Uniform Standards for the Universal Design of Fitness Equipment (UDFE)

Beneficial Designs, Inc. – Minden, NV Peter W. Axelson, M.S.M.E. Seanna L. Kringen, M.S.

Why Standardization?

Assistive Technology Standards (ATS)

- Provide clinicians and consumers with objective information
- Allow government agencies to set minimum performance requirements
- Promote safe and quality products
- International standards reduce trade barriers
- Standards are under constant revisions due to changing technology

Standards Organizations

- International Standards Organization (ISO)
- Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) – ANSI acredited
 ASTM

RESNA Standards Used as a Model

RESNA Assistive Technology Standards (ATS) Committees develop standards:

- Minimum safety criteria
- Minimum performance criteria

RESNA ATS Board

- Wheelchairs
- Wheelchair and Related Seating
- Wheelchairs and Transportation
- Assistive Technologies for Persons with Visual Impairments and Hearing and Visual Impairments
- Support Surfaces (mattress/overlay)
- Adaptive Sports Equipment
- Emergency Stair Travel Devises

RESNA Committees

- Consumers, organizations representing people with disabilities, researchers, practitioners, and manufacturers
- Develop objective minimum safety and performance test methods
 - Repeatable
 - Reproducible

RESNA Standards

- Based on applicable ISO Standards
- Drafted, reviewed and voted on for committee approval
 - 2/3 vote for approval
- Funded in part by:
 - PVA Research and Education Program for Wheelchair Standards
 - RESNA Balloting and Membership
 - Beneficial Designs

RESNA Draft Standards

- RESNA WC-1: 2009 Wheelchairs Volume 1: Requirements and Test Methods for Wheelchairs (Including Scooters)
 RESNA WC-2: 2009 Wheelchairs – Volume 2: Additional Requirements for Wheelchairs
 - (Including Scooters) with Electrical Systems

RESNA National Standards

RESNA WC-1: 2000 Wheelchairs – Volume 1, Section 19: Wheelchairs used as seats in motor vehicles

RESNA ASE-1: 2007 Adaptive Sports Equipment – Volume 1: Winter Sports Equipment

Universal Design of Fitness Equipment (UDFE) Standards

- Accessible "mainstream" fitness equipment – user friendly
 - Health benefits
 - Social benefits
 - Increase access by persons with impairment
 - Decrease cost of accessible fitness equipment

Example: Chest Press with minimal access

- Typically:
 Non-removable
 - seat
- Pin/adjustment locations
- No information
- High start weight

Example: Chest Press with greater acce

- Increased Access: Wheelchair access
- Reachable pins/ adjustments
- Color contrast
- Low start weight

Americans with Disabilities Act (ADA)

- Title III applies to public accommodations
- People of all abilities:
 - Access fitness centers
 - Access fitness equipment
 - Including those with disability
 - Physical
 - Sensory
 - Cognitive

Accessible Fitness Equipment Milestones

- Beneficial Designs NIH/NICHD SBIR Phase I grant
 - United States Guidelines
 - Universal Design of Fitness Equipment (UDFE) (2006)
- Inclusive Fitness Initiative (IFI)
 - United Kingdom Guidelines
 - IFI Standards Stage Two (2006)

RecTech Mission

Increase fitness and recreation:

- ACCESS
- PARTICIPATION
- ADHERENCE

Promote HEALTH and FUNCTION

RecTech

NIDRR Rehab Engineering Research Center (2007)

Using technology to promote more healthy, active lifestyles for people with disabilities

Development Project to harmonize UK and US Guidelines -

Uniform Standards for Accessible Fitness Equipment Specific Aims

Evaluate and refine the draft Universal Design of Fitness Equipment (UDFE) Guidelines

Develop a UDFE Standard by participating in ASTM

Compare the UK and US Guidelines

IFI (UK)/UDFE (US- Beneficial Designs)

- General Requirements
- Strength Equipment
- Cardiovascular Equipment

UDFE/UK Harmonization Score Developed

- 1= equivalent guidelines
- 2= similar (both objective)
- 3= not equal (objective v subjective)
- x = missing criteria

Example: Treadmill Step-Up Height

- IDEAL 0 in: Belt flush with ground, built-in treadmill ADAAG – 7 in:
 - Stairs Max 7 in height
- IFI/UDFE 2 in to 6.7 in: Researching/Negotiating – 5.75 in?
 Harmonization score = 2 - similar

Progress 2008 – 2009

Spreadsheet comparison:

- 27 specifications = 1 (equivalent), now 239
- 144 specifications = 2 (similar), **now 54**
- 43 specifications = 3 (not equal: objective v subjective), **now 11**
- 193 specifications = missing, **now 73**

ASTM F08.30 Fitness Products Meetings

May 2008 Work meetings – Denver
 Inclusive fitness standards embraced
 Nov 2008 Work meetings – St. Louis
 Presented uniform set of draft guidelines
 ASTM WK19803 – New Work Item
 May 2009 Work meetings – Vancouver
 Title/Scope/Rationale

Unknown Design Variables

- Auditory feedback
- Color contrast
- Static grip handle shape/diameter
- Treadmill step-on height
- International anthropometric data set
- Push/pull/twist specifications
- Wheelchair force tolerance during weight lifting

Auditory Feedback Research

- IFI currently conducting research in the UK
 - Auditory feedback options for people with vision impairment
 - Issues: privacy, non-intrusive to other gym members

Color Contrast Research

IFI algorithm

- Complicated to perform in field
- ASTM standard for tile color
 - Spectrophotometric equipment expensive
- Need easy, low-cost method
 - ADA 70% color contrast
 - Evaluating feasibility of Spotmeter use

Accessibility of Fitness Equipment for People using Wheelchairs

- Seat support
- Lateral access
- Facing in or out
- Seat removal
- Weight pin Adjustment forces

Wheelchair Access to Fitness Equipment

Accommodation of exercise while seated in a wheelchair will provide access to more users

Removablity of the Seating Support

Fixed Seating
 Removable Seating
 Swing away Seating
 Adjustable height Seating
 Increments of adjustment
 Range of adjustment

□ Structure Height: 11.5"

Front Approach Fitness Equipment

Transfer often required
 Difficulty getting leg across seat for transfer

Lateral Rowing Machine

- Removed seat support
- Forward access
- Remaining structure 14.5" high
- Wheelchair cross frame limits access

Chest Press with a Forward Projecting Back Support Pad

Fitness Equipment Seating Supports – Data Collection

- Width
 Depth
 Thickness
 Shape
 Angle
 Height
- Lateral clearance for transfer
- Removability and height of remaining structure

Measurements of Fitness Equipment Seating

Measurement of Seat Support angle and Clearance

Lateral Access to Fitness Equipment for Transfer

- Wheelchair clear space often does not exist adjacent to equipment
- Provision of solid gripping locations to assist with transfer is beneficial
- Use of exercise actuator grips can be hazardous if they move

Bodymaster Shoulder Press

- Front Width: 4"
- Rear Width: 9.5"
- Depth: 12"
- Fixed Height: 17"
- Seat Angle: 4°
- Seat Thickness: 2.5"

Small seating surface makes lea positioning difficult

Isolateral Shoulder Press with Good Seating

Front Width: 17"
Rear Width: 14"
Depth: 16"
Infinitely Adjustable Height: 16"-25"
Seat Angle: 12.8°
Seat Thickness: 2.5"

Side Approach Clear Space

Improved Leg support

Isolateral Shoulder Press with Steep Seat Angle

Front Width: 17"
Rear Width: 14"
Depth: 16"
Infinitely Adjustable Height: 16"-25"
Seat Angle: 12.8°
Seat Thickness: 2.5"

Effect of Fitness Equipment Design on Strength and Stability of Wheelchairs

Peter Axelson – Design Engineer
 Seanna Kringen - Standards Writer
 Joey Gmuender – Project Assistant

Stability of Wheelchair Users while using Fitness Equipment

Biomechanics of Exercise Affecting Stability

Amount of force required
 Angle of applied force
 Speed of force application
 User characteristics
 Wheelchair characteristics

User Characteristics Affecting Stability

Weight
Height
Overall
Sitting
Shoulder

Rearward Wheelchair Stability

The forces exerted on a wheelchair when the user is exercising can sometimes cause an instability, causing the user to tip over

Pushing forward = Rearward force

On back support of wheelchair

Support pad provided

Wheelchair Factors Affecting Stability

Rear axle position
 Seat cushion height
 Seat height
 Seat height
 Angle of back support

Axle Position Types

- Fixed Inline with back support
- Adjustable A set of holes fore and aft for the user to choose
- Infinite A slot that allows the axle to be positioned anywhere inside of it

Physically Active Users

Typically have a more forward mounted axle, thus increasing the chance of instability while exercising

Adjustable Position Axle

Investigation of Shoulder Height and Weight on Rearward Stability

Shoulder Height

Shoulder Height	5th Percentile Female	50th Percentile Female	50th Percentile Male	95th Percentile Male
From seating surface for each percentile (cm)	48	53	63	66

Weight

Weight	5th	50th	50th	95th
	Percentile	Percentile	Percentile	Percentile
	Female	Female	Male	Male
For each percentile (kg)	51	67	81	108

Overall Height

Overall Height	5th	50th	50th	95th
	Percentile	Percentile	Percentile	Percentile
	Female	Female	Male	Male
For each percentile (cm)	154	164	180	191

Test Setup for Measuring Force to Tip

Forces to Tip are Low

Axle Position Affects Force to Tip

Axle Position Affects Angle of Tip

Seat Cushion Height Affects Force to Tip

Stability of Wheelchair Users using Fitness Equipment

- □ Factors:
 - User weight
 - User sitting height
 - Fore-aft wheelchair axle position

Shoulder Height

The taller the shoulder height of the user, the easier it is to tip over backwards

Fore-aft Wheelchair Axle Position

- The further forward the axle position, the easier the wheelchair can tip to the rear
- The further rearward the axle position, the more stable the wheelchair will be to the rear

Investigation – Wheelchair Loading Capacity

Integrity of a Typical Wheelchair when Using Vertical Lift Exercise Equipment

Question/Concern Raised

What would happen to a wheelchair if it was loaded during exercise with weight beyond its maximum rating of 250 lbs?

Common Wheelchair Warning

Weight Training <<Manufacturer>> does not recommend the use of its wheelchairs as a weight training apparatus. <<Manufacturer>> wheelchairs have not been designed or tested as a seat for any kind of weight training. If occupant uses said wheelchair as a weight training apparatus, <<Manufacturer>> shall not be liable for bodily injury or damage to the wheelchair and the warranty is void.

Test Protocol

- A test dummy was setup in a wheelchair and loaded with steel plates
- A fairly generic steel frame, folding wheelchair commonly used in hospitals and airports was used

Test Dummy Load

Test dummy fully loaded
Weight: rear 342.5 lb, front 474.5 lb
Total weight: 817.0 lb
Ram used to further load test dummy
Weight: rear 591.0 lb, front 900.0 lb
Total weight: 1491 lb

Results – Overall Integrity of the Wheelchair Intact

- Welds and structural joints unchanged
- Front caster angle changed
 - from 21° to 24°
- Seat material stretched

Conclusion

Loading this particular wheelchair beyond its specified maximum payload as may be experienced during weight lifting was found to not catastrophically effect the wheelchair

Current Safety Methods

Usually the best way for a person using a wheelchair to access this type of equipment is through the use of a guide or spotter

Safety Methods

- Weighing down the front of the wheelchair
- Locking down the front of the wheelchair with a strap or hook
- A back support device or pad
- Personal assistance from a trainer

Next Steps for UDFE Standards

- Research unknown variables
- Develop other sections
 - Elliptical
 - Rowing machine
 - Ergometer
- Promote the ASTM process

Future Goals

Disability training for fitness staff
Inclusive fitness programs
Accessible gym layout
User friendly labeling

NIDRR

This project was partially supported by award #H133E070029 from the U.S. Department of Education, National Institute on Disability and Rehabilitation Research.

NIH

Beneficial Designs' Phase I of this project was was funded by the National Center for Medical Rehabilitation Research in the National Institute of Child Health and Human Development at the National Institutes of Health through Small Business Innovation Research Phase I grant # 1 R43 HD049236-01.

Paralyzed Veterans of America – PVA Research

Beneficial Designs – Peter Axelson, with the assistance of his staff, is supported to travel and participate in RESNA - national and ISO – International Standards Organization wheelchair standards meetings to develop, write and update wheelchair standard test procedures for manual and powered wheelchairs.

Beneficial Designs, Inc.

Research/Design/Education

Improving access for people of all abilities

peter@beneficialdesigns.com seanna@beneficialdesigns.com

Minden, Nevada

www.beneficialdesigns.com standards@beneficialdesigns.com 775.783.8822 voice 775.783.8823 fax

Working toward universal access through research, design & education

