ which means that $\mathcal{M}_{k_{0}} \cup\{B\}$ is a p.w.d. collection of balls in $\mathcal{B}_{k_{0}}$ which do not intersect any ball in the collection $\cup_{j=1}^{k_{0}-1} \mathcal{M}_{j}$, thus contradicting the maximality of $\mathcal{M}_{k_{0}}$. For $k_{0}=1$ the argument is even simpler: $B \cap E=\emptyset$ for every $E \in \mathcal{M}_{1}$ implies that $\mathcal{M}_{1} \cup\{B\}$ is a p.w.d. subcollection of \mathcal{B}_{1}, thus contradicting the maximality of \mathcal{M}_{1}. Thus we have shown that $B \cap B_{\rho}(x) \neq \emptyset$ for some ball $B_{\rho}(x) \in \cup_{j=1}^{k_{0}} \mathcal{M}_{j}$. But then radius $B_{\rho}(x) \geq 2^{-k_{0}} R_{0}=\frac{1}{2} 2^{1-k_{0}} R_{0} \geq \frac{1}{2}$ radius B. Thus $B \cap B_{\rho}(x) \neq \emptyset$ and $\rho \geq \frac{1}{2}$ radius B which is ($*$). Now, since ($*$) evidently implies that $B \subset B_{5 \rho}(x)$, the proof is complete.
We have now the following important corollary of the 5 -times covering lemma:
Corollary 1. Let \mathcal{B} be any collection of closed balls in \mathbb{R}^{n} with the property that $\cup_{B \in \mathcal{B}} B$ is contained in a bounded set, and suppose $A \subset \mathbb{R}^{n}$. If \mathcal{B} covers A finely in the sense that for each $x \in A$ and each $\rho>0$ there is a ball $B \in \mathcal{B}$ such that $x \in B$ and radius $B<\rho$, then there is a p.w.d. subcollection $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots} \subset \mathcal{B}$ with the properties that $\cup_{B \in \mathcal{B}} B \subset \cup_{j} B_{5 \rho_{j}}\left(x_{j}\right)$ and

$$
A \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right) \subset \cup_{j=N+1}^{\infty} B_{5 \rho_{j}}\left(x_{j}\right) \text { for each } N \geq 1
$$

Proof: The 5 -times covering lemma can be applied to \mathcal{B}, giving a p.w.d. subcollection of closed balls $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots} \subset \mathcal{B}_{1}$ such that

$$
\begin{equation*}
\left.B \in \mathcal{B} \Longrightarrow \exists j \text { with } B \cap B_{\rho_{j}}\left(x_{j}\right) \neq \emptyset \text { (and hence } B \subset B_{5 \rho_{j}}\left(x_{j}\right)\right) . \tag{1}
\end{equation*}
$$

We claim that this sequence $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots}$ automatically has the additional property (\ddagger). To see this, take any $N \geq 1$ and let $x \in A \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)$. Since $\mathbb{R}^{n} \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)$ is an open set and since \mathcal{B} covers A finely, we can certainly find a ball $B \in \mathcal{B}$ with $x \in B \subset \mathbb{R}^{n} \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)$ and hence for this B the j in (1) must be $\geq N+1$. That is, $x \in B \subset \cup_{j=N+1}^{\infty} B_{5 \rho_{j}}\left(x_{j}\right)$, which completes the proof.

An important corollary of this is the following Vitali covering lemma.
Lemma (Vitali Covering Lemma). Let μ be any outer measure on \mathbb{R}^{n} such that all Borel sets are μ-measurable and such that there is a fixed constant $\beta \in(0, \infty)$ with $\mu\left(B_{2 \rho}(x)\right) \leq \beta \mu\left(B_{\rho}(x)\right)<\infty$ for each closed ball $B_{\rho}(x)$ (note that these hypotheses hold with $\mu=$ Lebesgue outer measure λ in case $\beta=2^{n}$), let $A \subset \mathbb{R}^{n}$ be bounded and let \mathcal{B} be any collection of closed balls which cover A finely. Then there is a p.w.d. subcollection $\left\{B_{\rho_{j}}\left(x_{j}\right)\right\}_{j=1,2, \ldots} \subset \mathcal{B}$ such that $\mu\left(A \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right) \rightarrow 0$ as $N \rightarrow \infty$.

Remark 1: Actually the conclusion holds without the hypothesis that $\mu\left(B_{2 \rho}(x)\right) \leq \beta \mu\left(B_{\rho}(x)\right)$, provided that the collection \mathcal{B} not only covers A finely, but actually that for each point $x \in A$ we have balls $B_{\rho_{j}}(x) \in \mathcal{B}$ (i.e. balls in \mathcal{B} with center at x) with $\rho_{j} \downarrow 0$. This result (which is important in geometric analysis) requires a more powerful covering lemma (the Besicovich covering lemma) in place of the 5 -times covering lemma, and we will not discuss it here.
Proof of the Vitali Lemma: Let U be an open ball containing A and let $\mathcal{B}_{1}=\{B \in \mathcal{B}: B \subset$ $U\}$. Evidently \mathcal{B}_{1} still covers A finely, hence by the corollary above we can choose p.w.d. balls $B_{\rho_{1}}\left(x_{1}\right), B_{\rho_{2}}\left(x_{2}\right), \ldots \in \mathcal{B}_{1}$ such that

$$
A \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right) \subset \cup_{j=N+1}^{\infty} B_{5 \rho_{j}}\left(x_{j}\right) \text { for each } N \geq 1
$$

Observe that for each j we have $\mu\left(B_{5 \rho_{j}}\left(x_{j}\right)\right) \leq \mu\left(B_{8 \rho_{j}}\left(x_{j}\right)\right) \leq \beta^{3} \mu\left(B_{\rho_{j}}\left(x_{j}\right)\right)$ by definition of β. So $\mu\left(\cup_{j=N+1}^{\infty} B_{5 \rho_{j}}\left(x_{j}\right)\right) \leq \sum_{j=N+1}^{\infty} \mu\left(B_{5 \rho_{j}}\left(x_{j}\right)\right) \leq \beta^{3} \sum_{j=N+1}^{\infty} \mu\left(B_{\rho_{j}}\left(x_{j}\right)\right)=\beta^{3} \mu\left(\cup_{j=N+1}^{\infty} B_{\rho_{j}}\left(x_{j}\right)\right) \leq$ $\beta^{3} \mu(U)<\infty$, where we used the pairwise disjointness and μ-measurability of the $B_{\rho_{j}}\left(x_{j}\right)$. Thus $\mu\left(\cup_{j=N+1}^{\infty} B_{5 \rho_{j}}\left(x_{j}\right)\right) \rightarrow 0$ as $N \rightarrow \infty$, and the proof is complete.

In the following lemmas f is an arbitrary function : $[a, b] \rightarrow \mathbb{R}$, and for $x \in(a, b)$ we let

$$
\bar{D} f(x)=\limsup _{y \rightarrow x} \frac{f(x)-f(y)}{x-y}, \quad \underline{D} f(x)=\liminf _{y \rightarrow x} \frac{f(x)-f(y)}{x-y} .
$$

Notice that $-\infty \leq \underline{D} f(x) \leq \bar{D} f(x) \leq \infty$, and f is classically differentiable at x if and only if $-\infty<\bar{D} f(x)=\underline{D} f(x)<\infty$. Also, $\underline{D} f(x) \geq 0$ if f is increasing.

Lemma 1. If $\varepsilon>0, \beta \in \mathbb{R}, U \subset(a, b)$ is open, and if $S \subset U$ is an arbitrary set such that $\bar{D} f(x)>\beta$ at each point of S, then there are pairwise disjoint closed intervals $\left\{\left[x_{j}, y_{j}\right]\right\}_{j=1, \ldots, N}$ such that

$$
\begin{aligned}
\cup_{j}\left[x_{j}, y_{j}\right] \subset U, \quad \lambda\left(S \backslash \cup_{j=1}^{N}\left[x_{j}, y_{j}\right]\right)<\varepsilon \\
\beta\left(y_{j}-x_{j}\right) \leq f\left(y_{j}\right)-f\left(x_{j}\right), \quad j=1, \ldots, N .
\end{aligned}
$$

Proof: We observe that by definition of $\bar{D} f$, for every $x \in S$ we must have $\left(z_{j}-x\right)^{-1}\left(f\left(z_{j}\right)-f(x)\right)>$ β for some sequence $z_{j} \rightarrow x$ such that $I_{x, j} \subset U$ for each j, where we let $I_{x, j}=\left[x, z_{j}\right]$ if $z_{j}>x$ and $I_{x, j}=\left[z_{j}, x\right]$ if $z_{j}<x$. Notice that then the collection $\mathcal{I}=\left\{I_{x, j}: x \in S, j=1,2, \ldots\right\}$ covers S finely and each $I_{x, j} \subset U$. Then by the Vitali covering lemma there are pairwise disjoint intervals $\left\{\left[x_{j}, y_{j}\right]\right\}_{j=1, \ldots, N} \subset \mathcal{I}$ such that $\lambda\left(S \backslash \cup_{j=1}^{N}\left[x_{j}, y_{j}\right]\right)<\varepsilon$. Since by definition we have $f\left(y_{j}\right)-f\left(x_{j}\right)>\beta\left(y_{j}-x_{j}\right)$ for each j, this completes the proof.

Remark 2: Notice that if $\beta>0, a<b$, and if f is increasing (i.e. $a \leq x \leq y \leq b \Rightarrow f(x) \leq f(y)$), then we can apply the above lemma with $U=(a, b)$ to yield p.w.d. intervals $\left[x_{i}, y_{i}\right]$ such that $\left[x_{i}, y_{i}\right] \subset(a, b), \beta\left(y_{i}-x_{i}\right) \leq f\left(y_{i}\right)-f\left(x_{i}\right)$ and $\lambda\left(S \cap(a, b) \backslash\left(\cup_{i}\left[x_{i}, y_{i}\right]\right)\right)<\varepsilon$. Assuming that we order these p.w.d. intervals $\left[x_{i}, y_{i}\right]$ so that $y_{i-1}<x_{i}$ for $i \in\{2, \ldots, N\}$, we then have

$$
\begin{aligned}
\beta \lambda(S) & \leq \beta \lambda\left(S \backslash \cup_{j=1}^{N}\left(x_{j}, y_{j}\right)\right)+\beta \sum_{j=1}^{N}\left(y_{j}-x_{j}\right) \\
& \leq \beta \varepsilon+\sum_{j=1}^{N}\left(f\left(y_{j}\right)-f\left(x_{j}\right)\right) \\
& \leq \beta \varepsilon+\sum_{j=1}^{N}\left(f\left(y_{j}\right)-f\left(y_{j-1}\right)\right)\left(\text { using notation } y_{0}=x_{1}\right) \\
& =\beta \varepsilon+f\left(y_{N}\right)-f\left(x_{1}\right) \leq \beta \varepsilon+f(b)-f(a),
\end{aligned}
$$

which, since $\varepsilon>0$ is arbitrary, gives

$$
\beta \lambda(S) \leq f(b)-f(a)
$$

Notice particularly that if we take $S=\{x \in(a, b): \bar{D} f(x)=+\infty\}$ then we can apply this for each $\beta>0$ and hence conclude that $\lambda(S)=0$, i.e.

$$
f:[a, b] \rightarrow \mathbb{R} \text { increasing } \Rightarrow \bar{D} f(x)<\infty, \quad \lambda \text {-a.e. } x \in(a, b) .
$$

Observe that Lemma 1 , with $-f$ in place of f and $\beta=-\alpha$, implies:
Lemma 2. If $\varepsilon>0, \alpha \in \mathbb{R}, U \subset(a, b)$ is open, and if $S \subset U$ is an arbitrary set such that $\underline{D} f(x)<\alpha$ at each point of S, then there are pairwise disjoint closed intervals $\left\{\left[x_{j}, y_{j}\right]\right\}_{j=1, \ldots, N}$ such that

$$
\begin{aligned}
& \cup_{j}\left[x_{j}, y_{j}\right] \subset U, \quad \lambda\left(S \backslash \cup_{j}\left[x_{j}, y_{j}\right]\right)<\varepsilon \\
& f\left(y_{j}\right)-f\left(x_{j}\right) \leq \alpha\left(y_{j}-x_{j}\right), \quad j=1, \ldots, N .
\end{aligned}
$$

We can now easily prove the following important differentiability theorem for increasing functions:
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function. Then f is differentiable λ-a.e. in (a, b) (i.e. $\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}$ exists and is real for λ-a.e. $x \in(a, b)$). Furthermore the derivative f^{\prime} (defined to be e.g. zero on the set of measure zero where f is not differentiable) is a non-negative integrable function and

$$
\int_{a}^{b} f^{\prime}(t) d t \leq f(b)-f(a)
$$

Proof: Let $T=\{x \in(a, b): \bar{D} f(x)>\underline{D} f(x)\}$. Observe that (since $\underline{D} f(x) \geq 0$)

$$
\begin{equation*}
T=\cup_{0<\alpha<\beta, \alpha, \beta \text { rational }} S_{\alpha \beta}, \tag{1}
\end{equation*}
$$

where $S_{\alpha \beta}=\{x \in[a, b]: \bar{D} f(x)>\beta>\alpha>\underline{D} f(x)\}$.
Now let $\varepsilon>0,0<\alpha<\beta$, and choose an open set $U \subset(a, b)$ with $S_{\alpha \beta} \subset U$ and $\lambda(U)<\lambda\left(S_{\alpha \beta}\right)+\varepsilon$. Then we can apply Lemma 2 with $S=S_{\alpha \beta}$; this gives p.w.d. intervals $\left[x_{i}, y_{i}\right]$ with $f\left(y_{i}\right)-f\left(x_{i}\right) \leq$ $\alpha\left(y_{i}-x_{i}\right)$ and $\cup_{i}\left[x_{i}, y_{i}\right] \subset U$, so that $\sum_{i}\left(y_{i}-x_{i}\right) \leq \lambda(U) \leq \lambda\left(S_{\alpha \beta}\right)+\varepsilon$ and $\lambda\left(S_{\alpha \beta} \backslash\left(\cup_{j}\left[x_{j}, y_{j}\right]\right)\right)<\varepsilon$.

Then we apply Remark 2 (following Lemma 1) with $S_{\alpha \beta} \cap\left(x_{i}, y_{i}\right)$ in place of S and with (x_{j}, y_{j}) in place of (a, b), whence $\beta \lambda\left(S_{\alpha \beta} \cap\left(x_{j}, y_{j}\right)\right) \leq f\left(y_{j}\right)-f\left(x_{j}\right) \leq \alpha\left(y_{j}-x_{j}\right)$ for each j. Then

$$
\beta \lambda\left(S_{\alpha \beta} \cap\left[x_{j}, y_{j}\right]\right) \leq f\left(y_{j}\right)-f\left(x_{j}\right) \leq \alpha\left(y_{j}-x_{j}\right), \quad j=1, \ldots, N,
$$

and hence summing on j we have

$$
\beta \lambda\left(S_{\alpha \beta} \cap\left(\cup_{j=1}^{N}\left[x_{j}, y_{j}\right]\right)\right) \leq \alpha \sum_{j=1}^{N}\left(y_{j}-x_{j}\right) \leq \alpha \lambda(U) \leq \alpha \lambda\left(S_{\alpha \beta}\right)+\alpha \varepsilon,
$$

and since $\lambda\left(S_{\alpha \beta} \backslash\left(\cup_{j}\left[x_{j}, y_{j}\right]\right)\right)<\varepsilon$ we thus obtain

$$
\beta \lambda\left(S_{\alpha \beta}\right) \leq \alpha \lambda\left(S_{\alpha \beta}\right)+(\alpha+\beta) \varepsilon .
$$

Since $\varepsilon>0$ is arbitrary we thus conclude $\beta \lambda\left(S_{\alpha \beta}\right) \leq \alpha \lambda\left(S_{\alpha \beta}\right)$, so that $\lambda\left(S_{\alpha \beta}\right)=0$ for each $\alpha<\beta$, whence by (1) we have $\lambda(T)=0$.
Keeping in mind that $\bar{D} f(x)<\infty$ a.e. $x \in(a, b)$ by Remark 2, we have thus proved that $\bar{D} f(x)=$ $\underline{D} f(x)<\infty$ for a.e. $x \in(a, b)$, which is the same as saying f^{\prime} (the classical derivative of f) exists for a.e. $x \in(a, b)$, as required.
To prove the last part of the theorem, we first extend f to all of \mathbb{R} by defining $g(x)=f(x)$ for $x \in[a, b], g(x)=f(a)$ for $x<a$, and $g(x)=f(b)$ for $x>b$. Then note that $g^{\prime}(x)=$ $\lim _{n \rightarrow \infty} n(f(x+1 / n)-f(x))$ for a.e. $x \in \mathbb{R}$, and hence g^{\prime} is a non-negative Lebesgue measurable function on \mathbb{R}, assuming we define it to e.g. be zero on the set of measure zero where g is not differentiable, and of course $g^{\prime}=f^{\prime}$ a.e. on (a, b). Also by Fatou's lemma we have

$$
\int_{a}^{b} f^{\prime}(t) d t \leq \liminf _{n \rightarrow \infty} \int_{a}^{b} n(g(t+1 / n)-g(t)) d t .
$$

But evidently $\int_{a}^{b} g(t+1 / n) d t=\int_{a+1 / n}^{b+1 / n} g(t) d t$, so $\int_{a}^{b} n(g(t+1 / n)-g(t)) d t=n \int_{b}^{b+1 / n} g(t) d t-$ $n \int_{a}^{a+1 / n} g(t) d t \leq f(b)-f(a)$, and hence

$$
\int_{a}^{b} f^{\prime}(t) d t \leq f(b)-f(a)
$$

as claimed.

Next we want to discuss Lebesgue's theorem on differentiation of the integral in \mathbb{R}^{n}. As a key preliminary, we need the following lemma.

Lemma 3. Suppose $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is locally Lebesgue integrable on \mathbb{R}^{n} (i.e. λ-measurable and integral over each ball is finite), and suppose $E \subset \mathbb{R}^{n}$ is λ-measurable. Then

$$
\lim _{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) d x=0 \text { for } \lambda \text {-a.e. } \xi \in \mathbb{R}^{n} \backslash E .
$$

Proof: The proof as a simple application of the Vitali covering lemma.
Let $k \in\{1,2, \ldots\}, \alpha>0$, let K be any compact subset of $E \cap \breve{B}_{k}(0)\left(\breve{B}_{k}(0)\right.$ the open ball of radius k and center 0),

$$
S_{\alpha}=\left\{\xi \in \breve{B}_{k}(0) \backslash E: \underset{\rho \downarrow 0}{\limsup } \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) d x>\alpha\right\} .
$$

Then for each $\xi \in S_{\alpha}$ there is a sequence $\rho_{j} \downarrow 0$ with $\rho_{j}^{-n} \int_{B_{\rho_{j}}(\xi) \cap E} f(x) d x>\alpha$ for each j, and hence $\mathcal{B}=\left\{B_{\rho}(\xi) \subset \breve{B}_{k}(0) \backslash K: \xi \in S_{\alpha}\right.$ and $\left.\omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) d x>\alpha\right\}$ covers S_{α} finely, so by the Vitali covering lemma there are p.w.d. balls $B_{\rho_{j}}\left(\xi_{j}\right) \in \mathcal{B}$ with

$$
\lambda\left(S_{\alpha} \backslash\left(\cup_{j=1}^{\infty} B_{\rho_{j}}\left(\xi_{j}\right)\right)\right)=0 \text { and } \int_{B_{\rho_{i}}\left(\xi_{i}\right) \cap E} f(x) d x>\alpha \omega_{n} \rho_{i}^{n}, \quad i=1,2, \ldots
$$

Then by subadditivity of λ

$$
\begin{aligned}
\alpha \lambda\left(S_{\alpha}\right) & \leq \alpha \lambda\left(S_{\alpha} \backslash\left(\cup_{j=1}^{\infty} B_{\rho_{j}}\left(x_{j}\right)\right)\right)+\alpha \sum_{j=1}^{\infty} \lambda\left(B_{\rho_{j}}\left(\xi_{j}\right)\right) \\
& \leq \sum_{j=1}^{\infty} \int_{B_{\rho_{j}}\left(\xi_{j}\right) \cap E} f(x) d x=\int_{\cup_{j=1}^{\infty} B_{\rho_{j}}\left(\xi_{j}\right) \cap E} f(x) d x \leq \int_{\breve{B}_{k}(0) \cap E \backslash K} f(x) d x,
\end{aligned}
$$

Now, as proved earlier, we can find an increasing sequence $K_{j} \subset \breve{B}_{k}(0) \cap E$ of compact sets with $\lambda\left(\breve{B}_{k}(0) \cap E \backslash K_{j}\right) \rightarrow 0$, so we have actually proved

$$
\alpha \lambda\left(S_{\alpha}\right) \leq \int_{\mathbb{R}^{n}} \chi_{\breve{B}_{k}(0) \cap E \backslash K_{j}} f(x) d x
$$

and the right side $\rightarrow 0$ as $j \rightarrow \infty$ by the dominated convergence theorem, hence $\lambda\left(S_{\alpha}\right)=0$. Thus $\left\{\xi \in \breve{B}_{k}(0) \backslash E: \limsup _{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) d x>0\right\}=\cup_{j=1}^{\infty} S_{1 / j}$ is a countable union of sets of measure zero, hence has measure zero, so we have proved

$$
\lim _{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi) \cap E} f(x) d x=0 \text { for } \lambda \text {-a.e. } \xi \in \breve{B}_{k}(0) \backslash E \text {. }
$$

Since k is arbitrary this proves the lemma.
The following corollary is important:
Corollary 2. Let $E \subset \mathbb{R}^{n}$ be λ-measurable. Then

$$
\lim _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \lambda\left(E \cap B_{\rho}(\xi)\right)=\left\{\begin{array}{l}
0 \text { for } \lambda \text {-a.e. } \xi \in \mathbb{R}^{n} \backslash E \\
1 \text { for } \lambda \text {-a.e. } \xi \in E .
\end{array}\right.
$$

Proof: To get the first conclusion simply apply Lemma 3 with $f \equiv 1$. For the second conclusion observe that $1-\omega_{n}^{-1} \rho^{-n} \lambda\left(E \cap B_{\rho}(\xi)\right)=\omega_{n}^{-1} \rho^{-n} \lambda\left(B_{\rho}(\xi) \backslash E\right)$ and so Lemma 3 with $f \equiv 1$ and with $\mathbb{R}^{n} \backslash E$ in place of E gives the required result.

The Lebesgue differentiation theorem is then as follows:
Theorem 2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be locally Lebesgue integrable (i.e. λ-measurable and integral of $|f|$ over each ball is finite). Then

$$
\begin{align*}
& \lim _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x=f(\xi) \text { for } \lambda \text {-a.e. } \xi \in \mathbb{R}^{n} \tag{i}\\
& \lim _{\rho \downarrow 0} \rho^{-n} \int_{B_{\rho}(\xi)}|f(x)-f(\xi)| d x=0 \text { for } \lambda \text {-a.e. } \xi \in \mathbb{R}^{n} . \tag{ii}
\end{align*}
$$

Remarks (a) Notice that of course (ii) \Rightarrow (i) because

$$
\left|\omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x-f(\xi)\right|=\left|\omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)}(f(x)-f(\xi)) d x\right| \leq \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)}|f(x)-f(\xi)| d x,
$$

but in the proof we first establish (i) and show that (ii) follows directly from it.
(b) The points ξ where the limit in (ii) is valid are called the Lebesgue points of the function f.

Proof of Theorem 2: For each $i=1,2, \ldots$ we have

$$
\mathbb{R}^{n}=\cup_{j=-\infty}^{\infty} A_{i j}, \text { where } A_{i j}=\left\{x \in \mathbb{R}^{n}:(j-1) / i<f(x) \leq j / i\right\} .
$$

Notice that then for each $i=1,2, \ldots$ the sets $A_{i j}, j=1,2, \ldots$, are p.w.d. λ-measurable, and

$$
\begin{equation*}
\int_{B_{\rho}(\xi)} f(x) d x=\int_{B_{\rho}(\xi) \cap A_{i j}} f(x) d x+\int_{B_{\rho}(\xi) \backslash A_{i j}} f(x) d x \tag{1}
\end{equation*}
$$

and of course

$$
\omega_{n}^{-1} \rho^{-n} \lambda\left(B_{\rho}(\xi) \cap A_{i j}\right)(j-1) / i \leq \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi) \cap A_{i j}} f(x) d x \leq j / i
$$

hence (1) implies

$$
\begin{equation*}
\omega_{n}^{-1} \rho^{-n} \lambda\left(B_{\rho}(\xi) \cap A_{i j}\right)(j-1) / i \leq \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x-\omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi) \backslash A_{i j}} f(x) d x \leq j / i \tag{2}
\end{equation*}
$$

By Lemma 3 (with $E=\mathbb{R}^{n} \backslash A_{i j}$) and Corollary 2 (with $E=A_{i j}$) we then have

$$
\begin{equation*}
(j-1) / i \leq \liminf _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x \leq \underset{\rho \downarrow 0}{\lim \sup } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x \leq j / i \tag{3}
\end{equation*}
$$

for λ-a.e. $\xi \in A_{i j}$, which means (3) holds for each $\xi \in A_{i j} \backslash E_{i j}$, where $\lambda\left(E_{i j}\right)=0$. Since $(j-1) / i<$ $f(\xi) \leq j / i$ for all $\xi \in A_{i j}$, (3) implies

$$
\begin{equation*}
f(\xi)-1 / i \leq \liminf _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x \leq \underset{\rho \downarrow 0}{\lim \sup } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x \leq f(\xi)+1 / i \tag{4}
\end{equation*}
$$

for each $\xi \in A_{i j} \backslash E$ where $E=\cup_{k=1}^{\infty} \cup_{\ell=-\infty}^{\infty} E_{k \ell}$ has measure zero and does not depend on the indices i, j. Since $\cup_{j=-\infty}^{\infty} A_{i j}=\mathbb{R}^{n}$ we thus have

$$
f(\xi)-1 / i \leq \underset{\rho \downarrow 0}{\lim \inf } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x \leq \underset{\rho \downarrow 0}{\lim \sup } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x \leq f(\xi)+1 / i
$$

for every $i=1,2, \ldots$ and every $\xi \in \mathbb{R}^{n} \backslash E$, and hence

$$
\underset{\rho \downarrow 0}{\liminf } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x=\underset{\rho \downarrow 0}{\lim \sup } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)} f(x) d x=f(\xi), \quad \forall \xi \in \mathbb{R}^{n} \backslash E,
$$

so (i) is proved.
To prove (ii), let q_{1}, q_{2}, \ldots be any countable dense subset of \mathbb{R}. Applying (i) to $\left|f(x)-q_{j}\right|$ we have

$$
\lim _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)}\left|f(x)-q_{j}\right|=\left|f(\xi)-q_{j}\right|, \quad \forall \xi \in \mathbb{R}^{n} \backslash E_{j}
$$

where $\lambda\left(E_{j}\right)=0$, hence

$$
\begin{equation*}
\lim _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)}\left|f(x)-q_{j}\right|=\left|f(\xi)-q_{j}\right|, \quad \forall j=1,2, \ldots \text { and } \forall \xi \in \mathbb{R}^{n} \backslash E, \tag{5}
\end{equation*}
$$

where $E=\cup_{\ell=1}^{\infty} E_{\ell}$, so that $\lambda(E)=0$. If $\varepsilon>0$ and $\xi \in \mathbb{R}^{n} \backslash E$, we can select j such that $\left|f(\xi)-q_{j}\right|<\varepsilon$, and hence (5) gives

$$
\underset{\rho \downarrow 0}{\lim \sup } \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)}|f(x)-f(\xi)|<2 \varepsilon \forall \varepsilon>0,
$$

so $\lim _{\rho \downarrow 0} \omega_{n}^{-1} \rho^{-n} \int_{B_{\rho}(\xi)}|f(x)-f(\xi)|=0$ for each $\xi \in \mathbb{R}^{n} \backslash E$, which is (ii).
The Lebesgue theorem (Theorem 2) has an important corollary in the case $n=1$:
Corollary 3. If $a, b \in \mathbb{R}$ with $a<b$ and if $f:[a, b] \rightarrow \mathbb{R}$ is Lebesgue integrable, then the function $F(x)=\int_{a}^{x} f(t) d t$ is differentiable a.e. on (a, b) and $F^{\prime}(x)=f(x)$ for a.e. $x \in(a, b)$.

Proof: If $x \in(a, b)$ and $0<|h|<\min \{b-x, x-a\}$ then

$$
\begin{aligned}
\left|h^{-1}(F(x+h)-F(x))-f(x)\right| & =\left|h^{-1} \int_{x}^{x+h} f(t) d t-f(x)\right|=\left|h^{-1} \int_{x}^{x+h}(f(t)-f(x)) d t\right| \\
& \leq|h|^{-1} \int_{x-|h|}^{x+|h|}|f(t)-f(x)| d t
\end{aligned}
$$

which $\rightarrow 0$ as $h \rightarrow 0$ for a.e. $x \in(a, b)$ by part (ii) of Theorem 2 .
The above corollary will play an important role in the theory of absolutely continuous functions on $[a, b]$ which we want to develop below, but first we need to introduce the notion of bounded variation (BV):
Let $\mathcal{P}: x_{0}=a<x_{1}<x_{2}<\cdots<x_{N}=b$ be any partition of $[a, b], f:[a, b] \rightarrow \mathbb{R}$, and define

$$
\begin{aligned}
T_{f, \mathcal{P}} & =\sum_{j=1}^{N}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \\
T_{f} & =\sup T_{f, \mathcal{P}},
\end{aligned}
$$

where the sup is over all partitions \mathcal{P} of $[a, b] . T_{f}$ is called the total variation of f over the interval $[a, b]$.
Observe that $T_{f}=T_{f, \mathcal{P}}=f(b)-f(a)$ for each partition \mathcal{P} if f is increasing on $[a, b]$.
Definition: $f:[a, b] \rightarrow \mathbb{R}$ has bounded variation (BV) on $[a, b]$ if $T_{f}<\infty$.
Lemma 4. $f:[a, b] \rightarrow \mathbb{R}$ is $B V$ on $[a, b] \Longleftrightarrow f$ can be written as the difference of two increasing functions; i.e. there are increasing $f_{1}, f_{2}:[a, b] \rightarrow \mathbb{R}$ such that $f(x)=f_{1}(x)-f_{2}(x)$ for all $x \in[a, b]$.

Proof " \Rightarrow ": For any partition $\mathcal{P}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{N}=b$ we define

$$
P_{f, \mathcal{P}}=\sum_{j=1}^{N}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)_{+}, \quad N_{f, \mathcal{P}}=\sum_{j=1}^{N}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)_{-},
$$

where we use the notation $a_{+}=\max \{a, 0\}, a_{-}=\max \{-a, 0\}$, so that

$$
\begin{aligned}
P_{f, \mathcal{P}}-N_{f, \mathcal{P}} & =\sum_{j=1}^{N}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)=f(b)-f(a) \\
P_{f, \mathcal{P}}+N_{f, \mathcal{P}} & =\sum_{j=1}^{N}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|=T_{f, \mathcal{P}} .
\end{aligned}
$$

Observe that then $\sup _{\mathcal{P}} T_{f, \mathcal{P}}<\infty \Longleftrightarrow \sup _{\mathcal{P}} P_{f, \mathcal{P}}<\infty \Longleftrightarrow \sup _{\mathcal{P}} N_{f, \mathcal{P}}<\infty$ and

$$
\sup _{\mathcal{P}} T_{f, \mathcal{P}}<\infty \Rightarrow f(b)-f(a)=\sup _{\mathcal{P}} P_{f, \mathcal{P}}-\sup _{\mathcal{P}} N_{f, \mathcal{P}} .
$$

By applying the same argument on the interval $[a, x]$ (where $x \in(a, b]$) we have

$$
f(x)=f(a)+f_{1}(x)-f_{2}(x), \quad x \in[a, b],
$$

where $f_{1}(x)=\sup _{\text {paritions }} \mathcal{P}$ of $[a, x] \quad P_{f \mid[a, x], \mathcal{P}}$ and $f_{2}(x)=\sup _{\text {paritions } \mathcal{P} \text { of }[a, x]} N_{f \mid[a, x], \mathcal{P}}$ for $x \in(a, b]$ and $f_{1}(a)=f_{2}(a)=0$ are non-negative increasing functions on $[a, b]$, provided $\sup _{\mathcal{P}} T_{f, \mathcal{P}}<\infty$ (i.e. provided f is BV on $[a, b]$).
Proof " $\Leftarrow ": f=f_{1}-f_{2}$ with $f_{1}, f_{2}:[a, b] \rightarrow \mathbb{R}$ increasing $\Rightarrow T_{f, \mathcal{P}} \leq T_{f_{1}, \mathcal{P}}+T_{f_{2}, \mathcal{P}}=f_{1}(b)-$ $f_{1}(a)+f_{2}(b)-f_{2}(a)$ for each partition \mathcal{P} of $[a, b]$, so

$$
T_{f} \leq f_{1}(b)-f_{1}(a)+f_{2}(b)-f_{2}(a)<\infty .
$$

Next we want to introduce the concept of an absolutely continuous (AC) function:
Definition: $f:[a, b] \rightarrow \mathbb{R}$ is AC if for each $\varepsilon>0$ there is $\delta>0$ such that $\sum_{i=1}^{N}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\varepsilon$ whenever $\left[x_{1}, y_{1}\right], \ldots,\left[x_{N}, y_{N}\right]$ are p.w.d. closed intervals in $[a, b]$ with $\sum_{i=1}^{N}\left(y_{i}-x_{i}\right)<\delta$.
Remarks: (1) $f:[a, b] \rightarrow \mathbb{R}$ is $\mathrm{AC} \Rightarrow f$ is uniformly continuous on $[a, b]$, as one sees simply by using the above definition with just one interval $(N=1)$.
(2) For any $f:[a, b] \rightarrow \mathbb{R}, f$ is $\mathrm{AC} \Rightarrow f$ is BV .

To check (2) we let $\delta>0$ be the δ as in the definition of AC corresponding to $\varepsilon=1$, and let $\mathcal{Q}: a=y_{0}<y_{1}<\cdots<y_{Q}=b$ be any partition of $[a, b]$ with $y_{j}-y_{j-1}<\delta$ for each $j=1, \ldots, Q$. Now let \mathcal{P} be any partition of $[a, b]$ and let $\widetilde{\mathcal{P}}=\mathcal{P} \cup \mathcal{Q}$. Since refinement evidently does not decrease the value of $T_{f, \mathcal{P}}$ we then have

$$
T_{f, \mathcal{P}} \leq T_{f, \mathcal{P} \cup \mathcal{Q}} \leq T_{f\left[\left[y_{j-1}, y_{j}\right],(\mathcal{P} \cup \mathcal{Q}) \cap\left[y_{j-1}, y_{j}\right]\right.} \leq \sum_{j=1}^{Q} T_{f\left[y_{j-1}, y_{j}\right]} \leq Q
$$

since $T_{f\left[y_{j-1}, y_{j}\right]} \leq 1$ (because $y_{j}-y_{j-1}<\delta$) for each $j=1, \ldots, Q$.
We now state a theorem which completely characterizes AC functions, as follows:
Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$. Then
f is $A C$ on $[a, b] \Longleftrightarrow \exists$ a Lebesgue integrable g on $[a, b]$ with $f(x)=f(a)+\int_{a}^{x} g(t) d t \forall x \in[a, b]$.
Before we begin the proof, we need a simple lemma about non-negative integrable functions on an abstract measure space (X, \mathcal{A}, μ).

Lemma 5. Let (X, \mathcal{A}, μ) be any measure space and $f: X \rightarrow[0, \infty)$ any μ-integrable function. Then for each $\varepsilon>0$ there is a $\delta>0$ such that $\int_{A} f d \mu<\varepsilon$ for all $A \in \mathcal{A}$ with $\mu(A)<\delta$.
Proof: For $N=1,2, \ldots$, let $f_{N}=\min \{f, N\}$, so that f_{N} is an increasing sequence of nonnegative \mathcal{A}-measurable functions which converges pointwise to f on X, and hence by the monotone convergence theorem we have

$$
\int_{X}\left(f-f_{N}\right) \rightarrow 0 \text { as } N \rightarrow \infty .
$$

Thus for given $\varepsilon>0$ we can select N such that $\int_{X}\left(f-f_{N}\right)<\varepsilon / 2$, and on the other hand trivially for any set $A \in \mathcal{A}$ we have $\int_{A} f_{N}<N \mu(A)$, and so

$$
\int_{A} f=\int_{A} f_{N}+\int_{A}\left(f-f_{N}\right) \leq N \mu(A)+\int_{X}\left(f-f_{N}\right) \leq N \mu(A)+\varepsilon / 2<\varepsilon
$$

provided $\mu(A)<\varepsilon / 2 N$, and so the lemma is proved with $\delta=\varepsilon / 2 N$.
Proof of Theorem 3 " \Leftarrow ": We are given $f(x)=f(a)+\int_{a}^{x} g(t) d t$ where $g:[a, b] \rightarrow \mathbb{R}$ is Lebesgue integrable on $[a, b]$. According to Lemma 5 , for a given $\varepsilon>0$ we can choose $\delta>0$ such that if A is a λ-measurable subset of $[a, b]$ with $\lambda(A)<\delta$ then $\int_{A}|g| d \lambda<\varepsilon$. So, with this δ, let $\left[x_{i}, y_{i}\right], i=1, \ldots, N$, be any p.w.d. intervals in $[a, b]$ with $\sum_{i=1}^{N}\left(y_{i}-x_{i}\right)<\delta$. Then $\sum_{i=1}^{N}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|=\sum_{i=1}^{N}\left|\int_{x_{i}}^{y_{i}} g(t) d t\right| \leq \sum_{i=1}^{N} \int_{\left[x_{i}, y_{i}\right]}|g(t)| d t=\int_{\cup_{i=1}^{N}\left[x_{i}, y_{i}\right]}|g(t)| d t<\varepsilon$, so we have checked the definition of AC.
Proof of Theorem 3 " \Rightarrow ": Recall from the above discussion that $\mathrm{AC} \Rightarrow \mathrm{BV} \Rightarrow f=f_{1}-f_{2}$ where f_{1}, f_{2} are increasing on $[a, b]$, so by Theorem 1 we have f^{\prime} is Lebesgue integrable, so to complete the proof we just need to show that $f(x)-\int_{a}^{x} f^{\prime}(t) d t$ is constant on $[a, b]$ (then we have the required conclusion with $g=f^{\prime}$). So let

$$
F(x)=f(x)-\int_{a}^{x} f^{\prime}(t) d t,
$$

and observe that by Corollary 3 we have $F^{\prime}(x)=0$ for λ-a.e. $x \in(a, b)$. Thus with

$$
S=\left\{x \in(a, b): F^{\prime}(x) \text { exists and }=0\right\}
$$

we have $\lambda([a, b] \backslash S)=0$ and of course, by definition of $F^{\prime}(x)=0$, for any given $\varepsilon>0$ the set S is covered finely by the collection \mathcal{B} of closed intervals $[x, y] \subset(a, b)$ such that $|F(y)-F(x)| \leq$ $\varepsilon(y-x)$. Then by the Vitali Covering Lemma, for each $\varepsilon, \delta>0$ there are p.w.d. closed intervals $\left[x_{1}, y_{1}\right], \ldots,\left[x_{N}, y_{N}\right] \subset(a, b)$ with

$$
\begin{aligned}
& \lambda\left([a, b] \backslash\left(\cup_{j=1}^{N}\left[x_{j}, y_{j}\right]\right)\right)=\lambda\left(S \backslash\left(\cup_{j=1}^{N}\left[x_{j}, y_{j}\right]\right)\right)<\delta \\
& \left|F\left(y_{i}\right)-F\left(x_{i}\right)\right| \leq \varepsilon\left(y_{i}-x_{i}\right), \quad i=1, \ldots, N .
\end{aligned}
$$

Without loss of generality we can assume that these intervals [x_{i}, y_{i}] are labelled so that $a<x_{1}<$ $y_{1}<x_{2}<y_{2} \cdots<x_{N}<y_{N}<b$, and then

$$
[a, b] \backslash\left(\cup_{i=1}^{N}\left(x_{i}, y_{i}\right)\right)=\cup_{k=0}^{N}\left[y_{k}, x_{k+1}\right] \text { and hence } \sum_{k=0}^{N}\left(x_{k+1}-y_{k}\right)<\delta,
$$

where for convenience of notation we set $y_{0}=a$ and $x_{N+1}=b$.
Now f is given to be AC and $\int_{a}^{x} f^{\prime}(t) d t$ is AC by the proof of " \Leftarrow " above, so F is AC, and hence for any given $\varepsilon>0$ we can choose the above $\delta>0$ such that $\sum_{k=0}^{N}\left|F\left(x_{k+1}\right)-F\left(y_{k}\right)\right|<\varepsilon$ (notice this inequality holds by definition of AC because $\left.\sum_{k=0}^{N}\left(x_{k+1}-y_{k}\right)=\lambda\left([a, b] \backslash \cup_{i=1}^{N}\left[x_{i}, y_{i}\right]\right)<\delta\right)$. Then, with $z_{0}=a, z_{1}=x_{1}, z_{2}=y_{1}, \ldots, z_{2 N-1}=x_{N}, z_{2 N}=y_{N}, z_{2 N+1}=b$, we have

$$
\begin{aligned}
|F(b)-F(a)| & =\left|\sum_{j=1}^{2 N+1}\left(F\left(z_{j}\right)-F\left(z_{j-1}\right)\right)\right| \\
& =\left|\sum_{i=1}^{N}\left(F\left(y_{i}\right)-F\left(x_{i}\right)\right)+\sum_{k=0}^{N}\left(F\left(x_{k+1}\right)-F\left(y_{k}\right)\right)\right| \\
& \leq \varepsilon \sum_{i=1}^{N}\left(y_{i}-x_{i}\right)+\varepsilon \leq(b-a+1) \varepsilon .
\end{aligned}
$$

Thus, since $\varepsilon>0$ is arbitrary, we have proved $F(b)=F(a)$. Since we can repeat the proof on the interval $[a, x]$ for any $x \in(a, b]$, this shows that $F(x)$ is constant (equal to $f(a))$ on $[a, b]$.

We conclude this supplement by showing that the method used to prove Lemma 1 and Lemma 2 above easily modifies to give the following theorem about differentiation of locally finite Borel measures in \mathbb{R}^{n}.

Theorem 4. Let μ be a Borel measure on \mathbb{R}^{n} which is finite on bounded Borel sets. Then the density $\Theta_{\mu}(x)=\lim _{\rho \downarrow 0} \frac{\mu\left(B_{\rho}(x)\right)}{\omega_{n} \rho^{n}}$ exists and is real for λ-a.e. $x \in \mathbb{R}^{n}$.
Proof: We have to show that $\left\{x: \Theta_{\mu *}(x)<\Theta_{\mu}^{*}(x)\right\}$ has measure zero and also that $\Theta_{\mu}^{*}(x)<\infty$ for λ-a.e. $x \in \mathbb{R}^{n}$, where $\Theta_{\mu}^{*}(x)=\lim \sup _{\rho \downarrow 0} \frac{\mu\left(B_{\rho}(x)\right)}{\lambda\left(B_{\rho}(x)\right)}$ and $\Theta_{\mu *}(x)=\lim \inf _{\rho \downarrow 0} \frac{\mu\left(B_{\rho}(x)\right)}{\lambda\left(B_{\rho}(x)\right)}$.

First observe that if $\beta>0, U \subset \mathbb{R}^{n}$ is a bounded open set, and if and $S \subset\left\{x \in U: \Theta_{\mu}^{*}(x)>\beta\right\}$, then (since $x \in S \Rightarrow \frac{\mu\left(B_{\rho_{j}}(x)\right)}{\lambda\left(B_{\rho_{j}}(x)\right)}>\beta$ for some sequence $\rho_{j} \downarrow 0$) the set of closed balls $B_{\rho}(x)$ such that $B_{\rho}(x) \subset U$ and $\mu\left(B_{\rho}(x)\right)>\beta \lambda\left(B_{\rho}(x)\right)$ covers S finely. Hence by Vitali (for Lebesgue measure), there is a p.w.d. collection $B_{\rho_{j}}\left(x_{j}\right) \subset U$ such that $\mu\left(B_{\rho_{j}}\left(x_{j}\right)\right)>\beta \lambda\left(B_{\rho_{j}}\left(x_{j}\right)\right)$ and $\lambda(S \backslash$ $\left.\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right) \rightarrow 0$ as $N \rightarrow \infty$. Thus if $\varepsilon>0$ there is N such that

$$
\begin{aligned}
\beta \lambda(S) & \leq \beta \lambda\left(S \cap\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right)+\beta \lambda\left(S \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right) \\
& \leq \beta \sum_{j=1}^{N} \lambda\left(S \cap B_{\rho_{j}}\left(x_{j}\right)\right)+\beta \lambda\left(S \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right) \\
& \leq \sum_{j=1}^{N} \mu\left(B_{\rho_{j}}\left(x_{j}\right)\right)+\beta \varepsilon=\mu\left(\cup_{j} B_{\rho_{j}}\left(x_{j}\right)\right)+\beta \varepsilon .
\end{aligned}
$$

Thus since $\varepsilon>0$ is arbitrary and since $\cup_{j} B_{\rho_{j}}\left(x_{j}\right) \subset U$ we thus have

$$
\begin{equation*}
\beta \lambda(S) \leq \mu(U) \tag{1}
\end{equation*}
$$

Notice that in particular if we take S to be the set of points x in the ball $U=\breve{B}_{j}(0)$ where $\Theta_{\mu}^{*}(x)=\infty$ then we can apply this with each β, thus implying that $\lambda(S)=0$. Thus (since j is arbitary) we have

$$
\begin{equation*}
\Theta_{\mu}^{*}(x)<\infty, \quad \lambda \text { a.e. } x \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

Next observe that

$$
\left.\left\{x \in \mathbb{R}^{n}: \Theta_{\mu *}(x)<\Theta_{\mu}^{*}(x)\right\}=\cup_{\alpha, \beta} \text { rational, }, 0<\alpha<\beta, k \in\{1,2, \ldots\}\right\}
$$

where

$$
S_{\alpha, \beta, k}=\left\{x \in \mathbb{R}^{n}:|x|<k, \Theta_{\mu *}(x)<\alpha<\beta<\Theta_{\mu}^{*}(x)\right\}
$$

Now let V be an open set such that $V \supset S_{\alpha, \beta, k}$ and such that $\lambda(V)<\lambda\left(S_{\alpha, \beta, k}\right)+\varepsilon$, and let \mathcal{B} be the set of closed balls $B_{\rho}(x) \subset V$ such that $\mu\left(B_{\rho}(x)\right)<\alpha \lambda\left(B_{\rho}(x)\right)$. Then evidently \mathcal{B} covers $S_{\alpha, \beta, k}$ finely, and so by the Vitali lemma there are p.w.d. balls $B_{\rho_{j}}\left(x_{j}\right)$ in \mathcal{B} with $\lambda\left(S_{\alpha, \beta, k} \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right) \rightarrow 0$ as $N \rightarrow \infty$, and for each j

$$
\mu\left(\breve{B}_{\rho_{j}}\left(x_{j}\right)\right) \leq \mu\left(B_{\rho_{j}}\left(x_{j}\right)\right) \leq \alpha \lambda\left(B_{\rho_{j}}\left(x_{j}\right)\right) .
$$

But then for any given $\varepsilon>0$ we can select N so that $\lambda\left(S_{\alpha, \beta, k} \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right)<\varepsilon$ and then for each $j=1, \ldots, N$ use (1) with $S_{\alpha, \beta, k} \cap \breve{B}_{\rho_{j}}\left(x_{j}\right)$ in place of S and $U=\breve{B}_{\rho_{j}}\left(x_{j}\right)$, giving

$$
\begin{aligned}
\beta \lambda\left(S_{\alpha, \beta, k} \cap\left(\cup_{j=1}^{N} \breve{B}_{\rho_{j}}\left(x_{j}\right)\right)\right) & \leq \sum_{j=1}^{N} \beta \lambda\left(S_{\alpha, \beta, k} \cap \breve{B}_{\rho_{j}}\left(x_{j}\right)\right) \\
& \leq \sum_{j=1}^{N} \mu\left(\breve{B}_{\rho_{j}}\left(x_{j}\right)\right) \leq \alpha \sum_{j=1}^{N} \lambda\left(B_{\rho_{j}}\left(x_{j}\right)\right) \leq \alpha \lambda\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right) \\
& \leq \alpha \lambda(V) \leq \alpha \lambda\left(S_{\alpha, \beta, k}\right)+\alpha \varepsilon .
\end{aligned}
$$

Since $\lambda\left(S_{\alpha, \beta, k} \backslash\left(\cup_{j=1}^{N} B_{\rho_{j}}\left(x_{j}\right)\right)\right)<\varepsilon$, this gives

$$
\beta \lambda\left(S_{\alpha, \beta, k}\right) \leq \alpha \lambda\left(S_{\alpha, \beta, k}\right)+(\alpha+\beta) \varepsilon
$$

and letting $\varepsilon \rightarrow 0$ we thus have

$$
\beta \lambda\left(S_{\alpha, \beta, k}\right) \leq \alpha \lambda\left(S_{\alpha, \beta, k}\right)<\infty ;
$$

that is, $\lambda\left(S_{\alpha, \beta, k}\right)=0$ as required.

