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1. (4 points) Let X be an topological space. Define “Borel regular outer measure on X.” If µ is

a Borel regular outer measure on X and if A ⊂ X has the property that supC closed, C⊂A µ(C) =

µ(A) <∞, prove that A is µ-measurable.

2. (4 points) If E ⊂ [0, 1] and λ(E) + λ([0, 1] \ E) = 1, prove that E is λ-measurable. (Here λ is

Lebesgue outer measure on R.)
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3. (5 points) Give the definition of absolutely continuous (AC) function f : [0, 1] → R and prove

that (i) the product fg of two AC functions f, g : [0, 1]→ R is AC, and (ii)
∫ 1
0 f g

′ = fg
∣∣1
0
−
∫ 1
0 g f

′.

4. (4 points) Prove that f AC on [0, 1]⇒ f is BV on [0, 1].
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5. (5 points) If µ is an outer measure on a space X, define µ-measurability (in the sense of

Caratheodory) of a set A ⊂ X, and give the proof that A1, A2 µ-measurable =⇒ A1 ∪ A2 is

µ-measurable.

6. (3 points) Using the dominated convergence theorem or otherwise, prove that

lim
n→∞

∫ 1

0
e1/x(1 + n2x)−1 sin(ne−1/x) dx = 0.
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7. (5 points) State the 5-times covering lemma for collections B of closed balls contained in a

bounded subset of Rn. Using the 5-times covering lemma or otherwise, prove that if µ is a Borel

measure on Rn such that lim infρ↓0 ρ
−nµ(Bρ(x)) < ∞ for µ-a.e. x ∈ Rn, then µ is absolutely

continuous with respect to Lebesgue measure (i.e. E Borel, λ(E) = 0 =⇒ µ(E) = 0).

8. (3 points) Suppose A ⊂ [0, 1] is dense (thusA = [0, 1]) and assume f : A→ R has the property

that
∑N

j=1 |f(xj)− f(xj−1)| ≤ 1 whenever N ≥ 1 and 0 ≤ x0 < x1 < · · · < xN ≤ 1 are points of A.

Prove that there is a BV function g on [0, 1] which agrees with f at each point of A.

Hint: Define g(x) = f(x) if x ∈ A and g(x) = lim supy→x, y∈A f(y) if x /∈ A.
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9. (5 points) Let f : Rn → R be Lebesgue measurable. Prove that there is a Borel measurable

function g : Rn → R with f(x) = g(x) for Lebesgue a.e. x ∈ Rn.

Hint: First consider the case when f is a non-negative simple function.

10. (5 points) Let N = {1, 2, . . .}, let A be the collection of all subsets of N and let µ be the

counting measure on N (i.e. µ(A) = number of elements in the set A, taken to be 0 if A = ∅ and

∞ if A is an infinite subset.) In terms of series terminology, taking an = f(n) do the following: (i)

Assuming f : N → [0,∞], find the series expression for the value of
∫
N f dµ by directly applying the

definition of the integral, (ii) Find, in series terminology, what it means for f to be µ integrable,

(iii) Using only series terminology state the monotone convergence theorem and the dominated

convergence theorem in this setting, and give the proof of each using a direct argument without

reference to measure theory.
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11. (4 points) Suppose (X,A, µ) is any σ-finite measure space, 1 < p < ∞, and g : X → R is

A-measurable such that there is a constant C > 0 with
∫
X |fg| dµ ≤ C‖f‖p for each f ∈ Lp(µ).

Prove that g ∈ Lq(µ), where q is the conjugate exponent to p (i.e. 1/p+ 1/q = 1).

12. (3 points) Let (X,A, µ), (Y,B, ν) be arbitrary measure spaces and let γ be the product outer

measure defined as usual by γ(A) = inf
∑

i µ(Ai)ν(Bi) with the inf over all collections {Ai ×
Bi}i=1,2,... with Ai ∈ A, Bi ∈ B, and A ⊂ ∪iAi ×Bi.

Prove that γ(∪jEj×Fj) =
∑

j µ(Ej)ν(Fj) whenever Ej ∈ A, Fj ∈ B and the sets E1×F1, E2×F2, . . .

are pairwise disjoint.

Note: Your proof should not depend on Fubini’s theorem—recall that the above lemma was proved

as part of the preliminary discussion needed in the eventual proof of Fubini’s theorem.


