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Abstract: This paper outlines a theory of constituent coordination for Lexical-Functional Grammar.
On this theory LFG’s flat, unstructured sets are used as the functional representation of coordinate
constructions.  Function-application is extended to sets by treating a set formally as the
generalization of its functional elements.  This causes properties attributed externally to a
coordinate structure to be uniformly distributed across its elements, without requiring additional
grammatical specifications.

Introduction

A proper treatment of coordination has long been an elusive goal of both theoretical and
computational approaches to language.  The original transformational formulation in terms of the
Coordinate Reduction rule (e.g. Dougherty, 1970) was quickly shown to have many theoretical and
empirical inadequacies, and only recently have linguistic theories (e.g. GPSG (Gazdar et al., 1985),
Categorial grammar (e.g. Steedman, 1985)) made substantial progress on characterizing the complex
restrictions on coordinate constructions and also on their semantic interpretations.  Coordination has
also presented descriptive problems for computational approaches.  Typically these have been solved
by special devices that are added to the parsing algorithms to analyze coordinate constructions that
cannot easily be characterized in explicit rules of grammar.  The best known examples of this kind of
approach are SYSCONJ (Woods, 1973), LSP (Sager, 1981), and MSG (Dahl and McCord, 1983).

Coordination phenomena are usually divided into two classes, the so-called constituent coordinations
where the coordinated elements look like otherwise well-motivated phrasal constituents (1), and
nonconstituent coordination where the coordinated elements look like fragments of phrasal
constituents (2). 

(1) (a) A girl saw Mary and ran to Bill.  (Coordinated verb phrases)
(b) A girl saw and heard Mary.  (Coordinated verbs)

(2) Bill went to Chicago on Wednesday and New York on Thursday.  

Of course, what is or is not a well-motivated constituent depends on the details of the particular
grammatical theory.  Constituents in transformationally-oriented theories, for example, are units
that simplify the feeding relations of transformational rules, whereas "constituents" in categorial
grammars merely reflect the order of binary combinations and have no other special motivation.  In
lexical-functional grammar, surface constituents are taken to be the units of phonological
interpretation.  These may differ markedly from the units of functional or semantic interpretation,
as shown in the analysis of Dutch cross serial dependencies given by Bresnan et al. (1982).

Nonconstituent coordination, of course, presents a wide variety of complex and difficult descriptive
problems, but constituent coordination also raises important linguistic issues.  It is the latter that we
focus on in this brief paper.  

To a first approximation, constituent coordinations can be analyzed as the result of taking two
independent clauses and factoring out their common subparts.  The verb coordination in (1b) is thus
related to the fuller sentence coordination in (3).  This intuition, which was the basis of the
Coordinate Reduction Transformation, accounts for more complex patterns of acceptability such as
(4) illustrates.  The coordination in (4c) is acceptable because both (4a) and (4b) are, while (4e) is bad
because of the independent subcategorization violation in (4d).  

(3) A girl saw Mary and a girl heard Mary. 

(4) (a) A girl dedicated a pie to Bill.
(b) A girl gave a pie to Bill.
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(c) A  girl dedicated and gave a pie to Bill.
(d) *A girl ate a pie to Bill.
(e) *A girl dedicated and ate a pie to Bill.

This first approximation is frought with difficulties.  It ensures that constituents of like categories
can be conjoined only if they share some finer details of specification, but there are more subtle
conditions that it does not cover.  For example, even though (5a) and (5b) are both independently
grammatical, the coordination in (5c) is unacceptable:

(5) (a) The girl promised John to go.
(b) The girl  persuaded John to go.
(c) *The girl promised and persuaded John to go.  

(Hint:  Who is going?)

Another well-known difficulty with this approach is that it does not obviously allow for the necessary
semantic distinctions to be made, on the assumption that the semantic properties of reduced
coordinations are to be explicated in terms of the semantic representations of the propositional
coordinations that they are related to.   This is illustrated by the contrasting semantic entailments in
(6):   Sentence (6a) allows for the possibility that two different girls are involved while (6b) implies
that a single (but indefinite) girl performed both actions. 

(6) (a) A girl saw Mary and a girl talked to Bill.
(b) A girl saw Mary and talked to Bill.

Despite its deficiencies, it has not been easy to find a satisfactory alternative to this first
approximation.  The theoretical challenge is to embed coordination in a grammatical system in a way
that is independent of the other generalizations that are being expressed (e.g. actives correspond to
passives, NP’s in English can be followed by relative clauses, English relative clauses look like S’s
with a missing NP) but which interacts with those specifications in just the right ways.  That is, a
possible but unacceptable solution to this descriptive dilemma would be to add to the grammar new
versions of all the basic rules designed specifically to account for the vagaries of coordination.  

Coordination was not discussed in the original formulation of Lexical-Functional Grammar (Kaplan
and Bresnan, 1982), although mathematical objects (finite sets of f-structures) were introduced to
provide an underlying representation for grammatical constructions which, like the parts of a
coordination, do not seem to obey the uniqueness condition that normally applies to grammatical
functions and features.  Adjuncts and other modifying constructions are the major example of this
that Kaplan and Bresnan discussed, but they also suggested that the same mathematical
representations might also be used in the analysis of coordination phenomena.  In the present paper
we extend the LFG formalism to provide a simple account of coordination that follows along the
general lines of the Kaplan/Bresnan suggestion and does not involve detailed specifications of the
coordination properties of particular constituents.   We illustrate the consequences of this extension
by discussing a small number of grammatical constructions;  Bresnan, Kaplan, and Peterson
(forthcoming) discuss a much wider range of phenomena and provide more general linguistic
motivation for this approach.  

Simple Coordination

A lexical-functional grammar assigns two syntactic levels of representation to each grammatical
string in a language.  The constituent structure, or c-structure, is a conventional tree that indicates
the organization of surface words and phrases, while the functional structure (f-structure) is a
hierarchy of attributes and values that represents the grammatical functions and features of the
sentence.  LFG assumes as a basic axiom that there is a piecewise function, called a structural
correspondence or "projection", that maps from the nodes in the c-structure to the units in an
abstract f-structure (see Kaplan and Bresnan (1982) and Kaplan (1987) for details).  This means that
the properties of the f-structure can be specified in terms of the mother-daughter and precedence
relations in the c-structure, even though the f-structure is formally not at all a tree-like structure. 

Now let us consider a simple example of coordination wherein two sentences are conjoined together
(7).  A plausible c-structure for this sentence is given in (8), and we propose (9) to represent the
functional properties of this sentence.

(7)  John bought apples and John ate apples.
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(8)

apples

N

NP

ate

V

VP

John

N

NP

S

and

CONJ

apples

N

NP

bought

V

VP

John

N

NP

S

S (9)
‘BUY<[JOHN],[APPLE]>’PRED

PASTTENSE

SUBJ

OBJ

‘EAT<[JOHN],[APPLE]>’PRED

PASTTENSE

SUBJ

OBJ

The structure in (9) is a set containing the f-structures that correspond to the component sentences
of the coordination.  As Bresnan, Kaplan, and Peterson (forthcoming) observe, sets constitute a
plausible formal representation for coordination since an unlimited number of items can be conjoined
in a single construction and none of those items dominates or has scope over the others.  Neither
particular functional attributes nor recursive embeddings of attributes can provide the appropriate
representation that flat, unstructured sets allow.

To obtain the representation of coordination shown in (8) and (9), all we need is the following
alternative way of expanding S:

(10) S →       S
↓∈↑

       CONJ       S
↓∈↑

This rule says that a conjoined sentence consists of a sentence followed by a conjunction followed by
another sentence, where the f-structures of each sub-sentence is an element of the f-structure that
represents their coordination.

Coordination with Distribution

The next step is to consider constituent coordinations where some parts of the sentence are shared
by the coordinated constituents.  Consider the following sentence:

(11)  John bought and ate apples.
(12)
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‘BUY<[JOHN],[APPLE]>’PRED

PASTTENSE
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‘EAT<[JOHN],[APPLE]>’PRED
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The desired c-structure and f-structure for (11) are shown in (12) and (13) respectively.  Notice that
the subjects and objects of BUY and EAT are linked, so that the f-structure is different from the one in
(9) for John bought apples and John ate apples.  The identity links in this structure account for the
different semantic entailments of sentences (7) and (11) as well as for the differences in (6a) and (6b).  

This is an example of verb coordination, so the following alternative is added to the grammar:

(14) V  →       V
↓∈↑

       CONJ       V
↓∈↑



4

This rule permits the appropriate c-structure configuration but its functional specifications are no
different than the ones for simple sentential coordination.  How then do the links in (13) arise?  The
basic descriptive device of the LFG formalism is the function application expression:

(15) (f a) = v

As originally formulated by Kaplan and Bresnan (1982), this equation (15) holds if and only if f
denotes an f-structure which yields the value v when applied to the attribute a.  According to the
original definition, the value of an application expression is undefined when f denotes a set of f-
structures instead of a single function and an equation such as (15) would therefore be false.
Following Bresnan, Kaplan, and Peterson (forthcoming), we propose extending the function-
application device so that it is defined for sets of functions.  If s denotes a set of functions, we say
that (s a)=v holds if and only if v is the generalization of all the elements of s applied to a:

(16) (s a) = ∏(f a)  if (f a) is defined for all f∈s.

The generalization f1∏f2 of two functions or f-structures f1 and f2 is defined recursively as follows:

(17) If f1=f2 then f1∏f2 = f1.
If f1 and f2 are f-structures, then  f1∏f2 = {<a, (f1 a)∏(f2 a)>| a ∈ DOM(f1)∩DOM(f2)}.
Otherwise, f1∏f2 = ⊥.

The generalization is the greatest lower bound in the subsumption ordering on the f-structure
lattice.  The symbol ⊥ denotes the bottom-most element in this lattice, the element that subsumes all
other elements and about which no information is known.  With this element explicitly represented,
we simplify the determinacy and completeness conditions of Kaplan and Bresnan (1982) by defining
minimal solutions containing ⊥ to be invalid.     

These definitions have two consequences.  The first is that v subsumes (f a) for all f ∈ s.  Thus the
properties asserted on a set as a whole must be distributed across the elements of the set.  This
explains why the subject and object of (11) are distributed across both verbs without having to
change the VP rule in (18) below.  The equation on the object NP of (18) is (↑ OBJ) = ↓.  The meta-
variable ↑ denotes a set because the f-structure of the VP node is the same as the f-structure of the
conjoined V node, which by (14) is a set.  Therefore the effect of rule (18) is that each of the elements
of the ↑ set will have an OBJ attribute whose value is subsumed by the f-structure corresponding to
apples.    

(18) VP  →       V
↓=↑

       NP
(↑ OBJ) = ↓

The second consequence of (16) is that v takes on the attributes and values that all of the (f a) have
in common.  This is useful in explaining the ungrammaticality of the promise and persuade sentence
in (4).  (We are indebted to Andreas Eisele and Stefan Momma for calling our attention to this
example.)  The analysis for this sentence is in (20) and (21):

(19) *The girl promised and persuaded John to go.
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(21)
‘PERSUADE<[GIRL],[JOHN],[GO]>’PRED

PASTTENSE

‘GIRL’PRED

SGNUM

THESPEC
SUBJ

‘JOHN’PRED

SGNUMOBJ

‘GO<[JOHN]>’PRED

SUBJVCOMP

‘PROMISE<[GIRL],[JOHN],[GO]>’PRED

PASTTENSE

SUBJ

OBJ

‘GO<[GIRL]>’PRED

SUBJVCOMP

At first glance, (21) seems to provide a perfectly reasonable analysis of (19).  PROMISE and PERSUADE
share an object, a subject, and a verb complement.  The verb complements have different subjects as
a result of the different control equations for PROMISE and PERSUADE (The lexical entry for PROMISE
specifies subject control (↑ VCOMP SUBJ) = (↑ SUBJ), while PERSUADE specifies object control (↑ VCOMP
SUBJ) = (↑ OBJ)).  There is no inconsistency, incompleteness or incoherence in this structure.  

However, in LFG the completeness conditions apply to the f-structures mapped from all the c-
structure nodes, whether or not they are part of the structure corresponding to the root node.  And if
we look at the f-structure that corresponds to the verb-complement node, we discover that it contains
⊥ and thus is incomplete:

(22)   
‘GO<[ ]>’PRED

SUBJ

This f-structure is the generalization of (s VCOMP) for the set given in (21).  Everything that the two
VCOMPs have in common is given by this f-structure.  However, the subject of the f-structure has ⊥
for its predicate.  It thus violates the "semantic completeness" condition of LFG, which in essence
requires that something must be known about the predicate of every thematic function.  If the
VCOMPs had had a subject in common (as in the sentence The girl urged and persuaded John to go)
then the sentence would have been perfectly legal.  

Interactions with Long-Distance Dependencies

Under certain circumstances a shared constituent plays different roles in the conjoined constituents.
For instance, in (23) The robot is the object for Bill gave Mary, and it is the oblique object for John
gave a ball to.

(23) The robot that Bill gave Mary and John gave a ball to

This variation reflects a more general uncertainty about what role the head of a relative clause can
play in the relative clause, as illustrated in (24):

(24) The robot that Bill gave Mary
The robot that gave Bill Mary
The robot that John said Bill gave Mary
The robot that Tom claimed John said Bill gave Mary, etc.
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In fact, the number of roles that the head of a relative clause can play is theoretically unbounded.

To deal with these possibilities, the notion of functional uncertainty has been introduced into LFG
theory (Kaplan and Zaenen, 1989; Kaplan and Maxwell, 1988).  With functional uncertainty the
attribute of a functional equation is allowed to consist of a (possibly infinite) regular set of attribute
strings.  For instance, normally the role that a constituent plays in the f-structure is given by a
simple equation such as (25):

(25) (f1 OBJ) = f2

A functionally uncertain equation that could be used to express the relationship between the head of
a relative clause and the role that it plays in the clause might look like (26):

(26) (f1 COMP* GF) = f2

Equation (26) says that the functional relationship between f1 and f2 could consist of any number of
COMPs followed by a grammatical function, such as SUBJ or OBJ.

The definition of functional uncertainty given by Kaplan and Zaenen (1989) is essentially as follows:

(27) If α is a regular expression, then (f α) = v holds if and only if
((f a) Suff(a, α))=v for some symbol a, where

  Suff(a, α) is the set of suffix strings y such that ay ∈ α.

We will not discuss functional uncertainty further in this paper, except to show how it fits into our
model for sets.  To achieve the proper interaction between sets and regular expressions, we merge
(27) with (16):

(28) (s α) = v = ∏ (fi α), for all fi∈s
= ∏ ((fi ai) Suff(ai α)), for all fi∈s

Allowing different ai to be chosen for each fi provides the variation needed for (23).  The uncertainty
can be realized by a different functional path in each of the coordinated elements, but the
uncertainty must be resolved somehow in each element and this accounts for the familiar Across the
Board and Coordinate Structure Constraints. 

Representing the Conjunction

We have not yet indicated how the identity of the particular conjunction is represented.  If we look at
rule (14) again, we notice that it is missing any equation to tell us how the f-structure for CONJ is
related to ↑:

(29) V →     V
↓∈↑

     CONJ
?

     V
↓∈↑

If we replace the ? with ↑=↓, then the f-structure for CONJ will be identified with the set
corresponding to ↑, which will have the effect of distributing all of its information across the f-
structures corresponding to the conjoined verbs.  As was pointed out to us by researchers at the
University of Manchester (UMIST), this arrangement leads to inconsistencies when coordinations of
different types (and vs. or) are mutually embedded.  On the other hand, if we replace the ? with ↓∈↑,
then the f-structure for CONJ will be another element of the set, on a par with the f-structures
corresponding to the conjoined verbs.  This is clearly counterintuitive and also erroneously implies
that the shared elements will be distributed across the conjunction as well as the elements of the set. 

We observe, however, that the identity of the particular conjunction does not seem to enter into any
syntactic or functional generalizations, and therefore, that there is no motivation for including it in
the functional structure at all.  Instead, it is necessary to encode this information only on the
semantic level of representation, as defined by a semantic structural correspondence or "projection"
(Kaplan, 1987).  A projection is a piecewise function mapping from the units of one kind of structure
to the units of another.  The projection that is most central to LFG theory is the φ projection, the one
that maps from constituent structure nodes into functional structures.  But other projections are
being introduced into LFG theory so that generalizations about various other subsystems of
linguistic information can be formalized.  In particular, Halvorsen and Kaplan (1988) have discussed
the σ projection that maps from f-structures into a range of semantic structures.  Given the
projection concept, the various linguistic levels can be related to one another through "codescription",
that is, the equations that describe the mapping between f-structures and s-structures (semantic
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structures) are generated in terms of the same c-structure node configurations as the equations that
map between c-structures and f-structures.  This means that even though the s-structure is mapped
from the f-structure, it may contain information that is not computable from the f-structure but is
strongly correlated with it via codescription.  We exploit this possibility to encode the identity of the
conjunction only in semantic structure.

Consider a modified version of (29) that has equations describing the semantic structures
corresponding to the f-structure units:

(30) V → V
↓∈↑

σ↓=(σ↑ ARG1)

       CONJ
(σ↑ REL)=σ↓

       V
↓∈↑

σ↓=(σ↑ ARG2)

Rule (30) says that the unit of semantic structure corresponding to the f-structure of the conjoined
verb contains the conjunction as its main relation (REL), plus two ARGs consisting of the semantic
structures corresponding to the f-structures that correspond to the individual V’s.  The semantic
structure generated by (30) is something like this:

(31) 
ANDREL

BUYREL

......ARG1

EATREL

......ARG2

It describes the conjoined verb as a relation, AND, which is applied to arguments consisting of the
relation BUY and the relation EAT.  Each of these relations also has arguments, the semantic
structures corresponding to the shared subject and object of the sentence.  Notice how this structure
differs from the one that we find at the functional level (e.g. (13)).  Rule (30) does not assign any
functional role to the conjunction, yet all the necessary syntactic and semantic information is
available in the complex of corresponding structures assigned to the sentence.  
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