A Method for

Disjunctive Constraint Satisfaction®

John T. Maxwell ITI Ronald M. Kaplan
Xerox Palo Alto Research Center

1 Introduction

A distinctive property of many current grammatical formalisms is their use of feature equal-
ity constraints to express a wide variety of grammatical dependencies. Lexical-Functional
Grammar[6], Head-Driven Phrase-Structure Grammar[14], PATR[8], FUG[12, 13], and the
various forms of categorial unification grammar[9, 15, 16] all require an analysis of a sentence
to satisfy a collection of feature constraints in addition to a set of conditions on the arrange-
ment of words and phrases. Conjunctions of equality constraints can be quickly solved
by standard unification algorithms, so they in themselves do not present a computational
problem. However, the equality constraints derived for typical sentences are not merely con-
joined together in a form that unification algorithms can deal with directly. Rather, they
are embedded as primitive elements in complex disjunctive formulas. For some formalisms,
these disjunctions arise from explicit disjunction operators that the constraint language pro-
vides for (e.g. LFG) while for others disjunctive constraints are derived from the application
of alternative phrase structure rules (e.g. PATR). In either case, disjunctive specifications
help to simplify the statement of grammatical possibilities. Alternatives expressed locally
within individual rules and lexical entries can appeal to more general disjunctive processing
mechanisms to resolve their global interactions.

The computational problem, of course, is that processing disjunctive specifications is
exponentially difficult in the worst case, even if conjunctions of primitive propositions can
be solved very quickly, as is the case with equality. For example, the most direct way of
dealing with a disjunctive formula is to convert it to disjunctive normal form and then
separately solve each of the conjunctive subformulas in the result. There are in general
exponentially many such subformulas to consider, hence the overall exponential complexity
of the whole process. Despite its computational cost, the DNF strategy does have the
significant advantage that it decouples the processing of disjunctions from any details of the
primitive constraint formalism or of the conjunctive method for solving them. Grammatical
constraint formulas can be solved by merely composing well-known DNF algorithms with
equally well-known unification algorithms in a simple, modular implementation that is easy
to understand and easy to prove correct.

The exponential time-bound does not reflect our naive intuitions about the intrinsic com-
plexity of the natural language parsing problem. The number of alternatives that remain
consistent for any given sentence is typically much, much smaller than the number that a
DNF parsing algorithm would explore, and traces of such algorithms typically show enor-
mous amounts of repetitive and irrelevant computation. Although disjunctive constraint
satisfaction is known to be worst-case exponential, we and others have suspected that the
disjunctive configurations that emerge from grammatical specifications may conform to cer-

*Published in Current Issues in Parsing Technology, Masaru Tomita editor, pages 173-190. Kluwer
Academic Publishers, 1991.

tain restricted patterns that admit of more rapid solution algorithms. Karttunen[7] observed
that many grammatical disjunctions can be resolved locally among a limited number of
morphological feature values and do not usually have the more global interactions that the
DNF algorithm is optimized to handle. Kasper[10, 11] suggested that many grammatical
constraints lead to immediate inconsistencies and proposed an algorithm that noticed some
of these inconsistencies before expanding to disjunctive normal form.

We have developed a contrasting set of intuitions. Working with Lexical-Functional
Grammars, we have noticed that, as a grammar increases in its coverage, the number of
disjunctions to be processed grows in rough proportion to the number of words in a sentence.
However, we have not observed that elements of these disjunctions typically are mutually
inconsistent. Rather, the most striking pattern is that disjunctions arising from words and
phrases that are distant from each other in the string tend not to interact. A disjunction
representing an ambiguity in the person or number of a sentence’s subject, for example,
tends to be independent of any ambiguities in, say, the complement’s complement’s object.
That is, the constraint system is globally satisfiable no matter what choices are made from
the two distant disjunctive branches. If disjunctions are independent, or free, of each other,
1t 1s not necessary to explore all combinations of their branches to determine the satisfiability
of the entire system.

The algorithm we propose in this chapter is optimized for this common pattern of free
disjunctions. Natural languages seem to have a certain locality property in that distant
words and phrases usually contribute information about different grammatical functions
and features. Distant disjunctions therefore tend to relate to different branches of the
attribute-value matrix (functional structure in LFG terminology) that is characterized by
the set of equality constraints. In essence, instead of multiplying disjunctions in advance
of running a purely conjunctive unification algorithm, our algorithm embeds disjunctions
underneath the particular attributes they are concerned with. Equality processing is then
carried out on this disjunctive structure. Our method retains the important advantage of
the DNF strategy of directly referencing the axioms of the conjunctive equality theory, and
thus remains easy to understand and prove correct.

There are four main steps in our algorithm for processing disjunctive systems:

1. turn the disjunctive system into an equi-satisfiable flat conjunction of contexted con-
straints

2. normalize the contexted constraints using extensions of standard techniques
3. extract and solve a propositional ‘disjunctive residue’

4. produce models for satisfiable systems

Intuitively, the disjunctive residue represents the satisfiable combinations of disjuncts
in a simple propositional form. Each of the transformations above preserves satisfiability,
and so the original disjunctive system is satisfiable if and only if the digjunctive residue
is satisfiable. If the disjunctions are relatively independent, then the disjunctive residue is
significantly easier to solve than the original system.

The first four sections of this chapter cover the steps outlined above. The next section
compares this approach with some other techniques for dealing with disjunctive systems of
constraints. The last section discusses some of the things that we learned along the way.

2 Turning Disjunctions into Contexted Constraints

2.1 Basic Lemma

Our method depends on a simple lemma for converting a disjunction into a conjunction of
implications:

Lemma 1 ¢1 V ¢o is satisfiable iff (p — ¢1) A (—p — ¢2) is satisfiable, where p is a new
propositional variable.

Proof:

1. If ¢1 V @5 1s satisfiable, then either ¢, is satisfiable or ¢» is satisfiable. Suppose that
¢1 1s satisfiable. Then if we choose p to be true, then p — ¢; is satisfiable because
¢1 1s satisfiable, and —p — ¢ 1s vacuously satisfiable because its antecedent is false.
Therefore (p — ¢1) A (-p — ¢2) is satisfiable.

2. If (p — ¢1) A (—p — ¢2) is satisfiable, then both clauses are satisfiable. One clause
will be vacuously satisfiable because 1ts antecedent is false and the other will have a
true antecedent. Suppose that p — ¢ is the clause with the true antecedent. Then
¢1 must be satisfiable for p — ¢ to be satisfiable. But if ¢, is satisfiable, then so 1s

é1V d. Q.E.D.

Intuitively, the new variable p is used to encode the requirement that at least one of the
disjuncts be true. In the remainder of the chapter we use lower-case p to refer to a single
propositional variable, and upper-case P to refer to a boolean combination of propositional
variables. We call P — ¢ a contexted constraint, where P is the context and ¢ is called the
base constraint.

(Note that this lemmais stated in terms of satisfiability, not logical equivalence. A form
of the lemma that emphasized logical equivalence would be: ¢1Vga — Jp : (p — ¢1)A(—p —

$2).)

2.2 Turning a Disjunctive System into a Conjunctive System

The lemma given above can be used to convert a disjunctive system of constraints into a flat
conjunction of contexted constraints in linear time. The resulting conjunction is satisfiable
if and only if the original system is satisfiable. The algorithm for doing so is as follows:

Algorithm 1
a) push all of the negations down to the literals
b) turn all of the disjunctions into conjunctions using lemma (1) above
¢) flatten nested contexts with: (P; — (P; — ¢)) & (PiAP; — ¢)
d) separate conjoined constraints with: (P; — ¢1 A ¢2) < (P — ¢1) A (P — ¢2)

This algorithm is a variant of the reduction used to convert disjunctive systems to an equi-
satisfiable formula in conjunctive normal form in the proof that the satisfiability problem
for CNF is NP-complete[4]. In effect, we are simply converting the disjunctive system to an
implicational form of CNF (since P — ¢ is logically equivalent to =P V ¢). CNF has the
desirable property that if any one clause can be shown to be unsatisfiable, then the entire
system is unsatisfiable.

2.3 Example

The functional structure f of an uninflected English verb has the following constraints in
the formalism of Lexical-Functional Grammar[6]:

(1) ((finf) = =A(ftense) = presA=[(f subj num) = sgA(f subjpers) = 3)V(f inf) =

(In LFG notation, a constraint of the form (fa) = v asserts that f(a) = v, where f is
a function, a is an attribute, and v is a value. (fab) = v is shorthand for f(a)(b) = v.)
These constraints say that either an uninflected English verb is a present tense verb which
i1s not third person singular, or it i1s infinitival. In the left column below this system has
been reformatted so that it can be compared with the results of applying algorithm (1) to
it, shown on the right:

reformatted: converts to:

(finf) = ((Finf) = =) A
(ftense) = pres ((ftense) = pres) A
A= [(f subjnum) = sg (p1 Ap2— (fsubjnum)# sg)A
A (fsubjpers)_3]) (p1 A—pa2 — (f subjpers) # 3)A
(((Finf) =)

3 Normalizing the Contexted Constraints

A conjunction of contexted constraints can be put into an equi-satisfiable normalized form
that makes it easy to identify all unsatisfiable combinations of constraints. The basic idea 1s
to start with algorithms that determine the satisfiability of purely conjunctive systems and
extend each rule of inference or rewriting rule so that it can handle contexted constraints.
We illustrate this approach by modifying two conventional satisfiability algorithms, one
based on deductive expansion and one based on rewriting.

3.1 Deductive Expansion

Deductive expansion algorithms work by determining all the deductions that could lead
to unsatisfiability given an initial set of clauses and some rules of inference. The key to
extending a deductive expansion algorithm to contexted constraints is to show that for
every rule of inference that is applicable to the base constraints, there is a corresponding
rule of inference that works for contexted constraints. The basic observation is that base
constraints can be conjoined if their contexts are conjoined:

Lemma 2 (P, — ¢1) A (P2 — ¢2) = (PLA Py — ¢1 A ¢2)

If we know from the underlying theory of conjoined base constraints that ¢; A ¢ — ¢3,
then the transitivity of implication gives us:

(2) (Pr— ¢1) AN(Py — ¢2) = (PL APy — ¢3)

Equation (2) is the contexted version of ¢1 A ¢ — ¢3. Thus the following extension of a
standard deductive expansion algorithm works for contexted constraints:

Algorithm 2
For every pair of contexted constraints Py — ¢1 and Py — ¢o such that:
a) there is a rule of inference ¢1 A g2 — ¢3
b) Py APy # FALSE
¢) there are no other clauses Ps — ¢3 such that Py A P, — Ps
add P1 A Py — ¢3 to the conjunction of clauses being processed.

Condition (b) is based on the observation that any constraint of the form FALSE — ¢
can be discarded since no unsatisfiable constraints can ever be derived fromit. This condition
1s not necessary for the correctness of the algorithm, but may have performance advantages.
Condition (c¢) corresponds to the condition in the standard deductive expansion algorithm
that redundant constraints must be discarded if the algorithm is to terminate. We extend
this condition by noting that any constraint of the form P; — ¢ is redundant if there is
already a constraint of the form P; — ¢, where P; — P;. This is because any unsatisfiable
constraints derived from F; — ¢ will also be derived from P; — ¢. Our extended algorithm
terminates if the standard algorithm for simple conjunctions terminates. When it termi-
nates, an equi-satisfiable disjunctive residue can be easily extracted, as described in section

(4) below.

3.2 Rewriting

Rewriting algorithms work by repeatedly replacing conjunctions of constraints with logically
equivalent conjunctions until a normal form is reached. This normal form usually has
the property that all unsatisfiable constraints can be determined by inspection. Rewriting
algorithms use a set of rewriting rules that specify what sorts of replacements are allowed.
These are based on logical equivalences so that no information is lost when replacements
occur. Rewriting rules are interpreted differently from logical equivalences, however, in
that they have directionality: whenever a logical expression matches the left-hand side of a
rewriting rule, it is replaced by an instance of the logical expression on the right-hand side,
but not vice-versa. To distinguish the two, we will use « for logical equivalence and <
for rewriting rules. (This corresponds to our use of — for implication and = for deduction
above.)

A rewriting algorithm for contexted constraints can be produced by showing that for
every rewrite rule that is applicable to the base constraints, there is a corresponding rewrite
rule for contexted constraints. Suppose that ¢; A ¢2 < ¢3 is a rewriting rule for base
constraints. An obvious candidate for the contexted version of this rewrite rule would be to
treat the deduction in (2) as a rewrite rule:

(3) (Pr— ¢1) AN (P2 — ¢2) & (PL APy — ¢3) (incorrect)

This is incorrect because it is not a logical equivalence: the information that ¢, is true in
the context Py A =P, and that ¢ 1s true in the context P, A =Py has been lost as the basis
of future deductions. If we add clauses to cover these cases, we get the logically correct:

(4) (PA—=)N (Pr—¢2) & (PLA-Py— ¢1) A(Pa AP — ¢2) A(PL APy — ¢3)

This is the contexted equivalent of ¢1 A ¢2 < ¢3. Note that the effect of this is that
the contexted constraints on the right-hand side have unconjoinable contexts (that is, the
conjunction of the contexts is tautologically false). Thus, although the right-hand side of
the rewrite rule has more conjuncts than the left-hand side, there are fewer implications to
be derived from them.

Loosely speaking, a rewriting algorithm is constructed by iterative application of the
contexted versions of the rewriting rules of a conjunctive theory. Rather than give a general
outline here, let us consider the particular case of attribute value logic.

3.3 Application to Attribute-Value Logic

Attribute-value logic is used by both LFG and unification-based grammars. We will start
with a simple version of the rewriting formalism given in Johnson[5]. For our purposes; we
only need two of the rewriting rules that Johnson defines[5, pp. 38-39]:

(5) t1 m itz <<ty &ty when ([t < [|t2]] ([|t:]] is Johnson’s norm for terms.)

(ta i1 Ad) & (ta ity A Plta/t1]) where ¢ contains o and [[22]] > [|t1]]
(¢[t2/t1] denotes ¢ with every occurrence of ¢5 replaced by t;.)

(6)

We turn equation (6) into a contexted rewriting rule by a simple application of (3) above:

(7) (Py—=tamt)) A (Py— @)
C}(Pl/_'Pz—>t2%tl)/\(ﬁpl/\Pzﬁqj))/\(Pl/\Pz—>(t2%t1/\¢[t2/t1]))

We can collapse the two instances of t2 m t; together by observing that (P — AA B) &
(P — A)A(P — B) and that (P, — A)A(P; — A) & (P V P; — A), giving the simpler
form:

(8) (P1 —>t2%t1)/\(P2—>¢)C>(P1 — 19 %tl)/\(Pz/\ﬁpl—>¢))/\(P2/\P1—>¢[t2/t1])

Formula (8) is the basis for a very simple rewriting algorithm for a conjunction of contexted
attribute-value constraints:

Algorithm 3
For each pair of clauses P| — t9 &~ t1 and Py — ¢:
a) if ||ta|| > |[t1]], then set x to t1 and y to ta, else set x to ty and y to 1y
b) if ¢ mentions y then replace P» — ¢ with (P A= Py — ¢) A (P2 A Py — ¢ly/z])

Notice that since P, — to & ¢; is carried over unchanged in (8), we only have to replace
P; — ¢ in step (b). Note also that if Ps A Py is FALSE, there is no need to actually add
the clause (Pz A Py — ¢[ta/t1]) since no unsatisfiable constraints can be derived from it.
Similarly if Po A—Py 18 FALSE there 1s no need to add Po A—=P; — ¢. These modifications
may or may not have performance advantages.

3.4 Proof of Termination

We can prove that the contexted version of Johnson’s algorithm terminates by extending his
proof of termination[5, pp. 38-40] to include contexted constraints. Johnson defines a norm
on terms ||t|| such that if ||¢1]| < ||£2|] and ¢ uses t2, then ||¢[t2/t1]|| < [|¢|| for all ¢. We do
not need to know the details of this norm, except to note that ||¢1 A ¢a|] = ||é1]] - [|$2]|-

We now define ||P — ¢|| to be [|||IFl, where [|P]| is the number of solutions that P
has in the truth table for all the propositional variables in the entire system. (In terms of a
Venn diagram, || P|| is the size of the area covered by P.) One consequence of this definition
1s that ||Pz|| = ||Pz A P]H + ||Pz A —|P]'|| for all P; and P]'.

Using this definition, the norm for the left hand side of (8) is:

[(Pr =t t1) A (P2 — ¢
1(Pr — o & t1)|| - [I(P2 — @)
s A 42171 [171

9)

and the norm for the right hand side is:
I((PL — Ly m L) A(Py A=PL— 6) A (Py A PL— ¢[ta/L])]

(10) = NPy —to m)] (P APy — 8)] - [I(Po A Py — oft/t)]
t2 2 1PN IR g /] 1P2

We now show that (10) < (9) whenever [|t1]] < ||t2]|:

[1Eall <l
1ol=/t]ll < li#ll (by Johnson’s definition)
l|6[ta/t1]|| APl < (||| P2AP:
(11) [|¢ tz/t1]||||P2/\P1|| . ||¢||I|P2/\—.P1|| < ||¢||I|P2/\P1|| ~||¢||||P2/\—'P1||
]

to/t ||||P2/\P1|| . ||¢||||P2/\"P1|| < ||¢||||P2/\P1||+||P2/\"P1||

I
|8t/ t1]||I1F=API g 1P P < || 121 (by our definition of ||P||)

2 2 2 1P ot /e IPAPA ol IP2~P < e o 1P - 1P

[
[
[
[
[

bbbl

We can conclude from this that each application of (8) in algorithm (3) will monotonically
reduce the norm of the system as a whole, and hence the algorithm must terminate.

3.5 Example

The following example illustrates how this algorithm works. Suppose that (13) is the con-
texted version of (12):

(12) [fo=fiv(fia)=ca]A(faa) =c2V (f1 a) = e¢3] where ¢; #£¢; forall i £ j

pr—fo=h
P11 — (f1 Cl) =

P2 — (fz Cl) = C3
p2 — (f1 Cl) = C3

(13)

Qo oo

(For clarity, we omit the A’s whenever contexted constraints are displayed in a column.)
There is an applicable rewrite rule for constraints (13a) and (13¢) that produces three new
constraints:

p1— fo=fi & p1—f=h
(14) p2 — (faa)=c2 pr Apz — (faa) =co
pL APy — (fia)=co

Although there is an applicable rewrite rule for (13d) and the last clause of (14), we ignore
it since py A pa A —p2 is FALSE. The only other pair of constraints that can be rewritten
are (13b) and (13d), producing three more constraints:

_‘P1—>(f16l)261 g _'P1—>(f16l)261
(15) _‘P2—>(f16l)263 P1/\—'p2—>(f1a):c3
p1r ATps — 1 =¢3

Since no more rewrites are possible, the normal form of (13) is thus:

p1— fo=fi
-p1— (fia) =
pr Apz — (faa) = ¢

16
(16) i A—pr — (fra) =
P Aps— (fia) =
p1r ATps — 1 =¢3

~ 0 Aas &8

4 Extracting the Disjunctive Residue

When the rewriting algorithm is finished, all unsatisfiable combinations of base constraints
will have been derived. But more reasoning must be done to determine from base unsatisfi-
abilities whether the disjunctive system is unsatisfiable. Consider the contexted constraint
P — ¢, where ¢ is unsatisfiable. In order for the conjunction of contexted constraints
to be satisfiable, it must be the case that =P is true. We call =P a nogood, follow-
ing TMS terminology[l]. Since P contains propositional variables indicating disjunctive
choices, information about which conjunctions of base constraints are unsatisfiable is thus
back-propagated into information about the unsatisfiability of the conjunction of the dis-
juncts that they come from. The original system as a whole is satisfiable just in case the
conjunction of all its nogoods is true. We call the conjunction of all of the nogoods the
restdue of the digjunctive system.

For example, clause (16f) asserts that =p; A —p2 — ¢1 = ¢3. But ¢1 = ¢3 is unsatisfiable,
since we know that ¢y # es. Thus =(—p; A —p3) is a nogood. Since ¢; = c¢3 is the only
unsatisfiable base constraint in (16), this is also the disjunctive residue of the system. Thus
(12) is satisfiable because =(—p; A =p2) has at least one solution (e.g. pp is true and ps is
true).

Since each nogood may be a complex boolean expression involving conjunctions, disjunc-
tions and negations of propositional variables, determining whether the residue is satisfiable
may not be easy. In fact, the problem is NP complete. However, we have accomplished two
things by reducing a disjunctive system to its residue. First, since the residue only involves
propositional variables, it can be solved by propositional reasoning techniques (such as deK-
leer’s ATMS[1]) that do not require specialized knowledge of the problem domain. Second,
we believe that for the particular case of linguistics, the final residue will be simpler than
the original disjunctive problem. This is because the disjunctions introduced from different
parts of the sentence usually involve different attributes in the feature structure, and thus
they tend not to interact.

Another way that nogoods can be used 1s to reduce contexts while the rewriting is being
carried out, using identities like the following:

(17) —|P1/\(—|P1/\P2—>¢>)C>—|P1/\(P2—>¢)
(18) _|P1/\(P1/\P2—>¢)C>_'P1
(19) PiN-P < FALSE

Doing this can improve the performance since some contexts are simplified and some con-
straints are eliminated altogether. However, the overhead of comparing the nogoods against
the contexts may outweigh the potential benefit.

4.1 Complexity Analysis

The first part of our algorithm (converting the original constraints into contexted con-
straints) is linear in the number of constraints, since the number of transformations in
algorithm (1) is directly proportional to the number of operators in the original formula. In
the particular case of unification, the second part (normalizing the constraints) can be made
to run in polynomial time (although we have not given a proof of this). The third part,
solving the disjunctive residue, contains the exponential that cannot be avoided. However,
if the nogoods are mostly independent, then the complexity of this part will be closer to
k2™ than 2", where m < n. This is because the disjunctive residue will break down into a
number of independent problems each of which is still exponential, but with much smaller
exponents.

4.2 Example
Let us assume that the following constraints represent the German words die and Koffer:

die: (f case) = nom V (f case) = acc

Al(f gend) = fem A (f num) = sg] V (f num) = pl

Koffer: (f gend) = masc A (f pers) =3
Al(f num) = sg A (f case) # gen] V [(f num) = pl A (f case) # dat]

If we convert to contexted constraints and sort by attributes we get the following:

a. p1 — (f case) = nom

b. —p1 — (fcase) = ace

c. ps — ([case) # gen

d. —ps — (fcase) # dat

e. p2 — (f gend) = fem
(20) f. true — (f gend) = masc

9. p2— (fnum)=sg

h. =p2 — (fnum) = pl

1. ps — (fnum) = sg

Jo w3 — (fnum)=pl

k. true — (fpers) =3

Normalizing the constraints produces the following nogoods:

a. pa (e and f)

(21) b paA-ps (gandj)
c. —wpaAps (handi)

The conjunction of these nogoods has the solutions: p; A =ps A —ps and —=p; A —ps A —ps.

5 Producing the Models

Assuming that there is a method for producing a model for a conjunction of base constraints,
we can produce models from the contexted system. Every assignment of truth values to the
propositional variables introduced in lemma (1) corresponds to a different conjunction of
base constraints in the original system, and each such conjunction is an element of the DNF

of the original system. Rather than explore the entire space of assignments, we need only
enumerate those assignments for which the disjunctive residue is true.

Given an assignment of truth values that i1s consistent with the disjunctive residue, we
can produce a model from the contexted constraints by assigning the truth values to the
propositional variables in the contexts, and then discarding those base constraints whose
contexts evaluate to false. The minimal model for the remaining base constraints can be
determined by inspection if the base constraints are in normal form, as is the case for
rewriting algorithms. (Otherwise some deductions may have to be made to produce the
model, but the system is guaranteed to be satisfiable.) This minimal model will satisfy the
original disjunctive system.

5.1 Example

The residue for the system given in (20) is —p2 A —=[p2 A =ps] A =[-p2 A p3]. This residue
has two solutions: p; A =ps A =p3 and —p; A =p2 A =ps. We can produce models for these
solutions by extracting the appropriate constraints from (20), and reading off the models.
Here are the solutions for this system:

solution: constraints: model:
(f case) = nomA [case nom |
(f gend) = masc A _ | gend masc
prA=p2 AP (fnum) = pl A F=lnum pl
(fpers) = 3 | pers 3
(f case) = acc A [case ace |
(f gend) = masc A _ | gend masc
p1 A p2 A Tp3 (f num) = pl A F=1num pl
(f pers) = | pers 3

6 Comparison with Other Techniques

In this section we compare digjunctive constraint satisfaction with some of the other tech-
niques that have been developed for dealing with disjunction as it arises in grammatical
processing. These other techniques are framed in terms of feature-structure unification and
a unification version of our approach would facilitate the comparisons. Although we do not
provide a detailed specification of context-extended unification here, we note that unification
can be thought of as an indexing scheme for rewriting. We start with a simple illustration
of how such an indexing scheme might work.

6.1 Unification Indexing

Regarding unification as an indexing scheme, the main question that needs to be answered
is where to index the contexts. Suppose that we index the contexts with the values under
the attributes. Then the attribute-value (actually, attribute-context-value) matrix for (22a)

would be (22b):
P1 61]

(22) a. (f a) =c V [(f b) =cy V (f a) =c3] b ¢ |:_‘P1 A —ps c3
b ["Pl A p2 Cz]

10

Since the contexts are indexed under the attributes, two disjunctions will only interact if
they have attributes in common. If they have no attributes in common, their unification will
be linear in the number of attributes, rather than multiplicative in the number of disjuncts.
For instance, suppose that (23b) is the attribute value matrix for (23a):

c [PS 64]
(23) a. (fO)=eaVI][fd)=csV(fe)=cs] b |d [ﬁpg/\p4 c5]
e ["Ps/\—'m 66]

Since these disjunctions have no attributes in common, the attribute-value matrix for the
conjunction of (22a) and (23a) will be simply the concatenation of (22b) and (23b):

[Pl 61]_
—p1 A p2 C3

b [_‘Pl Ap2 Cz]
(24) c [PS 64]

d ["Ps/\m 65]

e [_‘Ps/\—'m 66]

The DNF approach to this problem would produce nine f-structures with eighteen attribute-
value pairs. In contrast, our approach produces one f-structure with eleven attribute-value
and context-value pairs. In general, if disjunctions have independent attributes, then a DNF
approach is exponential in the number of disjunctions, whereas our approach is linear. This
independence feature is very important for language processing, since, as we have suggested,
disjunctions from different parts of a sentence usually constrain different attributes.

6.2 Karttunen’s Disjunctive Values

Karttunen[7] introduced a special type of value called a “disjunctive value” to handle certain
types of disjunctions. Disjunctive values allow simple disjunctions such as:

(25) (f case) = ace V (f case) = nom
to be represented in the unification data structure as:

(26) |case {nom acc}

where the curly brackets indicate a disjunctive value. Karttunen’s disjunctive values are not
limited to atomic values, as the example he gives for the German article die shows:

case {nom acc}
4 4 gender fem]
(27) die= |infl agr number sg
number pl]

11

The corresponding attribute-context-value matrix for our scheme would be:

case |P1 nom]
|—p1 acc
(28) die= |infl gender [pz fem]
agr
number [pz sg]
—p2 pl

The advantage of disjunctive constraint satisfaction is that it can handle all types of dis-
junctions, whereas disjunctive values can only handle atomic values or simple feature-value
matrices with no external dependencies. Furthermore, disjunctive constraint satisfaction
can often do better than disjunctive values for the types of digjunctions that they can both
handle. This can be seen in (28), where disjunctive constraint satisfaction has pushed a
disjunction further down the agr feature than the disjunctive value approach in (27). This
means that if agr were given an attribute other than gender or number, this new attribute
would not interact with the existing disjunction.

However, disjunctive values may have an advantage of reduced overhead, because they
do not require embedded contexts and they do not have to keep track of nogoods. It
may be worthwhile to incorporate disjunctive values in our scheme to represent the very
simple disjunctions, while disjunctive constraint satisfaction is used for the more complex
disjunctions.

6.3 Kasper’s Successive Approximation

Kasper[10, 11] proposed that an efficient way to handle digjunctions is to do a step-wise
approximation for determining satisfiability. Conceptually, the step-wise algorithm tries
to find the inconsistencies that come from fewer disjuncts first. The algorithm starts by
unifying the non-disjunctive constraints together. If the non-disjunctive constraints are
inconsistent, then there is no need to even consider the disjunctions. If they are consistent,
then the disjuncts are unified with them one at a time, where each unification is undone
before the next unification is performed. If any of these unifications are inconsistent, then
its disjunct is discarded. Then the algorithm unifies the non-disjunctive constraints with
all possible pairs of disjuncts, and then all possible triples of disjuncts, and so on. (This
technique is called “k-consistency” in the constraint satisfaction literature[3].) In practice,
Kasper noted that only the first two steps are computationally useful, and that once bad
singleton disjuncts have been eliminated, it is more efficient to switch to DNF than to
compute all of the higher degrees of consistency.

Kasper’s technique is optimal when most of the disjuncts are inconsistent with the non-
disjunctive constraints, or the non-disjunctive constraints are themselves inconsistent. His
scheme tends to revert to DNF when this is not the case. Although simple inconsistencies
are prevalent in many circumstances, we believe they become less predominate as grammars
are extended to cover more and more linguistic phenomena. The coverage of a grammar in-
creases as more options and alternatives are added, either in phrasal rules or lexical entries,
so that there are fewer instances of pure non-disjunctive constraints and a greater pro-
portion of inconsistencies involve higher-order interactions. This tendency is exacerbated
because of the valuable role that disjunctions play in helping to control the complexity of
broad-coverage grammatical specifications. Disjunctions permit constraints to be formu-
lated in local contexts, relying on a general global satisfaction procedure to enforce them
in all appropriate circumstances, and thus they improve the modularity and manageability
of the overall grammatical system. We have seen this trend towards more localized dis-
junctive specifications particularly in our developing LFG grammars, and have observed a

12

corresponding reduction in the number of disjuncts that can be eliminated using Kasper’s
technique. On the other hand, the number of independent disjunctions, which our approach
does best on, tends to go up as modularity increases.

One other aspect of LFG grammatical processing is worth noting. Many LFG analyses
are ruled out not because they are inconsistent, but rather because they are incomplete.
That is, they fail to have an attribute that a predicate requires (e.g. the object is missing
for a transitive verb). Since incomplete solutions cannot be ruled out incrementally (an
incomplete solution may become complete with the addition of more information), com-
pleteness requirements provide no information to eliminate disjuncts in Kasper’s successive
approximation. These requirements can only be evaluated in what is effectively a disjunctive
normal form computation. But our technique avoids this problem, since independent com-
pleteness requirements will be simply additive, and any incomplete contexts can be easily
read off of the attribute-value matrix and added to the nogoods before solving the residue.

Kasper’s scheme works best when disjuncts can be eliminated by unification with non-
disjunctive constraints, while ours works best when disjunctions are independent. It is
possible to construct a hybrid scheme that works well in both situations. For example, we
can use Kasper’s scheme up until some critical point (e.g. after the first two steps), and
then switch over to our technique instead of computing the higher degrees of consistency.

Another, possibly more interesting, way to incorporate Kasper’s strategy is to always
process the sets of constraints with the fewest number of propositional variables first. That
is, if Ps A Py had fewer propositional variables than P; A Ps, then the rewrite rule in (30)
should be done before (29):

(29) (P1— ¢1) A (P2 — ¢2) = (PL A P2 — ¢5)
(30) (P3— ¢3) A(Ps— ¢a) = (P3 A Py — ¢¢)

This approach would find smaller nogoods earlier, which would allow combinations of con-
straints that depended on those nogoods to be ignored, since the contexts would already be
known to be inconsistent.

6.4 Eisele and Dorre’s techniques

Eisele and Dérre[2] developed an algorithm for taking Karttunen’s notion of disjunctive
values a little further. Their algorithm allows disjunctive values to be unified with reentrant
structures. The algorithm correctly detects such cases and “lifts the disjunction due to
reentrancy”. They give the following example:

b+ _a: [E _(d>]
P T N I IR LR N
b: - S I O T D (d)]'
¢+ e +
d: -

Notice that the disjunction under the “a” attribute in the first matrix is moved one level up
in order to handle the reentrancy introduced in the second matrix under the “b” attribute.

This type of unification can be handled with embedded contexts without requiring that
the disjunction be lifted up. In fact, the digjunction is moved down one level, from under

13

“a” to under “b” and “¢”:

b: (d)
o fo | ", +] ok [3 nﬂ L
’ [Tpl +] d [ﬁlpl +]

6.5 Overall Comparison

The major cost of using disjunctive constraint satisfaction is the overhead of dealing with
contexts and the disjunctive residue. Our technique is quite general, but if the only types
of digjunction that occur are covered by one of the other techniques, then that technique
will probably do better than our scheme. For example, if all of the nogoods are the result
of singleton inconsistencies (the result of unifying a single digjunct with the non-disjunctive
part), then Kasper’s successive approximation technique will work better because it avoids
our overhead. However, if many of the nogoods involve multiple disjuncts, or if some nogoods
are only produced from incomplete solutions, then disjunctive constraint satisfaction will
do better than the other techniques, sometimes exponentially so. We also believe that
further savings can be achieved by using hybrid techniques if the special cases are sufficiently
common to warrant the extra complexity.

7 Concluding Remarks

We set out to exploit a particular property of parsing (namely that constraints under dif-
ferent attributes tend not to interact) in order to obtain better average time performance
for constraint satisfaction. Along the way, we have discovered a few strategies that we did
not anticipate but in retrospect seem quite useful.

The first strategy 1s to use the conjunctive theory to drive the disjunctive theory. This is
useful because in our case the conjunctive theory is polynomial and the disjunctive theory
is exponential. Since the conjunctive theory can reduce the search space of the disjunctive
theory in polynomial time, this saves the disjunctive theory exponential time. In general, it
makes sense to use the more constrained theory to drive the less constrained theory. This is
one of the major ways in which we differ from the ATMS[1] work; the ATMS uses disjunctive
information to guide the conjunctive theory, whereas we do it the other way around. We
believe that it may be possible to gain more benefits by going even further in this direction.

The second strategy is to use CNF rather than DNF. This is because CNF allows for
a compact representation of ambiguity. That is, a conjunction of independent disjunctions
is much smaller than the equivalent formula expressed as a disjunction of conjunctions.
This 1s particularly important for processing modular linguistic descriptions. In modular
systems with separate specifications of syntax, semantics, pragmatics, etc., the syntactic
component alone does not include all the constraints needed to determine the ultimately
correct analysis of a sentence. It usually provides a set of possible outputs that are then
filtered by the constraints of the more abstract modules, and these outputs are typically
enumerated as a (possibly large) set of separate alternative structures. But in the absence
of semantic or pragmatic constraints, many of the residual syntactic ambiguities appear as
free or independent disjunctions, and these can be encoded efficiently using CNF. Thus,
our approach to disjunction has the added advantage of reducing the performance penalty
frequently associated with modular characterizations of linguistic information.

14

8 Acknowledgments

The approach described in this chapter emerged from discussion and interaction with a
number of our colleagues. We are particularly indebted to John Lamping, who suggested
the initial forumulation of lemma (1), and to Bill Rounds for pointing out the relationship
between our conversion algorithm and the NP completeness reduction for CNF. We are
also grateful for many helpful discussions with Dan Bobrow, Johan deKleer, Jochen Dorre,
Andreas Eisele, Pat Hayes, Mark Johnson, Lauri Karttunen, and Martin Kay.

References

[1] deKleer, J. (1986). An Assumption-based TMS. Artificial Intelligence 28, 127-162.

[2] Eisele, A. and Dérre, J. (1988). Unification of Disjunctive Feature Descriptions. Pro-
ceedings of the 26th Annual Meeting of the ACL. Buffalo, New York.

[3] Freuder, E.C. (1978). Synthesizing Constraint Expressions. Communications of the
ACM 21, 958-966.

[4] Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and
Computation. p. 328-330.

[5] Johnson, M. (1988). Attribute- Value Logic and the Theory of Grammar. Ph.D. Thesis.
Stanford University.

[6] Kaplan, R. and Bresnan, J. (1982). Lexical Functional Grammar: A Formal System
for Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of
Grammatical Relations. MIT Press, Cambridge, Massachusetts.

[7] Karttunen, L. (1984). Features and Values. In Proceedings of COLING 1984, Stanford,
CA.

[8] Karttunen, L. (1986). D-PATR: A development environment for unification-based
grammars. In Proceedings of COLING 1986, Bonn.

[9] Karttunen, L. (1986). Radical Lexicalism. In M. Baltin and A Kroch (eds.) Alternative
Conceptions of Phrase Structures, Chicago University Press.

[10] Kasper, R.T. (1987). Feature Structures: A Logical Theory with Application to Lan-
guage Analysis. Ph.D. Thesis. University of Michigan.

[11] Kasper, R.T. (1987). A Unification Method for Disjunctive Feature Descriptions. Pro-
ceedings of the 25th Annual Meeting of the ACL, Stanford, CA.

[12] Kay, M. (1979). Functional Grammar. In C. Chiarello et al. (eds.) Proceedings of the
dth Annual Meeting of the Berkeley Linguistic Society.

[13] Kay, M. (1985). Parsing in Functional Unification Grammar. In D. Dowty, L. Kart-
tunen, and A. Zwicky (eds.) Natural Language Parsing, Cambridge University Press.

[14] Pollard, C. and Sag, 1. (1987). Information-Based Syntar and Semantics, Volume I,
Fundamentals, CSLI Lecture Note Series, Vol. 13, Center for the Study of Language
and Information, Stanford University.

[15] Uszkoreit, H. (1986). Categorial Unification Grammars. In Proceedings of COLING
1986, Bonn.

15

[16] Zeevat, H., Klein, E., and Calder, J. (1987) Unification categorial grammar. In N.
Haddock, E. Klein, and G. Morrill (eds.) Categorial Grammar, Unification Grammar,
and Parsing, University of Edinburgh, Scotland.

16

