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1. (4 points) Let X be an topological space. Define “Borel regular outer measure on X.” If µ is

a Borel regular outer measure on X and if A ⊂ X has the property that supC closed, C⊂A µ(C) =

µ(A) <∞, prove that A is µ-measurable.

Solution: µ is a Borel regular outer measure on X if it is an outer measure on X such that all

Borel sets are µ-measurable and for each A ⊂ X there is a Borel set B ⊃ A with µ(B) = µ(A).

Pick a sequence Cj of closed subsets of A with µ(Cj) → µ(A) and pick a Borel set B ⊃ A with

µ(B) = µ(A). Then Cj ⊂ B∀j and µ(Cj)→ µ(B), so µ(B \(∪jCj)) ≤ µ(B \Cj) = µ(B)−µ(Cj)→
0, hence B = (∪jCj) ∪ E, where µ(E) = 0 and so A = (∪jCj) ∪ (E ∩ A), so A is the union of a

Borel set and a set of measure zero, hence A is µ-measurable.

2. (4 points) If E ⊂ [0, 1] and λ(E) + λ([0, 1] \ E) = 1, prove that E is λ-measurable. (Here λ is

Lebesgue outer measure on R.)

Solution: By definition of Lebesgue measure we can find open Uj with [0, 1] \ E ⊂ ∩∞j=1Uj and

1 − λ(E) = λ([0, 1] \ E) = λ(∩Uj)). Then by De Morgan E ⊃ ∪jKj , where Kj = [0, 1] \ Uj is

compact and λ(E) ≥ 1 − λ(∩Uj) ≥ λ([0, 1] \ ([0, 1] ∩ (∩jUj))) = λ(∪jKj) and ∪jKj ⊂ E, so E is

measurable by (i) above.
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3. (5 points) Give the definition of absolutely continuous (AC) function f : [0, 1] → R and prove

that (i) the product fg of two AC functions f, g : [0, 1]→ R is AC, and (ii)
∫ 1
0 f g

′ = fg
∣∣1
0
−
∫ 1
0 g f

′.

Solution: AC on [0, 1] means that for each ε > 0 ∃δ > 0 such that
∑N

j=1 |f(xj) − f(yj)| < ε

whenever [xj , yj ] are p.w.d. intervals with
∑N

j=1(yj − xj) < δ (and hence by continuity of f∑N
j=1 |f(xj) − f(yj)| < ε whenever (xj , yj) are p.w.d. intervals with

∑N
j=1(yj − xj) < δ). Sup-

pose f, g are AC on [0, 1] and ε > 0. Since AC trivially implies uniform continuity we have

M such that |f |, |g| ≤ M on [0, 1] and we can select δ1 > 0 such that
∑N

j=1 |f(xj) − f(yj)| <
ε

2(1+M) whenever (xj , yj) are p.w.d. with
∑

j(yj − xj) < δ1 and δ2 > 0 such that
∑N

j=1 |g(xj) −
g(yj)| < ε

2(1+M) whenever (xj , yj) are p.w.d. with
∑

j(yj − xj) < δ2, so for δ = min{δ1, δ2}
we have

∑N
j=1 |f(xj)g(xj) − f(yj)g(yj)| =

∑N
j=1 |f(xj)(g(xj) − g(yj)) + g(yj)(f(xj) − f(yj))| ≤∑N

j=1M |g(xj)− g(yj)|+
∑N

j=1M |f(xj)− f(yj)| < ε/2 + ε/2 = ε whenever (xj , yj) are p.w.d. with∑
j(yj − xj) < δ.

From lecture AC functions F on [0, 1] satisfy F (1)−F (0) =
∫ 1
0 F

′(t) dt; applying this to the product

F = fg then gives the required indentity because (fg) ′ = f ′g + fg ′.

4. (4 points) Prove that f AC on [0, 1]⇒ f is BV on [0, 1].

Solution: Take δ corresponding to ε = 1 in the definition of AC, so that
∑N

j=1 |f(xj)− f(yj)| < 1

whenever (xj , yj) are p.w.d. intervals in (0,1) with
∑

(yj − xj) < δ. Pick P0 : 0 = z0 < z1 <

· · · < zL = 1 be a fixed partition of [0, 1] with zj − zj−1 < δ for each j = 1, . . . , L, and let

P : 0 = w0 < w1 < · · · < wM = 1 be an arbitrary partition of [0, 1]. Then P0 ∪ P is a partition

of [0, 1] and tP (f) ≤ tP∪P0(f) =
∑L

j=1 t(P0∪P )∩[zj−1,zj ](f |[zj−1, zj ]) ≤ L · 1 = L, so we have shown

T (f) ≤ L <∞.
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5. (5 points) If µ is an outer measure on a space X, define µ-measurability (in the sense of

Caratheodory) of a set A ⊂ X, and give the proof that A1, A2 µ-measurable =⇒ A1 ∪ A2 is

µ-measurable.

Solution: If Y ⊂ X is an arbitrary subset of finite µ-measure, then

µ(Y \ (A1 ∪A2)) + µ(Y ∩ (A1 ∪A2)) = µ((Y \A1) \A2)) + µ(Y ∩ (A1 ∪ (A2 \A1)))

= µ(Y \A1)− µ((Y \A1) ∩A2) + µ(Y ∩ (A1 ∪ (A2 \A1)))

≤ µ(Y \A1)− µ((Y \A1) ∩A2) + µ(Y ∩A1) + µ(Y ∩A2 \A1)

= µ(Y \A1) + µ(Y ∩A1) = µ(Y )

where in the second line we used the measurability of A2 and in the last line we used the measur-

ability of A1.

6. (3 points) Using the dominated convergence theorem or otherwise, prove that

lim
n→∞

∫ 1

0
e1/x(1 + n2x)−1 sin(ne−1/x) dx = 0.

Solution: | sin y| ≤ y for all y ≥ 0 so |e1/x(1 + n2x)−1 sin(ne−1/x)| ≤ e1/xne−1/x(1 + n2x)−1 =
n

1+n2x
= 1√

x
n
√
x

1+n2x
≤ 1√

x
, which is an integrable function on (0, 1). Also the sequence trivially

converges pointwise to zero on (0, 1) so the dominated convergence theorem is applicable.
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7. (5 points) State the 5-times covering lemma for collections B of closed balls contained in a

bounded subset of Rn. Using the 5-times covering lemma or otherwise, prove that if µ is a Borel

measure on Rn such that lim infρ↓0 ρ
−nµ(Bρ(x)) < ∞ for µ-a.e. x ∈ Rn, then µ is absolutely

continuous with respect to Lebesgue measure (i.e. E Borel, λ(E) = 0 =⇒ µ(E) = 0).

Solution: If ∪B∈BB is bounded, then there is a p.w.d. countable (or finite) subcollectionBρj (xj), j =

1, 2, . . . (or j = 1, 2, . . . , N) with ∪B∈BB ⊂ ∪jB5ρj (xj).

We are given that there is a Borel set N with µ(N) = 0 and lim infρ↓0 ρ
−nµ(Bρ(x)) <∞ for every

x ∈ Rn\N , and observe that then Rn\N = ∪Ak, where Ak = {x ∈ Rn\N : lim infρ↓0 ρ
−nµ(Bρ(x)) <

k}. Take any bounded Borel set E ⊂ Rn \ N with λ(E) = 0, let Ek = E ∩ Ak, select a bounded

open set U ⊃ Ek with λ(U) < ε
k2k

, and let B be the collection of closed balls Bρ(x) with x ∈ Ek,
Bρ(x) ⊂ U and µ(B5ρ(x)) < kωn(5ρ)n. Of course B covers Ek and all balls in B are in the

bounded set U , thus the 5-times covering lemma is applicable and tells us that we can select

p.w.d. balls Bρj,k(xj,k) in B such that B5ρj,k(xj,k) covers Ek. Furthermore µ(∪jB5ρj,k(xj,k)) ≤∑
j µ(B5ρj,k(xj,k)) ≤ 5nkωn

∑
j ρ

n
j,k = 5nk

∑
j λ(Bρj,k(xj,k)) = 5nkλ(∪jBρj,k(xj,k)) ≤ 5nkλ(U) ≤

5nε2−k and so µ(E) ≤ µ(∪j,kB5ρj,k(xj,k)) ≤ 5nε, so µ(E) = 0. Since any Borel set of λ-measure

zero is the countable union of bounded sets of λ-measure zero, this proves every E ⊂ Rn \ N
has µ-measure zero. Finally if E is an arbitrary Borel set with λ(E) = 0, then we have E =

(E \N) ∪ (E ∩N) has µ-measure zero.

8. (3 points) Suppose A ⊂ [0, 1] is dense (thusA = [0, 1]) and assume f : A→ R has the property

that
∑N

j=1 |f(xj)− f(xj−1)| ≤ 1 whenever N ≥ 1 and 0 ≤ x0 < x1 < · · · < xN ≤ 1 are points of A.

Prove that there is a BV function g on [0, 1] which agrees with f at each point of A.

Hint: Define g(x) = f(x) if x ∈ A and g(x) = lim supy→x, y∈A f(y) if x /∈ A.

Solution: Let 0 = x0 < x1 < · · · < xN = 1 be an arbitrary partition of [0, 1], and for each

i = 0, . . . , N pick a sequence xij with xij = xi ∀j in case xi ∈ A and xij ∈ A with lim f(xij) =

lim supy→xi,y∈A f(y) if xi /∈ A. Observe that then limj→∞ f(xij) = g(xi) for each i = 1, . . . , N ,

and for all sufficiently large j we have 0 ≤ x1j < x2j < · · · < xnj ≤ 1. Since xij ∈ A we then

have
∑N

j=1 |f(xij)− f(xi−1 j)| ≤ 1 and taking limits with respect to j we thus have
∑N

j=1 |g(xi)−
g(xi−1)| ≤ 1, so g is in BV.



Name: Page 5/12

9. (5 points) Let f : Rn → R be Lebesgue measurable. Prove that there is a Borel measurable

function g : Rn → R with f(x) = g(x) for Lebesgue a.e. x ∈ Rn.

Hint: First consider the case when f is a non-negative simple function.

Solution: If f =
∑N

j=1 ajχAj where aj ≥ 0 and A1, . . . , AN are p.w.d. Lebesgue measurable sets,

then from lecture we can select a Borel set Bj ⊂ Aj with λ(Aj \Bj) = 0, and hence g =
∑N

j=1 ajχBj

is Borel measurable, ≤ f everywhere, and agrees with f except at ∪Nj=1(Aj \Bj), which is a set of

measure zero. Thus the result is proved in case f is a non-negative simple function. If f is a non-

negative Lebesgue measurable function, then we can find an increasing sequence of non-negative

Lebesgue measurable simple functions sj with sj → f at each point of Rn. According to the first

case discussed above we can then find a non-negative Borel measurable simple function tj with

tj ≤ sj and tj = sj except on a set Ej of Lebesgue measure zero. Then tj ≤ f everywhere and

tj → f at each point of Rn \ (∪jEj). Thus lim supj→∞ tj is a Borel measurable real-valued function

which agrees a.e. with f . Finally if f has arbitrary sign, then we can write f = f+ − f− and apply

the result just established to each of f+, f−.

10. (5 points) Let N = {1, 2, . . .}, let A be the collection of all subsets of N and let µ be the

counting measure on N (i.e. µ(A) = number of elements in the set A, taken to be 0 if A = ∅
and ∞ if A is an infinite subset.) If f : N → R describe (in terms of series terminology, taking

an = f(n)) (i) Assuming f ≥ 0, find the value of
∫
N f dµ by directly applying the definition of

the integral, (ii) Find, in series terminology, what it means for f to be µ integrable, (iii) Using

only series terminology state the monotone convergence theorem and the dominated convergence

theorem in this setting, and give the proof of each using a direct argument without reference to

measure theory.

Solution Of course all f : N → R are A-measurable, and for a non-negative function f : N →
[0,∞] the definition of the integral∫

N f dµ = sup
simple functions ϕ:N→[0,∞) with ϕ≤f

∫
N ϕ

= sup
non-negative c1,...,cN with cn≤f(n)∀n=1,...,N

∑N
n=1cn = sup

N

∑N
n=1f(n) =

∑∞
n=1f(n).

(ii) f is µ-integrable means
∫
N |f | dµ < ∞, which is exactly the condition

∑∞
n=1 |f(n)| < ∞ (i.e.

that
∑∞

n=1 f(n) is AC).

(iii) The monotone convergence theorem says that if fj is an increasing sequence of functions

N → [0,∞] then
∫
N lim fj dµ = limj

∫
N fj dµ, which in series terminology says that for non-

negative an, ajn with ajn → an it is true that limj→∞
∑

n ajn =
∑

n an. To prove it note that

for each N we have
∑N

n=1 an = limj→∞
∑N

n=1 ajn ≤
∑N

n=1 an. Hence letting N → ∞ we have∑∞
n=1 an ≤ lim infj→∞

∑∞
n=1 ajn ≤ lim supj→∞

∑∞
n=1 ajn ≤

∑∞
n=1 an.

The dominated convergence theorem says that if f, fj , g : N → R and if |fj(n)| ≤ g(n) for each

n with
∑

n gn < ∞ and limj→∞ fj(n) = f(n) for each n, then limj
∑

n ajn =
∑

n an, where

ajn = fj(n) and an = f(n). To prove this let bn = g(n) and note that limj
∑N

n=1 ajn =
∑N

n=1 an for

eachN and on the other hand by the comparison test supj
∑∞

n=N+1(|an|+|ajn|) ≤ 2
∑∞

n=N+1 bn → 0

as N →∞. So
∑

n ajn,
∑

n an are convergent and if ε > 0 there is N such that |
∑

n an−
∑

n ajn| ≤
|
∑N

n=1 an −
∑N

n=1 ajn|+ |
∑∞

n=N+1 an −
∑∞

n=N+1 ajn| ≤ |
∑N

n=1 an −
∑N

n=1 ajn|+ ε for all j ≥ N .

Since limj→∞(
∑N

n=1 an −
∑N

n=1 ajn) = 0 we thus have |
∑

n an −
∑

n ajn| < 2ε for all j sufficiently

large.
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11. (4 points) Suppose (X,A, µ) is any σ-finite measure space, 1 < p < ∞, and g : X → R is

A-measurable such that there is a constant C > 0 with
∫
X |fg| dµ ≤ C‖f‖p for each f ∈ Lp(µ).

Prove that g ∈ Lq(µ), where q is the conjugate exponent to p (i.e. 1/p+ 1/q = 1).

Solution: Let B1, B2, . . . be an increasing sequence inA with µ(Bk) <∞ for each k andX = ∪kBk,
and let fk = χEk

sgn(g)|g|q/p, where Ek = {x ∈ Bk : |g| < k}. Then ‖fk‖p =
∫
Ek
|g|q ≤ kµ(Bk) <∞

for each k, so fk ∈ Lp(µ) and hence
∫
Ek
|g|q ≤ C(

∫
Ek
|g|q dµ)1/p which gives ‖χEk

g‖q ≤ C, and, by

letting k →∞ and using the Monotone convergence, theorem we have ‖g‖q ≤ C <∞.

Alternative Solution: T (f̃) =
∫
X gf dµ is evidently a bounded linear functional on Lp(µ), so by

the Riesz theorem there is g0 ∈ Lq(µ) with T (f̃) =
∫
X fg0 dµ. That is

∫
X f(g − g0) dµ = 0 for

each f ∈ Lp(µ). Let B1, B2, . . . be an increasing sequence in A with µ(Bk) < ∞ and ∪kBk = X,

and observe that χBk
sgn(g − g0) ∈ Lp(µ), hence we can choose f = χBk

sgn(g − g0) in the above

identity giving
∫
Bk
|g − g0| dµ = 0 and hence g = g0 µ-a.e. on Bk, hence g = g0 µ-a.e. on X.

12. (3 points) Let (X,A, µ), (Y,B, ν) be arbitrary measure spaces and let γ be the product outer

measure defined as usual by γ(A) = inf
∑

i µ(Ai)ν(Bi) with the inf over all collections {Ai ×
Bi}i=1,2,... with Ai ∈ A, Bi ∈ B, and A ⊂ ∪iAi ×Bi.

Prove that γ(∪jEj×Fj) =
∑

j µ(Ej)ν(Fj) whenever Ej ∈ A, Fj ∈ B and the sets E1×F1, E2×F2, . . .

are pairwise disjoint.

Note: Your proof should not depend on Fubini’s theorem—recall that the above lemma was proved

as part of the preliminary discussion needed in the eventual proof of Fubini’s theorem.

Solution: By definition of γ we of course have γ(∪jEj × Fj) ≤
∑

j µ(Ej)ν(Fj), so we just

need the reverse inequality. Let Ai × Bi be any cover for ∪jEj × Fj ; then
∑

i χAi(x)χBi(y) =∑
i χAi×Bi(x, y) ≥ χ∪iAi×Bi(x, y) ≥ χ∪jEj×Fj (x, y) =

∑
j χEj×Fj (x, y) =

∑
j χEj (x)χFj (y), and

hence in particular
∑

j χEj (x)χFj (y) ≤
∑

i χAi(x)χBi(y). Holding x fixed and integrating with

respect to y we thus have
∑

j χEj (x)ν(Fj) ≤
∑

i χAiν(Bi), and then integrating with respect to x

we get
∑

j µ(Ej)ν(Fj) ≤ µ(Ai)ν(Bi) and then taking the inf over all such collections Ai × Bi we

get
∑

j µ(Ej)ν(Fj) ≤ γ(∪iEi × Fi) as required.


