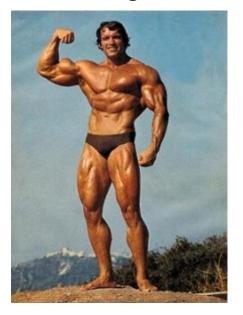
Genetics of Athletic Performance

"The human body is centuries in advance of the physiologist, and can perform an integration of heart, lungs and muscles which is too complex for the scientist to analyse."

Roger Bannister (1955)

illustration by Bryan Christie


"There is likely a minimal set of physical traits or genetic makeup which facilitates achievement to a particular level of success, but I do not believe that genetics are necessarily an absolute limiter of exceptional performances."

Peter Vint (2011)

Gene 210 - Genomics and Personalized Medicine Andrew Roos and Thomas Roos May 15th, 2012

What is Athletic Performance?

Strength

Arnold Schwarzenegger

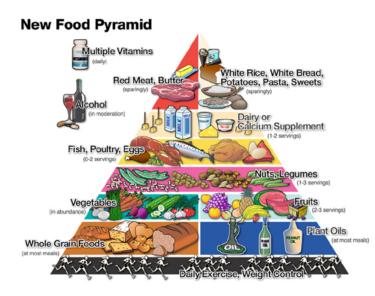
muscle mass force generation speed agility power

oxidative phosphorylation (ATP) creatine phosphate usage glycogen usage metabolic rate

resting heart rate max heart rate lactate threshold cardiac output ventillatory rate

Endurance

Dean Karnazes


it all depends on what you want your body to accomplish

Environmental Factors Affecting Performance

Lance Armstrong

- training/conditioning
- skill level
- age
- PED's
- climate/temperature
- altitude

US Department of Agriculture

- nutrition: food + water
- sleep
- recovery
- weight

MENTAL STRENGTH

IN ATHLETIC PERFORMANCE

- mental strength
- work ethic
- confidence
- focus on goals
- mental adaptation
- psychology

Genetic Factors Affecting Performance

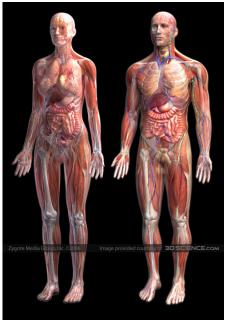
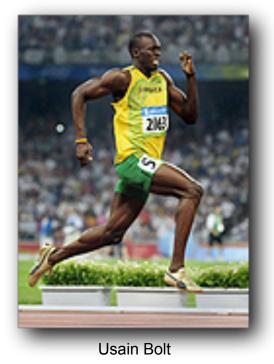
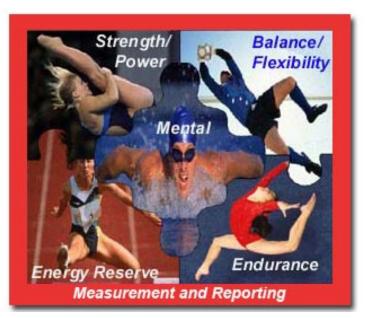



illustration from 3dscience.com

- gender
- ancestry & ethnicity
- anatomy

- biomechanical factors
- muscle fiber types
- muscle contraction velocity
- muscle elasticity
- soft-tissue strength



- fatigue resistance
- training adaptation
- recovery
- injury resistance

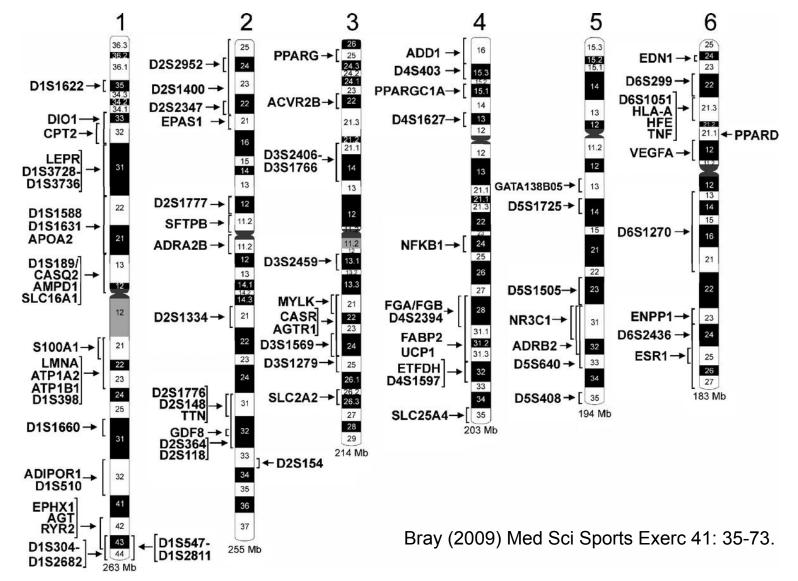
How Scientists Test "Performance"

Strength/Power

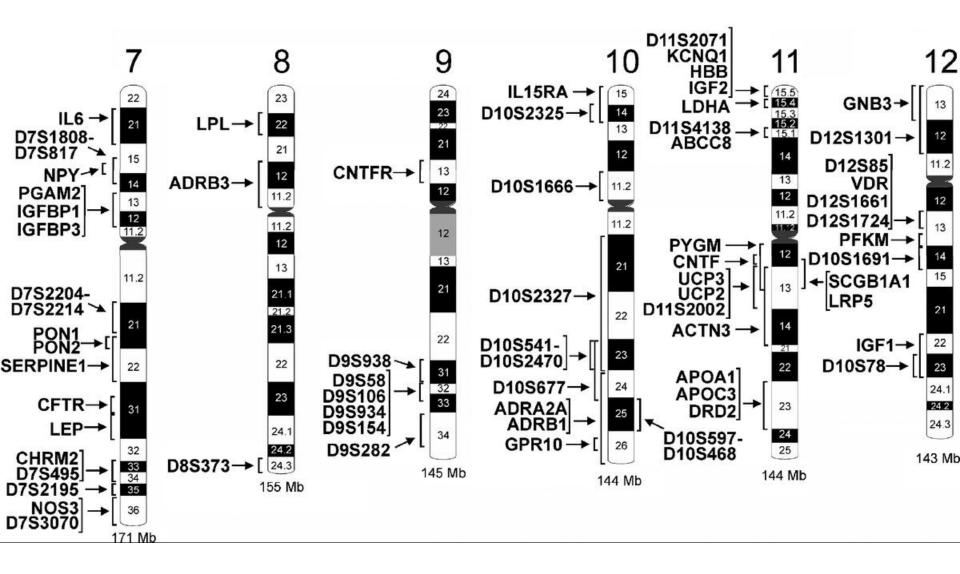
1) max weight lifted [kg]
 2) max power [W/kg]
 3) 100m sprint
 4) vertical + horizontal jump distance

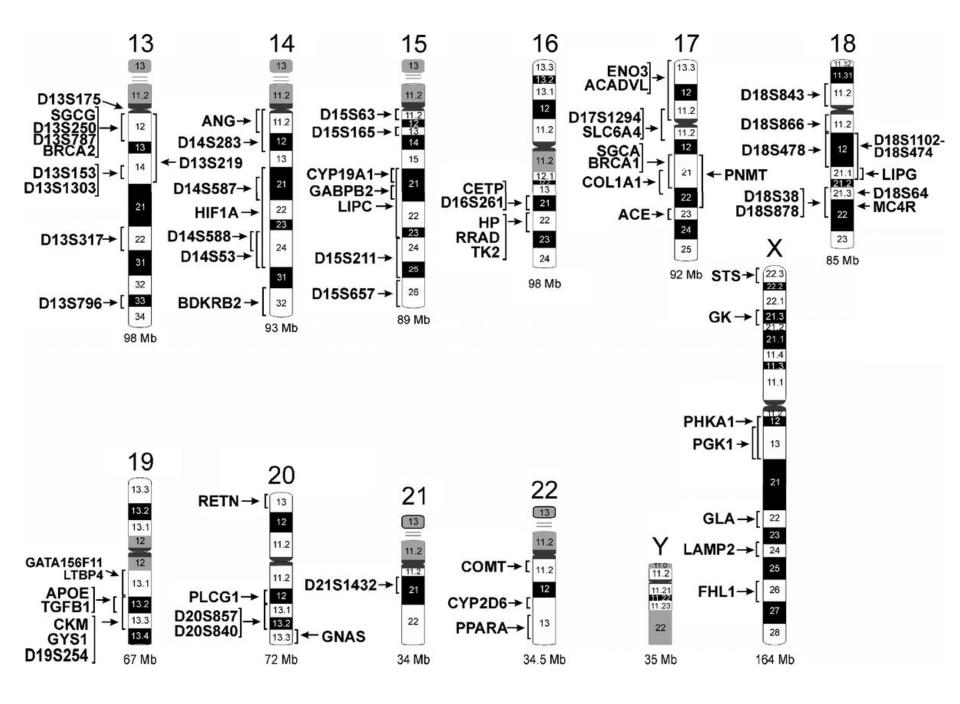
Endurance

 peak oxygen consumption (VO₂ max) [ml/min/kg]
 running economy (RE) [ml/kg/km]
 lactate threshold + clearance


genetics + environment

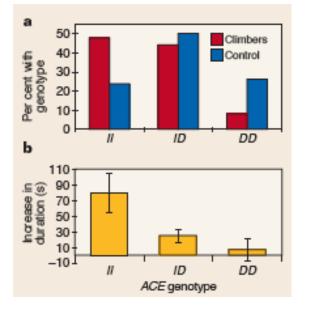
 $\sqrt{}$


elite athletes vs controls candidate based approach genetic testing for SNP data analysis



The Human Gene Map for Performance and Health-Related Fitness Phenotypes

239 gene entries: 214 autosomal; 7 on X; 18 mitochondrial


ACE

- **ACE**: angiotensin converting enzyme

- 1) converts inactive angiotensin I to active angiotensin II in liver
- 2) degrades bradykinin & other vasodilator peptides
- functions= vasoconstriction, salt/water balance, inflammation, RBC synthesis, tissue oxygenation, muscle efficiency.
- I allele: 287bp insertion; lower ACE activity
 I/I genotype -> increased endurance performance [p=0.009] increased metabolic response from training, metabolic efficiency
- D allele: deletion variant; higher ACE activity
 D/D genotype -> increased power performance [p=0.004] increased strength gain from training, L ventricle mass, VO₂ max
- many studies w/ conflicting results on ACE & athletic performance
 8 show positive association & 5 show no association
 different sports, different criteria for cases/ct's, different methods

Gayagay (1998) Hum Genet 103:48–50; Montgomery (1998) Nature 393:221–22; Montgomery (1999) Lancet 353:541–45; Myerson (1999) J Appl Physiol 87:1313–16; Tsiano (2004) Eur J Appl Physiol 92:360–62; Thompson (2007) High Alt Med Biol 8:278–85.

ACE

Table 1.	Bү	ACE I/D	Genotype	and Mean
N	[AXIIV	ium Altit	ude Achie	VED

ACE genotype	Maximum altitude achieved (m)
Ш	8559 ± 565
ID	8107 ± 653
DD	8079 ± 947

TABLE 2. ACE I/D GENOTYPE AND SUCCESS IN ASCENT TO 8000 m

	Group A (climbed >8000 m)	Group B (never climbed >8000 m)	Total
I	30 (32.6%)	3 (6.4%)	33 (23.7%)
ID	41 (44.6%)	28 (59.6%)	69 (49.6%)
DD	21 (22.8%)	16 (34.0%)	37 (26.6%)
I-allele frequency	0.55	0.36	0.49
D-allele frequency	0.45	0.64	0.51

TABLE 3. LOGISTIC REGRESSION ANALYSIS OF THE CATEGORICAL VARIABLES INFLUENCING SUCCESS IN ASCENT TO 8000 m

	Significance
Age	0.620
Age Sex	0.184
Race	0.118
Smoker	0.187
ACE I-allele	0.002

	Ш		D+		P*		Adjusted mean changet		Adjusted p‡
	n	Mean (SD) change	n	Mean (SD) change	М	D+	М	D+	
Total mass									
Bioimpedance (kg)	19	1.97 (2.57)	61	-0.10 (3.32)	0-03	0-54	2.14	-0-10	0-001
Skinfold assessment (kg)	14	1.88 (2.59)	13	-0.57 (1.85)	0-01	0-28	1.78	-0.47	0-01
MRI volume (cm ³)	16	9-86 (10-15)	14	0.15 (7.20)	0.001	0.98	9.27	0-83	0-01
Fat mass									
Bioimpedance (kg)	19	0.73 (1.69)	57	-0.26 (1.54)	0-07	0.21	0.55	-0-20	0-04
Skinfold assessment (kg)	14	-0.13 (1.23)	13	-1.65 (1.60)	0.67	0.004	-0.36	-1.35	0-05
MRI volume (cm²)	16	0.59 (6.35)	14	-3·34 (5·12)	0.70	0-08	0.16	-2.86	0-20
Non-fat mass		_							
Bioimpedance (kg)	19	1 09 (1 59)	57	-0.08 (2.61)	0.007	0-82	1.31	-0.15	0-01
Skinfold assessment (kg)	14	2.01 (1.83)	13	1.03 (1.19)	0.002	0-01	2.00	1.03	0-11
MRI volume (cm ²)	16	9.57 (7.21)	14	3.61 (4.25)	0.0001	0-01	9.32	3-88	0-02

Montgomery (1998) Nature 393:221–22; Montgomery (1999) Lancet 353:541–45; Thompson (2007) High Alt Med Biol 8:278–85.

ACTN3

- alpha-actinin-3: crosslinks actin thin filaments in skeletal muscle type 2 (fast) fibers; thought to play a role in maintaining ordered fiber arrays and coordinating contraction

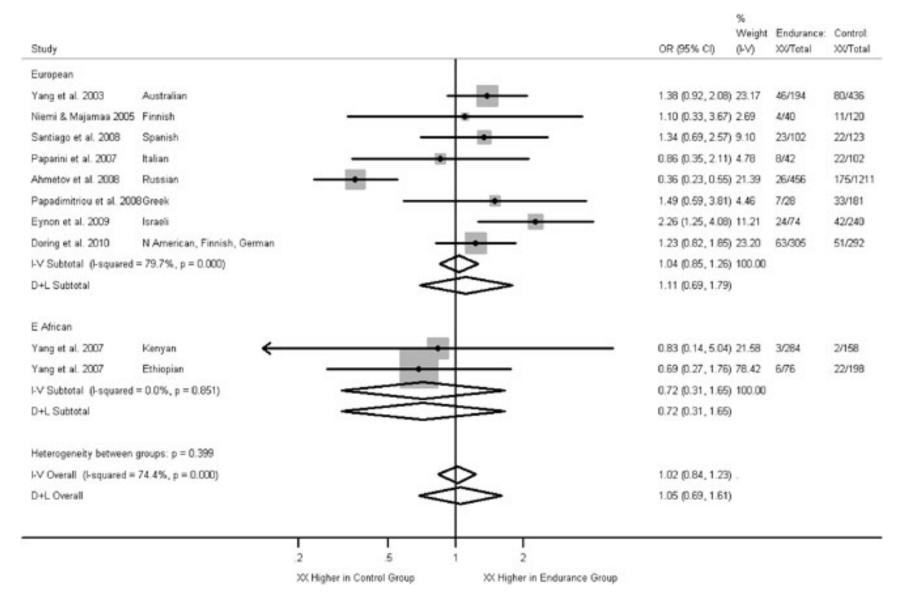
- R577X: rs1815739; C->T; 25% Asian, 18% European, 1% African

Yang (2003)

- CC [RR] genotype associated with increased strength (OR=2.31; p=0.0001)
- TT [XX] genotype associated with increased endurance (OR=1.38; p=0.148)

Controversial

- 10 studies showing association between RR and strength/power
- 2 studies showing no association between RR and strength/power
- 1 study showing association between XX and endurance
- 7 studies showing no association between XX and endurance


Yang (2003) Am J Hum Genet 73: 627-631. Alfred (2011) Hum Mut 32: 1008-1018.

ACTN3

Study							OR (95% CI)	% Weight (I-V)	Sprint/ Power: RR/Total	Control: RR/Tota
European										
Yang et al. 2003	Australian					_	2.31 (1.50, 3.55)	12.74	53/107	130/436
Niemi & Majamaa 2005	Finnish						1.30 (0.71, 2.35)	6.66	35/68	54/120
Santiago et al. 2008	Spanish					_	2.35 (1.24, 4.46)	5.77	29/60	35/123
Druzhevskaya et al. 2008	Russian						1.13 (0.91, 1.40)	50.56	193/486	441/119
Papadimitriou et al. 2008	Greek			- T			2.63 (1.49, 4.63)	7.37	35/73	47/181
Roth et al. 2008	N American			_			0.69 (0.36, 1.32)	5.63	13/52	218/668
Eynon et al. 2009	Israeli				_		→ 4.00 (2.34, 6.83)	8.21	41/81	49/240
Massidda et al. 2009	Italian			+			2.00 (0.83, 4.82)	3.06	17/35	17/53
I-V Subtotal (I-squared =	80.0%, p = 0.000)				•		1.52 (1.30, 1.77)	100.00		
D+L Subtotal				<	>		1.80 (1.21, 2.68)			
W African										
Yang et al. 2007	Nigerian					_	1.35 (0.49, 3.69)	9.57	54/62	50/60
Roth et al. 2008	African-American	-		_			0.61 (0.26, 1.45)	12.83	10/23	116/208
Scott et al. 2010	African-American				-		1.18 (0.71, 1.95)	38.41	79/113	126/190
Scott et al. 2010	Jamaican		-				1.05 (0.64, 1.72)	39.19	86/114	232/311
I-V Subtotal (I-squared =	0.0%, p = 0.583)			\triangleleft			1.05 (0.77, 1.43)	100.00		
D+L Subtotal				\diamondsuit			1.05 (0.77, 1.43)			
Heterogeneity between gr	oups: p = 0.035									
I-V Overall (I-squared = 7	3.5%, p = 0.000)			\diamond			1.41 (1.23, 1.62)			
D+L Overall				Ś	>		1.51 (1.12, 2.05)			
					-	-				
		.2	.5	1	2	4				

Alfred (2011) Hum Mut 32: 1008-1018.

ACTN3

Alfred (2011) Hum Mut 32: 1008-1018.

ADRB1, ADRB2, ADRB3

- beta-adrenergic receptors 1/2/3: G-protein coupled receptors in cardiac and adipose tissue that regulate cardiac function and metabolism

- cardiac tissue: activated receptor -> increased cardiac output
- adipose tissue: activated receptor -> increased lipid mobilization for energy production

ADRB1: rs1801253; Arg389Gly; C->G

- C allele associates with increased VO_2 max and exercise time/endurance (p=0. 002)

- G allele associates with decreased VO_2 max (p=0.006)

ADRB2: rs1042713; Arg16Gly; G->A

- G allele associates with elite endurance performance in males (p=0.03)
- A allele associates with increased BMI and decreased VO_2 max (p<.001)

ADRB2: rs1042714; Gln27Glu; C->G

- C allele associates with elite distance running in middle age women (p=0.05)
- G allele associates with increased BMI and decreased VO₂ max (p=0.0001)

Wagoner (2002) Am Heart J 144. Wolfarth (2007) Met Clin Exp 56: 1649-1651. Moore (2001) Metabolism 50: 1391-1392.

ADRB1, ADRB2, ADRB3

ADRB3: rs4994;Trp64Arg; T->C

- C allele associates with elite endurance performance (p=0.0008)

- study: elite Spanish athletes for endurance or strength sports
- TT genotype: no association in endurance or strength vs controls
- TC genotype: association in endurance vs controls but not strength vs controls
- CC genotype: very rare; association in strength vs controls

COL5A1 and COL6A1

- alpha1 chain of type V and type VI collagen

- extracellular matrix (ECM) structural component of musculoskeletal soft tissue

 known mutations involved in various clinical muscle diseases (cause hyperelasticity in the muscles -> decreased function)

- biomechanics: stiffer connective tissue (inflexibility) -> enhanced storage/return of energy -> increased running economy -> increased endurance performance

COL5A1

- BstUI RFLP: T/C

- TT genotype (vs CT + CC) associated with increased endurance performance (faster Ironman Triathlon run time) [p=0.020]

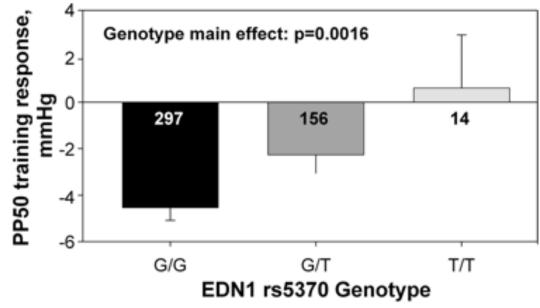
COL6A1

- rs35796750: intron 32, T/C, T= ancestral allele

- CC genotype (vs CT + TT) associated with multiple muscle diseases
- TT genotype (vs CT + CC) associated with increased endurance performance (faster Ironman Triathlon finish time) [p=0.030]

Posthumus (2011) Med Sci Sports Exerc 43: 584-9. O'Connell (2011) Int J Sports Med 32: 896-901.

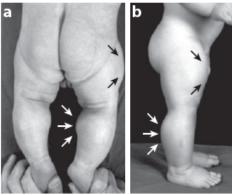
EDN1


- endothelin 1: expressed in vascular endothelium; acts as a vasoconstrictor to regulate blood pressure

rs5370: Lys198Asn; G->T

- G allele associates with increased cardiorespiratory fitness (OR=1.95; p=0. 00025)

- T allele associates with increased hypertension (p=.0003)


- for Caucasians only and not African Americans
- T allele decreases the VO₂ max and pulse pressure response to training

Rankinen (2007) Hypertension 50: 1120-1125.

MSTN

- **MSTN**: myostatin (TGF-B family member) negative regulator of skeletal muscle growth
- homozygous mutation in MSTN -> inactivation human patient 1-4.5yrs old w/ increased muscle mass
- protein truncation deletion removing C-term domain MSTN -> catalytically dead increased muscle mass in livestock (cattle, pigs)
- Mstn k/o mouse model -> increased muscle mass & # muscle fibers overall more fast glycolytic type II muscle fibers than ct

Neonate

7 months

Schuelke (2004) N. Engl. J. Med. 350:2682–88; Marchitelli (2003) Mamm. Genome 14:392–95; McPherron (1997) Nature 387:83–90; Girgenrath (2005) Muscle Nerve 31:34–40.

NRF1, NRF2

- NRF1: nuclear respiratory factor 1

role in exercise adaptation: mitochondrial biogenesis, heme biosynthesis

- rs240790

CC gentotype associated w/ increased VO $_2$ max + RE w/ training [p=0.004] - rs6949152

AA gentotype associated w/ increased VO₂ max w/ training [p=0.047]

 - NRF2/NFE2L2: nuclear regulatory factor 2 tranxs factor activating oxidative stress response & antioxidants

- rs12594986, rs8031031, rs7181866

A/T/G haplotype associated w/ 57% higher training response [p=0.006]

PPARGC1A

 - PPARGC1A: peroxisome proliferators-activated receptor g coactivator 1a activator of ox phos genes that control glucose & lipid metabolism skeletal muscle fiber-type formation mitochondrial biogenesis

- rs8192678: G -> A; Gly482Ser

AA genotype associated w/ higher VO_2 max in European men [p<0.0001] not associated w/ better VO_2 max or RE in Chinese men

- rs6821591: A -> G; 3' UTR

GG genotype associated w/ higher VO_2 max & RE in Chinese men

Other Reported Performance Enhancing Polymorphisms (PEPs)

- 2 validated markers w/ multiple positive associations: ACE, ACTN3
- 4 other markers w/ positive associations: ADRB2, AMPD1, APOE, BDKRB2
- physiological categories influenced by human PEPs

cardiac function circulatory system respiratory system muscle structure adrenergic receptors mitochondrial function (oxidative phosphorylation) mitochondrial DNA

- 239 total reported PEPs but very few validated
- potential limitations of studies studied only specific populations only specific gender too few subjects different criteria for cases vs controls significant p-values (?)

Daily Health Advice - Genetics in Sports

Athletic performance is determined by a combination of factors

- measure: Ironman Triathlon finish times

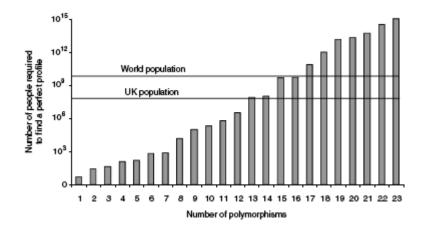
no significant difference in training time/volume between "fast" and "slow" groups age + weight explain 14% of variance

COL6A1 genotype (TT vs TC/CC) explains 8% of variance

BDKRB2 +9/+9 & NOS3 GG genotypes associate w/ significantly slower times [p=0.001]

- measure: endurance (VO₂ max + LT) + efficient muscle contraction

ACE-I/BDKRB2-9 haplotype significantly associated in Olympic athletes vs ct's [p=0.003]


- heritability of beneficial endurance traits is ~50% (VO₂ max, RE, LT)
- heritability of athletic status in women is ~66% (recreational vs elite competition) positive associations for SLC9A9, FABP2, UCP1
- can we identify other factors?

Williams (2004) J. Appl. Physiol. 96:938–42. Saunders (2006) Hum. Mol. Genet. 15:979–87. De Moor (2007) Twin Res. Hum. Genet. 10:812–20.

Can There be a Perfect Endurance Athlete? -Population Distribution of Genetic Potential

Number of polymorphisms influencing endurance	New gene Included at	Typical frequency of optimal	Probability of possessing a 'perfect' profile		
performance	each stage	genotype (%)	% chance	Approximate odds ratio	
1	ACE	21	21.0	1:5	
2	ACTN3	18	3.78	1:25	
3	ADRA2	62	2.34	1:40	
4	ADRB2	35	0.82	1:120	
5	AMPD1	80	0.66	1:150	
6	APOE	24	0.16	1:600	
7	ATP1A2*	81	0.13	1:800	
8	ATP1A2	5	6.4 × 10 ⁻³	1:16 000	
9	BDK RB2	15	9.6 × 10 ⁻⁴	1:100 000	
10	CKM	49	4.7 × 10 ⁻⁴	1:200 000	
11	EPAS1*	33	1.5 × 10 ⁻⁴	1:600.000	
12	EPAS1	19	2.9 × 10 ⁻⁵	1:3 million	
13	HFE	4	1.2 × 10 ⁻⁶	1 : 85 million	
14	HIFIA	77	9.1 × 10 ⁻⁷	1: 110 million	
15	HLA-A	2	1.8 × 10 ⁻⁸	1 : 5.5 billion	
16	MT-ND5*	93	1.7×10^{-8}	1:6 billion	
17	MT-ND5	7	1.2 × 10 ⁻⁹	1 : 85 billion	
18	MT-ND5	7	8.3 × 10 ⁻¹¹	1 : 1.2 trillion	
19	MT-TT	7	5.8 × 10 ⁻¹²	1:17 trillion	
20	PPARA	70	4.0×10^{-12}	1:25 trillion	
21	PPARGC1A	40	1.6 × 10 ⁻¹²	1 : 62 trillion	
22	UCP2	17	2.7 × 10 ⁻¹³	1 : 364 trillion	
23	VEGFA	30	8.2 × 10 ⁻¹⁴	1 : 1212 trillion	

Williams (2008) J Physiol 586(1):113-21.

Results = "Using probability calculations, we found only a 0.0005% chance of a single individual in the world having the 'preferable' form of all 23 polymorphisms."

the human body works as a "system": if one factor is sub-par, then the whole system loses the capacity to function at optimal performance

What Will the Future Hold for Genetics and Athletics?

 all athletes competing at recreational to elite levels have complicated genetic profiles & environmental histories many factors influence potential athletic ability actual performance & success is hard to predict

 genetic engineering ("gene doping") to enhance athletic performance many new PEP targets will be validated in the near future delivery methods are available to allow beneficial "gene therapy" will detection ever be able to keep up with "cheating"?

- <u>scientist</u> viewpoint= global perspective to understand how certain alleles beneficial to performance arose & how they have spread geographically

- <u>athlete</u> viewpoint= develop training program to maximize individual genetic endowment for optimal performance

Ostrander (2009) Annu Rev Genomics Hum Genet 10:407-429.

Direct-to-consumer testing for athletic performance

Atlas Sports Genetics 2008 "Atlas First SportGene Test"

AlBioTech June 2011 "Sports X Factor"

What is Included?

The following tests are included in the Sports X Factor basic panel, for the total cost of \$200:

Performance Indicators

ACTN3 Highly significant associations between ACTN3 genotype and muscle fiber type, with one genotype indicating fast twitch muscle fibers and another slow twitch muscle fibers. Fast twitch fiber type has been associated with elite power/sprinter performance and slow twitch fibers have been related to endurance athletes.

ACE	Related to cardiovascular and skeletal muscle function, training response of muscle efficiency and skeletal muscle hypertrophy. The one ACE genotype has been associated with elite endurance performance in runners, whereas a second genotype has been shown to be represented in elite sportsmen with a power/sprint
	shown to be represented in elite sportsmen with a power/sprint phenotype.

- PPARGC Gene function is associated with cellular energy metabolism. Two genotypes associated with this gene have been positively associated with endurance.
- DI01 Associated with isometric grip strength and leg-extensor strength.
- VEGFR Associated with elite athlete status, endurance performance of female rowers and muscle fiber type composition.
- NOS3 Associated with elite power sports performance.
- IL6 Associated with sprint/power sports performance.

Markers Risk Factors

- Concussion Looks at the gene involved in the inflammatory response of the brain after a concussion.
- Heart Panel looks at genes involved with Hypertrophic cardiomyopathy (HCM), a condition in which structural abnormalities can be present in the heart. HCM is the number one cause of sudden unexpected cardiac death in young athletes.

http://www.sportsxfactor.com/Home.aspx

Dr. Anyone A. Jones Anywhere Laboratory 123 A Street Suite 000 Anywhere, VA 12345 1.804.456.7890

Sports Factor

601 Biotech Drive Richmond, VA 23235 804.648.3820 Fax 804.648.2641 Name: John Smith Date of Birth: 01/02/85 Sex: Male Age: 16 Phone: 1-123-456-7890

 Date Collected:
 02/03/11

 Date Received:
 02/05/11

 Date Reported:
 02/10/11

SXF12-3456-1234567

	PERFORMANCE INDICATORS			
Gene	Genotype	Reynolo	ds Score	
DI01	The Type I iodothyronine deiodinase (DIO1) protein encoded by this gene is involved in thyroid hormone activation. Higher isometric grip strength and leg-extensor strength has been associated with theD1a-T allele of this gene		core (0-3) .0	
NOS3	The NOS3 gene encodes nitric oxide synthase 3, and is also known as eNOS. A small change (NOS3 -786T>C polymorphism) in this gene has been studied and found to be associated with elite power sports performance.		core (0-4) .0	
IL6	Interleukin-6 (IL-6) gene encodes a multifunctional cytokine expressed in many tissues involved in inflammatory processes and may additionally modify the regulation of energy balance. One small change in this gene (the ILG -174 G/C polymorphism) is associated with sprint/power sports performance, with the GG genotype exerting a favorable effect. CC genotypes have been associated with obesity in some studies.		core (0-3) .0	
ACE	Sequence variants in the angiotensin I converting enzyme gene (ACE) have been shown in studies to have positive effects on athletic performance. This test detects the I and D variants of ACE with the D variant favoring improved endurance ability, the I allele promotes more power-orientated events.	Power Score (0-3) 2.0	Endurance Score (0-3) 0	
ACTN ₃	The actinin, a-3 (ACTN3) gene encodes for the synthesis of a-actinin-3, a protein necessary for producing fast contractions, in Type II skeletal-muscle fibers. This polymorphism is associated with elite power/sprint performance. Conversely homozy- gous X/X indicates only slow twitch muscle fibers present. Studies have shown highly significant associations between ACTN3 genotype and athletic performance.	Power Score (0-6) 3.0	Endurance Score (0-6) 3.0	
PPARGC	The peroxisome proliferator-activated receptor gamma coactivator-1α (PPARGC) gene function is associated with cellular energy metabolism. Two genotypes associated with this gene have been positively associated with endurance. The Gly482Ser genotype is associated with endurance athletes. The Pro12Ala genotype has only been shown so far to have a favorable impact on males.	Endurance Score (0-5) 2.5		
VEGFR	Vascular endothelial growth factor receptor 2 (VEGFR2) is essential to induce the full spectrum of VEGF angiogenic re- sponses to aerobic training. One allele associated with this gene (His472GIn polymorphism) has been associated with elite athlete status, endurance performance and muscle fiber type composition in females.	Females Only		
	RISK FACTOR ASSESSMENT			
Condition	Description	Present	- Absent	
Concussion Marker*	Athletes with the concussion risk factor variant gene who were studied were tested for recovery time after a concussion and found they are more likely to recover slower than non-variant carriers. It is not entirely clear how the marker affects brain recovery, but the gene is involved in the inflammatory response of the brain after injury, and people with the variant appear to take longer to clear their brains of a particular protein called amyloid, which floods in following head trauma.	Abs	sent	
Heart Screen*	Hypertrophic cardiomyopathy (HCM)- A disease of the muscle of the heart in which a portion of the heart is thickened without any obvious cause. We screen for risk factors in 3 Genes which represent 80% of known risk factors for HCM.	Absent		
Acquired Arrhythmia*	This test detects the risk of acquired arrhythmia by detecting a variant of the cardiac sodium channel gene SCNSA which is associated with arrhythmia in African Americans.	Absent		
	SUMMARY			
Gene	Description	Reynold's Sco	re (Percentile)	
Performance	Total performance score is calculated for both endurance and strength. The score is based on the summary of the results from the genetic markers tested by AIB on the sample received. This score is weighted and calculated based on several factors including the genotype reported and frequency in the general population. VEGFR marker is for females only while one of the two PPARGC genotypes tested is for males only. The score is a guide to help the individual to maximize fitness focusing on strength, endurance and muscle growth (Please refer to individual workout page for instructions on how to obtain a tailor made workout based on performance results). Your results will be provided as a numerical value for each genetic marker and in the summary as the total score calculated for both endurance and power. Included with your total score for each area will the percentile your score achieved in relation to the database of individuals who have been previously tested with Sport X Factor. An average score will be one that is in the 50th percentile.	Power 10.0 90th Percentile	Endurance 5.5 69th Percentile	

Direct-to-consumer testing for athletic performance

*It should be emphasized that genes are only one part of the picture. Athletic performance is likely to result from a combination of many factors including genetics, but also skill level, work ethic, environmental factors, and history of training and conditioning. Moreover, many sport activities rely on both power and endurance to be successful.

Concussion Looks at the gene involved in the inflammatory response of the brain after a concussion.

Heart

Panel looks at genes involved with Hypertrophic cardiomyopathy (HCM), a condition in which structural abnormalities can be present in the heart. HCM is the number one cause of sudden unexpected cardiac death in young athletes.