Review: LFG and glue Linguistics 233B
22 January 2002

David yawned.

Provide lexical entries and annotated phrase structure rules.

IP	\longrightarrow	$\begin{gathered} \text { NP } \\ (\uparrow \text { SUBJ })=\downarrow \end{gathered}$	$\stackrel{\mathrm{I}^{\prime}}{=} \downarrow$
I^{\prime}	\longrightarrow	$\begin{gathered} V P \\ \uparrow=\downarrow \end{gathered}$	
VP	\longrightarrow	$\begin{gathered} \vee \\ \uparrow=\downarrow \end{gathered}$	
NP	\longrightarrow	$\begin{gathered} N \\ \uparrow=\downarrow \end{gathered}$	

David N (\uparrow PRED) = 'David'
$(\uparrow \mathrm{NUM})=\mathrm{sg}$
yawned $\vee(\uparrow$ PRED $)=$ 'yawn $\langle S U B J\rangle$ '
Provide the f-description for "David yawned".

Using mnemonic names for f-structures corresponding to c-structure nodes:

$$
\begin{aligned}
& i p, i^{\prime}, v p, v:\left[\begin{array}{ll}
\text { PRED } & \text { 'yawn' } \\
\text { SUBJ } & n p, n:\left[\begin{array}{lr}
\text { PRED } & \text { 'David' } \\
\text { NUM } & \text { sg }
\end{array}\right]
\end{array}\right] \\
& (i p \text { SUBJ })=n p \\
& i p=i^{\prime} \\
& \begin{array}{l}
i^{\prime}=v p \\
v p=v
\end{array} \\
& \stackrel{v p}{p} \equiv \stackrel{v}{n} \\
& (n \text { PRED })=\text { 'David' } \\
& (n \mathrm{NUM})=\mathrm{sg} \\
& (v \text { PRED })=‘ \text { yawn }\langle\text { SUBJ }\rangle '
\end{aligned}
$$

David yawned.

$$
\begin{gathered}
i p:\left[\begin{array}{ll}
\text { PRED } & \text { 'yawn' } \\
\text { SUBJ } & n p:\left[\begin{array}{ll}
\text { PRED } & \text { 'David' } \\
\text { NUM } & \text { sg }
\end{array}\right]
\end{array}\right] \\
\operatorname{yawn}\left(\text { David) }: i p_{\sigma}\right.
\end{gathered}
$$

Provide augmented lexical entries for "David" and "yawned" incorporating meaning constructors.

$$
\begin{aligned}
\text { David } \quad N \quad & (\uparrow \text { PRED })=\text { 'David' } \\
& (\uparrow \text { NUM })=\mathrm{sg} \\
& \text { David }: \uparrow_{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \text { yawned } \vee \quad(\uparrow \text { PRED })=\text { 'yawn }\langle\text { SUBJ }\rangle \text { ' } \\
& \lambda X . \operatorname{yawn}(X):(\uparrow \text { SUBJ })_{\sigma} \multimap \uparrow_{\sigma}
\end{aligned}
$$

Provide instantiated semantic premises for "David yawned" based on these lexical entries.

$$
\begin{gathered}
i p:\left[\begin{array}{l}
\text { PRED 'yawn' } \\
\text { SUBJ } \\
n p:\left[\begin{array}{ll}
\text { PRED } & \text { 'David' } \\
\text { NUM } & \text { sg }
\end{array}\right]
\end{array}\right] \\
\text { David : } n p_{\sigma} \\
\lambda X \cdot \operatorname{yawn}(X): n p_{\sigma} \multimap i p_{\sigma}
\end{gathered}
$$

David saw Chris.

Provide changes and additions to lexical entries and phrase structure rules.

```
\(V P \quad \longrightarrow \quad \begin{aligned} & \vee \\ & \uparrow=\downarrow\end{aligned} \quad \begin{gathered}\text { ( } \uparrow \text { OBJ })=\downarrow\end{gathered}\)
Chris \(\quad \mathrm{N} \quad(\uparrow\) PRED) \(=\) 'Chris'
    \((\uparrow \mathrm{NUM})=\mathrm{sg}\)
    Chris: \(\uparrow \sigma\)
saw \(\quad \vee \quad(\uparrow\) PRED \()=\) 'see \(\langle\mathrm{SUBJ}, \mathrm{OBJ}\rangle\) '
    \(\lambda X . \lambda Y\).see \((X, Y):(\uparrow \mathrm{SUBJ})_{\sigma} \multimap\left((\uparrow \mathrm{OBJ})_{\sigma} \multimap \uparrow_{\sigma}\right)\)
```

Provide instantiated premises for "David saw Chris".

	[PRED 'see〈SUBJ,OBJ〉'
s	SUBJ d :[PRED 'David']
	OBJ c :[PRED 'Chris']

David : d_{σ}

Chris : c_{σ}

$$
\lambda X \cdot \lambda Y \cdot \operatorname{see}(X, Y): d_{\sigma} \multimap\left(c_{\sigma} \multimap s_{\sigma}\right)
$$

Glue and XLE: alternative notation for premises

Standard style:

> David $: d_{\sigma}$
> $\lambda X . y a w n(X): d_{\sigma} \multimap y_{\sigma}$
> XLE style:
> $d_{\sigma} \leadsto$ David
> $\forall X . d_{\sigma} \leadsto X \multimap y_{\sigma} \leadsto$ yawn (X)

David saw Chris.

PRED	'see〈SUBJ,OBJ〉'	
SUBJ	PRED	'Davi
OBJ	RE	'Chris']
s_{σ}	$e($ Davi	, Chris)

Provide lexical entries for "David", "saw", "Chris" in alternative notation.
$\begin{aligned} \text { David } \quad \mathrm{N} \quad & (\uparrow \mathrm{PRED})=\text {＇David＇} \\ & \uparrow_{\sigma} \leadsto \text { David }\end{aligned}$

saw $\quad \vee \quad(\uparrow$ PRED $)=$＇see〈SUBJ，OBJ〉＇
$\forall X, Y .(\uparrow \mathrm{SUBJ})_{\sigma} \leadsto X \multimap\left((\uparrow \mathrm{OBJ})_{\sigma} \leadsto Y \multimap \uparrow_{\sigma} \leadsto \operatorname{see}(X, Y)\right)$

Provide instantiated premises for＂David saw Chris＂．

$$
\left[\begin{array}{cc}
\text { PRED } & \text { 'see〈SUBJ,OBJ }{ }^{\prime} \\
\text { SUBJ } & {[\text { PRED }} \\
\text { 'David' }] \\
\text { OBJ } & {[\text { PRED }} \\
\text { 'Chris' }]
\end{array}\right]
$$

$$
\begin{aligned}
d_{\sigma} & \leadsto \text { David } \\
c_{\sigma} & \leadsto \text { Chris } \\
\forall X, Y \cdot d_{\sigma} \leadsto X \multimap\left(c_{\sigma}\right. & \left.\leadsto Y \multimap s_{\sigma} \leadsto \operatorname{see}(X, Y)\right)
\end{aligned}
$$

Glue and XLE: separate lexical resources

- Glue theory: Lexical entries contain both syntactic and semantic information.
$\begin{aligned} \text { David } \quad \mathrm{N} \quad & (\uparrow \text { PRED })=‘ \text { David' } \\ & \uparrow_{\sigma} \leadsto \text { David }\end{aligned}$
- Glue implementation: Syntactic and semantic information is stored in separate files.
- Syntactic lexicon:

David N (\uparrow PRED) $=$ 'David’

- Semantic lexicon:

David $\quad \uparrow \sigma^{\sim}$ David

XLE notation: Syntax

```
VP --> V: ^ = !; NP: (~ OBJ) = !.
```

- Need semicolon after annotated category.
- Need period at end of rule.
- "~ = !" can be omitted if it is the only annotation on a node.

$$
\begin{aligned}
\text { Chris } \mathrm{N} * & (\sim \text { PRED) = 'Chris' } \\
& (\sim \text { NUM })=\text { sg. }
\end{aligned}
$$

XLE documentation available by typing "documentation" to XLE.

XLE notation: Semantics
lex_sem('David', david, 'N', name).
sem_template(name, _Name, LogicalConstant, true,
sigma(^) -~> LogicalConstant
).
lex_sem(yawned, yawn, 'V', v_intrans).
sem_template(v_intrans, _Verb, Pred, true,

).

Homework: C-structure, f-structure, annotated phrase structure rules, lexical entries for

David thought that Fred saw Chris:
think(David, see(Fred, Chris))

David introduced Fred to Chris:
introduce(David, Fred, Chris)
(assume that "to" makes no semantic contribution)

