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0. Introduction

This paper is intended to provide a set of step by step instructions for using the

formalism of Lexical Functional Grammar (henceforth LFG).  With the information

contained in this paper, linguists previously unfamiliar with the formalism of this

theory should find it possible to interpret and to compose the sorts of rules and

lexical items standardly employed in LFG.  These instructions will demonstrate how

to build ANNOTATED CONSTITUENT STRUCTURES (c-structures) and FUNCTIONAL

STRUCTURES (f-structures)—the two levels of representation that LFG assigns to

sentences.1  C-structure indicates the hierarchical composition of words into larger

units or phrasal constituents, while f-structure is a representation of grammatical

functions like subject, object, etc.

The reader is warned at the outset that we do not intend to present any truly

linguistic claims in this text, that is, claims about the structure and workings of

natural language.  We wish rather to provide linguists with some knowledge of a

formal system which may in turn be employed to express such claims.  For this

reason the rules and lexical entries employed are quite basic.  Nonetheless, a

maximally simple example grammar will hopefully enhance the readability of this

document, and the technical expertise which the reader will gain will facilitate

comprehension of more insightful analyses expressed by means of the LFG

formalism.2

The paper will take the following form.  First (Sec. 1.) we will display some of

the basic notations employed in published works on LFG.  Next (Sec. 2) we will
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describe how it is that one creates an annotated constituent structure.  The reason

that we use the word annotated here is that the nodes in the tree are marked with

certain expressions or annotations.  These annotations are interpretable, once they

are filled out with some information derived from the tree structure.  This process of

filling in information is known as instantiation, and the method of instantiating

annotations in the tree is described in Section 3.  The result of instantiation is a set

of expressions, known as the FUNCTIONAL DESCRIPTION, which fully specifies how we

are to build the corresponding f-structure (Sec. 4).  In Section 5 we discuss the nature

of f-structures and the procedures for creating them from the functional description.

With the ability to build f-structures we may then shift (Sec. 6) to more linguistic

issues concerning the role of f-structures in predicting the well-formedness of natural

language sentences.  In Section 7 some residual formal issues are taken up: these

concern special types of functional equations.

1. The Notational Conventions of LFG

Below are discussed some of the notations that a person is likely to encounter in a

grammar written in LFG.

1.1.  The Form of Syntactic Rules in LFG.  In outward form, rules in LFG resemble the

context free rules of the base component of a transformational grammar in Standard

Theory.3,4  The rules of a Lexical Functional Grammar, however, contain expressions

known as FUNCTIONAL SCHEMATA, which are associated with the symbols that appear

on the right hand side of the → arrow.  The following figure shows the usual format

for writing rules in LFG.



3Practical Instructions for Working with the Formalism of LFG

Left hand side:  the mother node
(Note, no schemata)

S NP

Lists of functional schemata

VP

Right hand side:  any number of symbols

(0 or more schemata under each symbol)

representing the daughter nodes

↑=↓(↑ SUBJ)=↓

FIGURE I:  FORMAT OF LFG RULES

The following rules may be combined with a lexicon to generate a small fragment of

English.

(1) S  →  NP
(↑ SUBJ)=↓

  VP
↑=↓

(2) VP  →  V
↑=↓

 NP
(↑ OBJ)=↓

(3) NP  →  DET
↑=↓

  N
↑=↓

The expressions (↑ SUBJ)=↓, ↑=↓, and (↑ OBJ)=↓ are all functional schemata.  We will

discuss in Section 2 how one interprets these rules in order to construct annotated

c-structures.

1.2.  The Form of Lexical Items in LFG.  Like the rules just described, lexical items are

also supplied with functional schemata in LFG.  In most works dealing with LFG, we

find lexical entries that contain at least three things:5  a representation of the form of

the item,6 the syntactic category7 to which the item belongs, and a list of functional

schemata.8  They are usually written out as schematized below.
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Representation of item

Syntactic category

John N (↑ PRED)=’JOHN’

(↑ PERS)=3

(↑ NUM)=SING

List of functional schemata

FIGURE III:  FORMAT OF LFG LEXICAL ITEMS

The following three lexical items may be combined with the rules from Subsection 1.1

to generate a couple of English sentences.

(4) John N (↑ PRED)=’JOHN’
(↑ NUM)=SING
(↑ PERS)=3

(5) sees V (↑ PRED)=’SEE<(↑ SUBJ) (↑ OBJ)>’
(↑ SUBJ NUM)= SING
(↑ SUBJ PERS)= 3

(6) Mary N (↑ PRED)=’MARY’
(↑NUM)=SING
(↑ PERS)=3

1.3.  A Caution.  We should point out at this juncture that researchers working within

LFG have invented many abbreviatory devices to emphasize systematic aspects of

word, phrase, and functional structure, and linguists naturally prefer these, because

they provide perspicuous encodings of generalizations about natural language.

However, in this document we shall discuss only the most fundamental conventions

employed in LFG, which, happily, are basic to all writings in the theory.

2. Creating Annotated Constituent Structures

In the present section we shall construct the annotated constituent structure tree for

the sentence in (7).

(7) John sees Mary.
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The c-structure representation is a source of two types of information.  First it

indicates the hierarchical structure of phrasal constituents in the string in a fashion

familiar to most any linguist.  More importantly for our purposes, the so-called

FUNCTIONAL ANNOTATIONS (functional schemata transferred into the tree) may be

interpreted to derive information about the functional structure.

Because context free phrase structure rules and phrase structure trees are

generally familiar objects, creating an annotated c-structure will be a very simple

matter.  The only additional task is the insertion of the functional schemata;

however, this  too is quite uncomplicated.

First consider the syntactic rules.  When a rule is applied, a piece of the tree is

constructed and the annotations prescribed by the rule are written in above the

appropriate nodes in the fashion schematized in Figure III.

S NP
(↑ SUBJ)=↓ ↑=↓

VP S

VPNP
↑=↓(↑ SUBJ)=↓

FIGURE III:  RELATION BETWEEN RULES AND
ANNOTATIONS IN THE TREE

Thus, the rules in (1)-(3) predict that (7) will be dominated by the tree in (8).
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(8) S

(↑ SUBJ)=↓

NP VP

N V NP
↑=↓ (↑ OBJ)=↓

John sees
N

Mary

↑=↓

↑=↓

↑=↓

This represents, though, only a stage in building the annotated tree for (7);  the

c-structure is complete only after introducing the annotations specified by the lexical

entries for John, sees, and Mary.  Hence, for each lexical item in the tree, we consult

the corresponding lexical entry and copy all the functional schemata found in that

entry into the tree above the appropriate word.  Figure (9) gives the complete

annotated constituent structure tree for (7).  
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(9) S

(↑ SUBJ)=↓

NP VP

N V NP
↑=↓ (↑ OBJ)=↓ 

John
sees

(↑ PRED)=’JOHN’ (↑ PRED)=

N

(↑ SUBJ PERS)=3

Mary

(↑ PERS)=3 (↑ SUBJ NUM)=SING
(↑ NUM)=SING ’SEE<(↑ SUBJ)(↑ OBJ)>’

(↑ NUM)=SING

(↑ PRED)=’MARY’

(↑ PERS)=3

↑=↓

↑=↓

↑=↓

Now that the functional schemata have been transferred into the tree, they are ready

to be interpreted.  As we shall see in Section 3, it is their place within the tree that

eventually provides these schemata with a meaning.  

3. Instantiation

From the annotated c-structures discussed in the previous section one may build

f-structures, the other level of syntactic representation employed in Lexical

Functional Grammars.  The ↑ and ↓ arrows employed in the schemata assume a

referential value now that the schemata have been placed into the tree:  the reader

will see that these arrow characters were chosen for their symbolic value, since they

point, in a manner of speaking, to things above and below the location of the schema

in the tree.  Determining the referents of the situated ↑ and ↓ arrows and recording

this information in the schemata is known as INSTANTIATION.  Instantiation

transforms the schemata into FUNCTIONAL EQUATIONS, fully specified expressions in a

formal language used to talk about f-structures.  In Subsection 3.1 we discuss the

relation between nodes in the c-structure tree and f-structures.  With this knowledge



8 Michael T. Wescoat

in hand, we may then move on to the the matter of finding the referents for the ↑ and

↓ arrows.

In this section we will be discussing f-structures without being concerned for the

moment with their contents.  In other words we shall be thinking in terms of some

potential f-structure, and the reader should not feel ill at ease if s/he doesn’t have any

notion yet about what would go into an f-structure.  Graphically f-structures are

represented in the literature as material enclosed in large square brackets, and for

now we shall use empty pairs of square brackets in figures to represent our abstract

f-structures. 

3.1. The Relation Between C-Structure Nodes and F-Structures.  One of the

assumptions of LFG is that there is some f-structure associated with each node in the

constituent structure tree.  Figure IV schematizes how we might conceptualize this

relation.
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S

(↑ SUBJ)=↓

NP VP

↑=↓

N

John

(↑ PRED)=’JOHN’

(↑ NUM)=SING

(↑ PERS)=3

(↑ PRED)=

(↑ SUBJ PERS)=3

(↑ SUBJ NUM)=SING

sees

V

’SEE<(↑ SUBJ)(↑ OBJ)>’

(↑ PRED)=’MARY’

Mary

N

NP
(↑ OBJ)=↓

(↑ NUM)=SING

(↑ PERS)=3

↑=↓

↑=↓

↑=↓

FIGURE IV:  RELATION BETWEEN NODES IN THE
TREE AND F-STRUCTURES

To facilitate talking about functional structures, we can associate arbitrary

names or variables with each f-structure.  In order to prevent any possible confusion,

we emphasize that the choice of a variable for a given f-structure is completely

arbitrary.  It has become something of a tradition to use f-structure variables that

consist of the letter f followed by a number, e.g. f123, different numbers making for

distinct variables.  Graphically we shall write the identifying variable of an

f-structure immediately outside that f-structure’s left bracket.  Furthermore, to

express in a compact way the association of an f-structure with a node in the

constituent structure tree, we can record the variable of the f-structure next to the
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node to which it corresponds.  This process could be called coindexing the node.  Our

conceptualization from Figure IV could then be rendered as in Figure V.

S

(↑ SUBJ)=↓

NP VP

↑=↓ (↑ OBJ)=↓

N V NP

(↑ NUM)=SING ’SEE<(↑ SUBJ)(↑ OBJ)>’
(↑ PRED)=’JOHN’ (↑ PRED)=

N

John
sees

(↑ PERS)=3

(↑ NUM)=SING

(↑ PRED)=’MARY’

(↑ SUBJ PERS)=3

Mary

(↑ PERS)=3 (↑ SUBJ NUM)=SING

f1

f1

f2

f2

f3

f3

f4

f4

f5

f5

f6

f6

f7

f7

↑=↓

↑=↓

↑=↓

FIGURE V:  PROVIDING NAMES FOR F-STRUCTURES
AND COINDEXING TREE NODES
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3.2.  Finding the referents for ↑ and ↓.  Now we can begin the process of instantiating

the schemata in the tree in order to convert them into fully specified functional

equations.  The first step here is to determine what it is that the ↑ and ↓ arrows refer

to in the annotated tree.  In fact these refer to f-structures, and all that needs to be

done, then, in order to make these schemata into equations is to insert the variables

which name the appropriate f-structures in place of the arrows.  Since the ↑ and ↓
arrows are symbols which are replaced by f-structure variables, they are often

referred to as METAVARIABLES in the literature.

Finding the referents of the ↑ and ↓ arrows is a simple matter.  The ↓ is known

as the EGO or SELF metavariable:  it refers to the f-structure associated with the node

above which the schema containing the ↓ appears.  The other metavariable, the ↑, is

called the MOTHER metavariable:   this refers to the f-structure associated with the

mother of the node above which the schema containing the ↑ appears.  This set of

relations is schematized in the following figure, where the ↑ and ↓ arrows are

provided with continuations which lead to their respective referents.

S

(↑ SUBJ)=↓

NP

f1

f1

f2

f2

FIGURE VI:  DETERMINING REFERENTS FOR THE SELF
AND MOTHER METAVARIABLES

Hence, we complete the instantiation process by replacing all metavariables with the

names of the f-structures to which they refer, in the fashion schematized in the next

figure, which is a modification of figure VI.
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S

NP

f1

f1

f2

f2

(f1 SUBJ)=f2

FIGURE VII:  COMPLETING INSTANTIATION BY COINDEXING

(10) shows the finished tree for example (7) with instantiated equations.
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(10) S

NP VP

N

John
sees

V NP

N

Mary

f1

f2

f3

f4

f5 f6

f7

(f1 SUBJ)=f2

f2=f3

(f3 PRED)=’JOHN’
(f3 NUM)=SING

(f3 PERS)=3

f1=f4

f4=f5

f6=f7(f5 PRED)=
’SEE<(f5 SUBJ) (f5 OBJ)>’
(f5 SUBJ NUM)=SING

(f5 SUBJ PERS)=3

(f7 PRED)=’MARY’
(f7 NUM)=SING

(f7 PERS)=3

(f4 OBJ)=f6

3.3.  Consolidation.  It should be noted that the foregoing sequence of figures with their

empty f-structures, pointers, and the like were intended merely as aids to

conceptualize how it is that the instantiation process works and what it represents.

In practice there is no need to draw complex pictures:  the essentials of the algorithm

described above may be condensed to the following.  Having built up the annotated

c-structure ((a) of Figure VIII shows part of such a structure), provide each node in

that c-structure with a distinct variable, which will then be taken to name the

f-structure for that node (see (b) of Figure VIII).  The choice of variables is utterly

arbitrary, save only for the restriction that no two nodes have the same variable.

With this done, consider each functional schema, replacing all instances of the self

metavariable with the variable associated with the node above which the schema

appears.  Also replace all instances of the mother metavariable with the variable

applied to the mother of the node above which the schema appears (see (c) of Figure

VIII).
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(a) S

(↑ SUBJ)=↓

NP
↑=↓

VP

(b)

(↑ SUBJ)=↓

S

NP
↑=↓

VP

(c) S

NP VP
(f13 SUBJ)=f39

f13 f13

f39 f39f29 f29

f13=f29

FIGURE VIII:  CONCISE INSTANTIATION ALGORITHM

4. The Functional Description

The set of all of the instantiated functional equations in the tree is called the

FUNCTIONAL DESCRIPTION.  The functional description for (10) is listed below.  It is

from the functional description that f-structures are constructed, and for the rest of

the process of constructing the f-structure the tree is no longer considered.  This is an

opportune place to issue a warning about the eventual content of the f-structure.  A

common expectation among people approaching LFG for the first time is that

categorial information will be carried over from the tree into the f-structure (for

instance that verb will somehow be directly mentioned in the f-structure).  We stress

the fact that only information present in the equations of the functional description

will be incorporated into the eventual f-structure.

(11) a. (f1 SUBJ)=f2
b. f2=f3
c. (f3 PRED)=’JOHN’
d. (f3 NUM)=SING

e. (f3 PERS)=3
f. f1=f4
g. f4=f5
h. (f5 PRED)=’SEE<(f5 SUBJ) (f5 OBJ)>’
i. (f5 SUBJ NUM)=SING

j. (f5 SUBJ PERS)=3
k. (f4 OBJ)=f6
l. f6=f7
m.(f7 PRED)=’MARY’
n. (f7 NUM)=SING

o. (f7 PERS)=3
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5. F-Structures:  Their Nature and Construction

Subsection 3.2.1 discusses some of the characteristics of f-structures.  Passing to

Subsection 3.2.2, we take up the question of what it is that functional equations

mean with regard to the f-structures they describe.  Subsection 3.2.3 describes the

process of constructing an f-structure, using sentence (7) as an example to clarify

many of the more confusing points of this procedure.

5.1.  Characteristics of F-Structures.  Some basic observations about f-structures

follow.

5.1.1.  The Form of F-Structures.  Graphically an f-structure takes the form shown in

(12).

(12)
A

B C

D E

F G

H I

fn fm

Each f-structure consists of two columns of entries enclosed in large square brackets.

The left hand column contains what are known as ATTRIBUTES and the other VALUES.

Attributes and values are paired, and the members of a pair are written on the same

horizontal line.  Attributes are always simple symbols, like A, F, SUBJ, PRED, or

whatever else the linguist might want to use.  Values, however, may be simple

symbols, subordinate f-structures, or semantic forms.  Semantic Forms are

recognizable by the fact that they are always flanked with single quotes; these will be

discussed more below.

Outside of the lefthand bracket of an f-structure one may optionally write the

name of the f-structure, as we have in (12).

The reader is cautioned that there is absolutely no significance attached to the

order in which lines occur in an f-structure.  If fact, (13)a and (13)b are two different

representations of the very same f-structure.
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(13) a.

F G

b.

H I

E

C D

A B

A

C D

B

E

F

H I

G

5.1.2.  The Uniqueness Condition on F-Structures.  F-structures must conform to a

uniqueness condition:  if there is a value, say K, associated with an attribute J in fp,

and the distinct value L is also associated with J in fp, then the f-structure is

ill-formed.9

(14)

J K

J L

... ...

......

fp

5.2. The Meaning of Functional Equations.  As has already been stated, functional

equations are meaningful expressions in a formal language:  they convey information

about f-structures.  Having gained a rudimentary knowledge of the form of

f-structures, we are now in a position to discuss what functional equations express,

that is, to provide a semantics for this formal language.  Figure IX below provides a

scheme for interpreting functional equations.

(fp ATT)=VAL

In the f-structure fp there is a line where,

the attribute is ATT,

and the value is VAL.

FIGURE IX:  MEANING OF FUNCTIONAL EQUATIONS

Let us take a concrete example, say the equation in (15).

(15) (fn F)=G
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According to this equation, the f-structure fn contains a line where F is the attribute,

and G is the value.  Let the f-structure pictured in (12) (repeated here for

convenience) be fn.

(12)
A

B C

D E

F G

H I

fn fm

Now compare the above equation with fn (i.e. (12)).  We see that indeed there is a line

in fn (the second up from the bottom) where F is the attribute and G is the value.

Hence, for our fn, the equation in (15) holds true.  Now consider another equation,

assuming that our fn is still (12).

(16) (fn Q)=R

Since there is no line in fn where the attribute is Q and the value is R, (16) is false.  In

(17) we enumerate five equations that hold true of (12).  Note that the first of these

says that the f-structure fm is the value of A in fn and that the second two say

something about the contents of fm.

(17) (fn A)=fm (fm B)=C (fm D)=E (fn F)=G (fn H)=I

5.3.  The Construction of F-Structures.  If one understands what the equations of a

functional description are saying about a given f-structure, one can certainly draw

that f-structure:  the goal is to put together an f-structure in such a way that all of

the functional equations contained in the functional description are true.  For

instance, take (18) as an example functional description.

(18) (fr A)=B

(fr C)=D

Let us take the first of these two equations and consider what it would take to make

it true.  There would have to be an f-structure called fr, and it would have to contain
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a line where A is the attribute and B is the value.  Now if we know that the

f-structure has these characteristics, we can go ahead and start building it, inserting

all of the features that we just determined it must have.

(19) A Bfr

Now we move on to the next equation, which requires the following in order to be

true:  fr must have a line where C is the attribute, and D is the value.  With this

knowledge we can modify the representation in (19) to reflect the new information.

(20) A B

C D

fr

5.3.1.  Minimality.  In (20) we have the f-structure called fr which makes both of the

equations in (18) true.  However, it is important to note that it is the MINIMAL

f-structure which is desired.  We may best discuss minimality in reference to an

example.  Let us consider the functional description in (18) in relation to the two

f-structures in (21).

(21) a. A B b.

C D

E F

C D

A Bfrfr

The f-structure in (21)a is the same one that we have already seen, and we have

already observed that it makes both of the equations in (18) true.  Notice too that

both of the equations in (18) are true of the f-structure in (21)b also.  Now observe

that if we take away either of the two lines that compose (21)a, one or the other of the

equations in (18) will cease to be true.  When all of the functional equations in a

functional description are true of a given f-structure, and removing any line out of

that f-structure would invalidate some equation in the functional description, then

and only then is that f-structure considered the minimal f-structure for the

functional description in question.  Consider now (21)b.  As we noted, both equations

in (18) are true of (21)b as it is displayed above.  However, we could take away a line

from (21)b (specifically the last line), and both equations would remain true of the
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resultant f-structure.  Thus, (21)b is not the minimal f-structure for the functional

description in (18).

5.3.2.  Construction of an Example F-Structure.  At this point we can proceed with

constructing the f-structure for (7).  Doing so will highlight many of the potentially

tricky aspects of building f-structures according to the specifications of functional

equations.

5.3.2.1.  Simple Equations.  There is a large group of functional equations in (11) that we

can handle easily, given the foregoing discussion, that is, the discussion concerning

examples (18)-(20).

(22) c. (f3 PRED)=’JOHN’
d. (f3 NUM)=SING

e. (f3 PERS)=3
h. (f5 PRED)=’SEE<(f5 SUBJ) (f5 OBJ)>’
m. (f7 PRED)=’MARY’
n. (f7 NUM)=SING

o. (f7 PERS)=3

There are three f-structure names used in the equations in (22), so let us keep a

record of all three structures, drawing them separately.  They are pictured in (23).

(23) PRED

PRED ’JOHN’

NUM

PERS

SING

3

PRED

NUM

PERS 3

SING

’MARY’

’SEE<(f5 SUBJ) (f5 OBJ)>’f5

f3 f7

5.3.2.2.  Equations of the Form fm=fn.  Let us now consider all the equations from (11)

which take of the form fm=fn, i.e., those equations listed in (24).

(24) b. f2=f3
f. f1=f4
g. f4=f5
l. f6=f7

All of these statements equate f-structures:  they say that the two variables

mentioned in the equation actually name the same f-structure.  In another manner of
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speaking, we might say that the two equated variables are alternative labels for one

f-structure.  In graphic conventions, equivalent names for an f-structure are written

one on top of the other on the left side of that f-structure.  Let’s consider the example

functional description in (25).

(25) (fs A)=B

(ft C)=D

fs=ft

Considering the first equation, we can easily take the first step in building an

f-structure to satisfy this functional structure, building up the representation in (26).

(26) A Bfs

Now consider the second equation, which says that there is an f-structure called ft

which contains a line where C is the attribute and D is the value.  But the final

equation indicates that fs and ft name the same f-structure, a fact which leads us to

infer that the f-structure in (26), known alternatively as fs or ft, should have not only

the characteristics specified for fs but also those specified for ft.  Hence, we add to (26)

the line which the second equation prescribed for ft.  We can record the fact that (26)

has two names, fs and ft, by writing both of these outside of the left bracket of the

f-structure.  These modifications are made in (27).

(27) A B

C D

fs
ft

There is another conceptual issue which the reader should grasp with regard to

the equations in (24).  Recall Figure IV, which was a graphic conceptualization of the

association of c-structure nodes with f-structures.  Each node was paired with a

distinct f-structure icon.  This representation was an abstraction which begged the

question of whether or not each one of those icons represented a distinct f-structure.

That would be an entirely possible state of affairs; however, it need not be the case

that nodes are paired one to one with f-structures.  Obviously the equations in (24)

are telling us that in our particular example it is not true that each node is paired

with a distinct f-structure.  Modifying Figure IV to be somewhat less abstract with

regard to this matter, we could draw Figure X.  It is worth studying the relation
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between the nodes and f-structures in Figure X, in order to better understand how it

is that functional information from several c-structure nodes may be pooled together

in f-structure.

S

NP VP

N

John
sees

V NP

N

Mary

f1

f2

f3

f4

f5 f6

f7

(f1 SUBJ)=f2

f2=f3

(f3 PRED)=’JOHN’
(f3 NUM)=SING

(f3 PERS)=3

f1=f4

f4=f5

f6=f7(f5 PRED)=
’SEE<(f5 SUBJ) (f5 OBJ)>’
(f5 SUBJ NUM)=SING

(f5 SUBJ PERS)=3

(f7 PRED)=’MARY’
(f7 NUM)=SING

(f7 PERS)=3

(f4 OBJ)=f6

f1
f4
f5

f2
f3 f6

f7

FIGURE X:  ASSOCIATION OF F-STRUCTURES AND NODES REVISED

Getting back to the matter of building the f-structure for the functional

description in (11), we can record all of the information about f-structure name

equivalencies by listing the complete set of names on all f-structures, as in (28) (c.f.

(26)).
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(28) PRED

PRED ’JOHN’

NUM

PERS

SING

3

PRED

NUM

PERS 3

SING

’MARY’

’SEE<(f5 SUBJ) (f5 OBJ)>’

f5

f3 f7

f4
f1

f2 f6

5.3.2.3.  Left Associativity.  Some equations in (11)—specifically those in (29)—feature

two attributes.

(29) i. (f5 SUBJ NUM)=SING

j. (f5 SUBJ PERS)=3

Let us take (29)i as the object of our discussion.  To interpret this equation one needs

to realize that the form of the equation seen above employs an abbreviatory

convention called LEFT ASSOCIATIVITY:  the unabbreviated version of (29)i would be

that in (30).

(30) ((f5 SUBJ) NUM)=SING

Now let us simply apply the interpretation schema for functional equations

(Subsection 5.2) to (30).

((f5 SUBJ) NUM)=SING

In the f-structure (f5 SUBJ) there is a line where

the attribute is NUM,

and the value is SING.

FIGURE XI:  MEANING OF (30)

So the expression (f5 SUBJ) designates an f-structure, as we can infer from the

meaning of (30) as it was deciphered in Figure XI.  In other words, the f-structure f5

should contain a line in it where the attribute is SUBJ.  Furthermore, the value found

in that line should be an f-structure, and that f-structure will have the

characteristics detailed in Figure XI.  So the modification we must make the

f-structures we have been building up in (28) is seen in (31).
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(31) PRED

PRED ’JOHN’

NUM

PERS

SING

3

PRED

NUM

PERS 3

SING

’MARY’

SUBJ NUM SING
f5
f4
f1 ’SEE<(f5 SUBJ) (f5 OBJ)>’

f3
f2

f7
f6

This is an opportune place to make a point about expressions of the form (fn

ATT), such as (f5 SUBJ).  Recall the fact that f-structures are subject to a uniqueness

constraint such that an f-structure may not contain two lines having the same

attribute but different values (Subsection 5.1.2).  As a consequence of this restriction,

a given value can be uniquely identified by mentioning the f-structure in which it is

found and the attribute with which it is paired.  Thus, an expression of the form

(fp ATT) uniquely names something; i.e., the value paired with ATT in the f-structure

fp.  Hence, (f5 SUBJ) names or designates uniquely the f-structure that we added to f5

in (31), and any subsequent use of the expression (f5 SUBJ) will refer to that same

f-structure.

Now we can move to the next equation in (29), reproduced as (32).

(32) i. (f5 SUBJ NUM)=SING

j. (f5 SUBJ PERS)=3

Applying the same process as we did in dealing with the previous equation we write

out (32) in the unabbreviated form in (33).

(33)  ((f5 SUBJ) PERS)=SING

Now we know that the (f5 SUBJ) designates a particular  f-structure, and we simply

add to that f-structure a line with PERS as attribute and 3 as value, as in (34).
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(34) PRED

PRED ’JOHN’

NUM

PERS

SING

3

PRED

NUM

PERS 3

SING

’MARY’

SUBJ NUM SING

PERS 3
f5
f4
f1

f3
f2

f7
f6

’SEE<(f5 SUBJ) (f5 OBJ)>’

Now we have only two equations left to examine in the functional description for

sentence (7).  These are listed below.

(35) a. (f1 SUBJ)=f2
b. (f4 OBJ)=f6

The second of these equations can be gotten out of the way rapidly and easily.  This

equation says that the f-structure f4 contains a line where the attribute OBJ is paired

with the f-structure f6.  Hence, we simply place f6, which we have been building up,

inside of f4 beside the attribute OBJ in the manner illustrated below.

(36) PRED

PRED ’JOHN’

NUM

PERS

SING

3

PRED

NUM

PERS 3

SING

’MARY’

SUBJ NUM SING

PERS 3

OBJ

f5
f4
f1

f7
f6

f3
f2

’SEE<(f5 SUBJ) (f5 OBJ)>’

The last equation says that the value paired with SUBJ in f1 is f2.  However, this time

there is a pre-existing value for SUBJ in f1, that is the f-structure pictured in (37).
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(37) NUM SING

PERS 3

This means that the f-structure in (37) and f2 are in fact (partial) representations of

the same thing.  In this case the value of SUBJ is the the MERGER of the two

f-structures.

MERGER:

The merger of two instances of the same atomic name consists of that
atomic name.  Atomic names which are not  identical do not merge.
Semantic forms (flanked by ’...’) never merge.  To effect the merger of two
f-structures—let us call these fm and fn—we select one of these
f-structures, say fm, and for each attribute a in fm, we attempt to find an
instance of a in fn.  Let us call the value associated with a in fm v.  If a does
not occur in fn, then we add the attribute a and the value v to fn.
Contrarily, if a is already present in fn, and its value is v’, then the merger
of v and v’ becomes the new value of a in fn.  If all of the subsidiary
mergers are successful, then the modified version of fn represents the
merger of fm and fn.

If the merger of these two f-structures were to fail, then there would be no valid

f-structure for the f-description in (11), and the grammar would predict the sentence

to be ungrammatical.  It happens in this case that the f-structures merge

successfully:  the following figure schematizes the process of construction.  Finally,

the finished f-structure appears as in (38).

PRED ’JOHN’

PERS

NUM SING

3

SING

3

MERGER(37)

’JOHN’

SING

3

Attr.

F-Struc.
f2

Ø

FIGURE XI:  MERGER OF f2 AND (37)
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(38) PRED

PRED ’JOHN’

NUM

PERS

SING

3

PRED

NUM

PERS 3

SING

’MARY’

SUBJ

OBJ

f5
f4
f1

f3
f2

f7
f6

’SEE<(f5 SUBJ) (f5 OBJ)>’

6. F-Structure and the Grammaticality of Sentences

In order for a sentence to be predicted grammatical by a Lexical Functional

Grammar, it must satisfy two criteria.  First, the grammar must be able to assign it a

constituent structure tree, and, second, the grammar must assign it a well formed

f-structure.  The first criterion is familiar to any linguist who has any training in

syntax.  As for the second, this means that one must be able to construct an

f-structure for the functional description yielded by the fully instantiated annotated

c-structure and also that that f-structure must be in accord with certain principles on

the form of f-structures.  

6.1. Consistency.  Consistency is a property of functional descriptions:  a functional

description is consistent if there exists an f-structure that can make all of the

equations in that functional description true.  This point merits elaboration.  Recall

that we stated above that an f-structure may associate at most one value with a

given attribute.  Given this fact it should be obvious that not every collection of

functional equations can lead to an f-structure which adheres to this uniqueness

condition.  For instance the two equations listed below are incompatible.

(38’) a. (f43 PERS)=2
b. (f43 PERS)=3

Taken together, they imply that both of the values 2 and 3 may be assigned to the

attribute PERS in f43, thus violating the uniqueness condition.  When it is impossible

to construct an f-structure from a functional description, we say that that functional

description is INCONSISTENT.
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6.2. Completeness and Coherence.  Next we consider conditions placed on

completed f-structures.  Up to this point we have been thinking about f-structure in a

rather mechanical fashion; now, however, it is time to step back and reflect on what

sort of linguistic concepts an f-structure is supposed to express.  Basically,

f-structures are the repository of all information about grammatical functions, like

subject, object, etc.  In LFG grammatical functions are thought to be primitive parts of

natural language syntax, that is, not derivable from any other aspect of the

grammar.  In other words, there seem to be generalizations about regularities in

sentential syntax, morphology, paraphrase relations, etc. which are not fully

expressible when we limit the apparatus available for distinguishing among elements

within clause to notions like case (e.g. nominative NP), constituent structure (e.g. NP

immediately dominated by S), or of semantic argumenthood (e.g. agent in a system of

semantics that distinguishes among types of arguments).  Traditional notions of

grammatical functions (e.g. subject) appear, however, to provide a useful

classification of clausal components, which facilitates the formulation of certain

linguistically interesting generalizations, into which the previously mentioned

notions did not provide many insights.  Arguments in favor of this position abound in

the LFG literature.  Consequently one of the principle motivations behind LFG has

been the desire to construct a theory of grammatical functions, and f-structures have

been employed as a means of displaying relations among these functions.

Consider the finished f-structure for example (7) pictured in (38).  The outer

f-structure is that which corresponds to the whole clause.  The reader may find it

useful to refer to Figure X.  Inside of that f-structure are found lines where the

attributes are SUBJ, OBJ and PRED.  There could, of course, be an entirely different set

of attributes, if we were dealing with another structure.  These names are, of course,

transparent abbreviations for subject, object, and predicate, all familiar concepts used

in discussions of natural language grammar.  So it will come as no surprise then that

the values of these attributes are to be interpreted as representations of these

linguistically relevant categories.

In this section we wish to discuss constraints on f-structures which are

essentially statements about the relations between grammatical functions

manifested in the sentence and the sentence’s main predicate.  One of the central

assumptions in LFG is that the workings of grammatical functions are regulated

through the so-called predicate argument structure found in the semantic form

paired with PRED.  Semantic forms appear graphically as material flanked with

single quotes.
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(39) a. ’JOHN’
b. ’SEE<(↑ SUBJ)(↑ OBJ)>’

All semantic forms contain an expression, e.g. JOHN or SEE, which is interpreted in

the semantics, and some incorporate PREDICATE ARGUMENT STRUCTURES, i.e. lists of

arguments which the semantic entity expresses a relation on.  These argument lists

are flanked with angled brackets, and each place within these brackets stands for a

semantic argument.10

Now, to highlight an obvious point, the arguments in the predicate argument

structure are elements employed at the level of semantic representation.  The

grammar must express how it is that the syntactic level of representation is related

to the semantics, and the syntactic entities to which LFG associates semantic

arguments are grammatical functions.  The association of grammatical functions to

semantic arguments is established by recording the names of grammatical functions

in given argument positions (see (39)b).  When a grammatical function is associated

with a semantic argument, it is said to be GOVERNED by the argument. It is through

this linking of arguments and grammatical functions that LFG handles various

paraphrase relations; the principles governing variations in this association and their

diverse morphological and syntactic consequences have been the focus of much

research in LFG.  The linking of grammatical functions to arguments also determines

to a large extent what structures may or may not occur as elements of the sentence.

That is to say that these predicate argument structures enforce subcategorization

restrictions.  This is made possible by the existence of two principles known as

COMPLETENESS and COHERENCE.

Completeness states that if a grammatical function is mentioned in the

predicate argument structure, then it must be represented in the f-structure.  The

principle of completeness accounts for the deviance of examples like that seen in (40).

(40) John likes.

We may assume that the lexical entry for likes would contain the following equations.

(41) likes V (↑ PRED)=’LIKE<(↑ SUBJ)(↑ OBJ)>’
(↑ SUBJ NUM)=SING
(↑ SUBJ PERS)=3

The reader may verify that (42) is the f-structure that our example grammar,

augmented with the lexical item in (41), would provide for (40).
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(42) PRED ’LIKE<(↑ SUBJ) (↑ OBJ)>’

PRED ’JOHN’

NUM

PERS

SING

3

SUBJ

The f-structure does not display any variables naming its components, so we have

adopted the easily interpretable convention of retaining the mother metavariables

within the semantic form for like.  The referent of these metavariables will be the

immediately dominating f-structure.  Since (42) does not provide a value for OBJ,

completeness is violated.  Note that for there to be a value for OBJ in (42), the

corresponding sentence would have had to contain a postverbal NP:  a glance at our

example grammar will confirm this.  Thus, one can easily see how completeness

assumes the positive role of subcategorization, i.e. that of ensuring the presence of

certain elements.

Coherence could be viewed as the inverse of completeness.  This principle limits

the occurrence of governable grammatical functions within f-structures.  If any

lexical entry in the grammar mentions a given grammatical function in the predicate

argument structure of its predicate, then that grammatical function is governable.

Coherence states that if a governable grammatical function occurs in an f-structure,

then it must actually be governed by some argument in the predicate argument of

that f-structure’s predicate.  This obviously fulfills the negative role of

subcategorization, the exclusion of elements not specifically licensed by the predicate.

Thus, given the lexical entry in (43), the sentence in (44) would yield the f-structure

in (45).

(43) falls V (↑ PRED)=’FALL<(↑ SUBJ)>’
(↑ SUBJ NUM)=SING
(↑ SUBJ PERS)=3

(44) John falls Mary.
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(45) PRED ’FALL<(↑ SUBJ)>’

PRED ’JOHN’

NUM

PERS

SING

3

SUBJ

OBJ PRED ’MARY’

NUM SING

PERS 3

The f-structure in (45) displays a predicate argument structure where there is no

mention of the object.  This accurately expresses the obvious problem with (44):  the

object, Mary, cannot be governed by any semantic argument and is therefore

superfluous.

7. Constraining Equations and Booleans

In this final section we wish to point out the existence of some additional features of

functional equations.

7.1. Constraining Equations.  Constraining equations are identifiable by the letter c

which occurs in the symbol =c.  As for the mechanical aspects of using this device,

one begins by partitioning the functional description into two sets, one containing

only constraining equations, and one containing only non-constraining equations.

This done, one considers the set of non-constraining equations and builds the

minimal f-structure which these specify.  Only after the f-structure is built up are the

constraining equations put to use.  These equations are then examined to determine

if they hold true of the finished f-structure.  If all of the constraining equations are

made true by the f-structure constructed from the non-constraining equations, then

that f-structure is well formed.  Otherwise it is inconsistent.

The following example illustrates the use of constraining equations.  Consider

the following functional description.

(46) a. (fn A)=B

b. (fn C)=D

c. (fn C)=c D
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We first examine the non-constraining equations in (46), that is (46)a and (46)b.  The

minimal functional structure which these equations describe is that in (47).

(47) A B

C D

fn

Note that (47) is the completed f-structure for the functional description in (46):

equation (46)c holds true of (47), that is, fn contains a line pairing the attribute C

with the value D.  Since fn has the desired characteristic, the constraining equation is

satisfied, and the f-structure is coherent.

7.2. Negatives.  Functional equations may take a negative operator.  This may be

written as follows.

(48) ¬(fn E)=F

The resultant equation is a variant form of constraining equation.  That is, it too is

applies after all normal equations have been considered and the minimal f-structure

is completed.  However, a negative equation, say ¬eq is satisfied by a given

f-structure, only in the case where eq is false with regard to that f-structure.  This

characteristic is illustrated below.

We assume the following functional description.

(49) a. (fn A)=B

b. (fn C)=D

c. ¬(fn E)=F

Using (49)a and (49)b we construct (50).

(50) A B

C D

fn

Turning to (49)c we consider its polar opposite, (51).

(51) (fn E)=F
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It happens that (51) is false with regard to (50), thus making (49)c true.  Hence, (49)

is consistent.

7.3. Conjunction.  We have been tacitly employing conjunction throughout the latter

half of this document.  In f-descriptions, like (11), there are typically many equations,

and all of them must be satisfied.  This is the essence of conjunction:  the conjunction

of the equations eq1, ..., eqn is true, precisely when each of the component equations

eq1, ..., eqn is true considered in isolation.  Therefore, let us now state explicitly that

we assume a conjunction whenever we write down a sequence of two or more

equations.  It sometimes becomes necessary however to disambiguate expressions

involving more than one boolean.  For instance, suppose we see (52):  does the

negation apply just to the first equation or to the conjunction of both equations.

(52) ¬(fn A)=B

     (fn C)=D

We must establish a convention to decide such issues.  Let us follow the traditional

practice of assuming that negation applies to the smallest entity to is immediate

right.  This means that in the case of (52), only the first equations is negated.  In

order to indicate that the negation of a conjunction is implied, we might then employ

one of the bracketing conventions in (53)a and b.

(53) a. ¬ (fn A)=B

(fn C)=D

b. ¬ (fn A)=B (fn C)=D

7.4. Disjunction.  The final boolean used in LFG is disjunction.  This joins together two

or more equations, as was the case with the conjunction operator.  A disjunction of

equations like that in (54) would be true if either or both of the component equations

is true.

(54)
(fn A)=B

(fn C)=D

However, the nature of f-structures entails certain consequences which may not be

expected.

The first question to ask is what does it mean to say that either or both of the

component equations of a disjunction will be true.  In fact, this means that the

functional description which contains the disjunction, may correspond to more than
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one f-structure.  To see this point let us take the following functional description as

an example.

(55) a.
(fn A)=B

(fn C)=D

b. (fn E)=F

Note that there are three obvious candidates for f-structures that make the two

equations in (55) true.

(56) A B

E F

C D A B

C D

c.b.a.

E F

E F

fnfnfn

All of these f-structures make (55)b true, since each one contains a line where the

attribute is E and the value is F.  The f-structure in (56)a makes (55)a true, because

its first line validates the first disjunct (component equation of the disjunction) of

(55)a, making the whole disjunct true.  Similarly the first line of (56)b makes the

second disjunct of (55)a true.  Finally, we note that the first two lines of (56)c validate

both disjuncts of (55)a.  In sum all of these f-structures satisfy the functional

description in (55).

Now let us consider the three f-structures in (56) in terms of minimality.

Starting with (56)a, we note that removing the first line invalidates (55)a, and

subtracting the second line invalidates (55)b.  Since neither line may be taken away,

(56)a is minimal.  Turning to the second f-structure, the reader may verify that

neither of its two lines may be removed without invalidating one or the other of the

equations in (55).  Thus, (56)b is also minimal.  Finally let us consider (56)c.  Notice

here that if we subtract either (but not both) of the first two lines of the f-structure,

both of the equations in (55) will remain true of the resultant f-structure.  We know

then that this f-structure is not minimal, and therefore is not licensed by (55).

Finally let us state explicitly that equations inside of a disjunction are always

interpreted as separate disjuncts.  They are never treated as a conjunction within the

disjunction, unless there is explicit bracketing to indicate that interpretation.  Thus,

(57)a contains exactly three disjuncts, and (57)b two.
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(57) a.
(fn A)=B

(fn C)=D

(fn E)=F

b.
(fn A)=B

(fn C)=D

(fn E)=F

8. Final Note

We hope that the information contained in the foregoing sections will suffice to allow

the reader to tackle theoretical and descriptive works based on LFG.  Finally, in order

to facilitate future exploration of the LFG literature, we point out that there are two

convenient collections of articles in LFG, Bresnan (1982) and Levin et al. (1983), both

of which contain papers of major importance.

Notes

*I would like to express my thanks to Joan Bresnan, Mary Dalrymple, Jeff
Goldberg, Jonni Kanerva, and Mariko Saiki, who provided helpful comments on the
contents of this paper.  I am also especially grateful to Mariko Saiki for her help in
the production of this manuscript.

1Another representation known variously as the SEMANTIC or SITUATION
STRUCTURE is also associated with sentences in some works.  However, we shall not
deal with this issue here.

2The readers interested in a more formal specification of LFG’s are directed to
Kaplan and Bresnan (1982).

3The reader not familiar with the context free rewriting rule formalism is
advised to consult either Baker (1978) or Hopcroft and Ullman (1979); the first work
has a linguistic slant, while the other is oriented towards formal language theory.
Incidentally, these comments should not be interpreted as implying that LFG’s are
equivalent to context free grammars.

4The resemblance to the rules of the base component in the Standard Theory of
transformational grammar is one of form, not necessarily one of content.  In other
words the reader should be sure to grasp the distinction between context free rule
viewed as a type of formal device on the one hand and the actual base rules which
have been employed over and over again in the essays of transformational
grammarians on the other.  To consider an example that is extremely relevant,
because it arises regularly the the discussions of many introductory courses in LFG,
take the question of whether or not a verb phrase node (VP) is a necessary part of
constituent structure descriptions of a given language.  Many transformationalists
seem to automatically assume the existence of a VP in deep structure, accounting for
any surface word order facts incompatible with this constituency by means of
movement or scrambling transformations.  An LFG however would generate the
surface word order directly, avoiding the use of the unmotivated VP node (the
operative word here is unmotivated; i.e., the node is not employed unless it is shown
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to be necessary to provide a proper description of the facts).  Thus, we have a striking
example where rules in an LFG might differ in content from the phrase structure
rules habitually employed in the base components of transformational grammars.

5We mean in no way to exclude the possibility of adding other relevant
information to the entries in the lexicon.  In particular, information about the
morphological characteristics of an item are also found in the lexical entries given in
some studies.  In this description we wish merely to make perfectly clear the
practices followed in most works dealing with LFG.

6In the examples given here the representation of the form of the item is given
in the conventional orthography; however, one could easily imagine other
alternatives, like rendering the form of the item phonemically or phonetically.

7In the present document we represent syntactic categories by means of atomic
category symbols, although there is no principled reason why other sorts of categorial
specifications, e.g. feature matrices, might not be used.

8A caveat is in order here:  we do not wish to claim that the set of functional
schemata displayed in this figure (or in any other lexical entry exhibited in this
paper) is exactly appropriate for the optimal grammar of English.  It may be that we
need significantly more schemata in order to fully render all of the intricacies of the
grammar of English; however, we wish at all times to stress that it is the description
that captures the most generalizations in the most economical and elegant way that
we must strive for.  For instance, a truly good theory of features might allow us to
minimize the amount of machinery employed to such an extent that we could
actually reduce the number of schemata required.

9It may be helpful to note here that f-structures are functions in the formal set
theoretic sense.  Only the mode of graphic representation differs:  example (12) would
be written as (i) in the standard notation of set theory.

(i) {<A, {<B, C>, <D, E>}>, <F, G>, <H, I>}

For those knowledgeable in set theory, be advised that all the axioms and
theorems that pertain to set theoretic functions pertain to f-structures as well.
Readers who do not feel very at home in set theory should not feel at a disadvantage,
however, as no experience with set theory is assumed in this exposition, and one does
not appeal to such knowledge when using the LFG formalism to construct linguistic
analyses.

10The reader is advised that there is a prevalent and yet unspoken convention
among researchers in LFG concerning the left to right order of arguments according to
thematic roles.  Agent and experiencer arguments seem always to precede all other
roles.  The theme argument appears next, followed by the goal.  All other arguments
usually follow the above four, and their ordering seems arbitrary.
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