Unconventional RF Pulses and Pulse Pairs

John M. Pauly Stanford University

Typical Spin Echo Pulse

- Pulses designed independently
- Echo time limited
- Large dynamic range, demanding for RF amp

Designing Spin Echoes

- Design the spin echo instead of the pulses!
- Matched pulse pairs produce a linear phase echo
- Non-linear phase pulses have lower peak power
- Much more selective, less demanding for the RF amp

Short Echo Times

- The pulses can overlap, allowing short spin echo times
- Arbitrary flip angles
- Phase cycles

Slice Selective Excitation

Small-Tip-Angle Approximation

$$M_{xy}(x) = \int_0^T \gamma B_1(t) e^{ik(t)x} dt$$

Designing Small-Tip-Angle Pulses

Windowed Sinc

Slice Profile

N is the Time-Bandwidth Product of the pulse

Large-Flip-Angle Pulses

Fourier-based designs work well to 90°

Non-linear problem beyond 90°

Spin Domain

- Solve for rotations instead of magnetization
- Rotation represented by 2x2 unitary matrix

$$Q = \begin{pmatrix} \alpha & -\beta^* \\ \beta & \alpha^* \end{pmatrix}$$

a and β are

$$a = \cos(\varphi/2) - in_z \sin(\varphi/2)$$

$$\beta = -i(n_x + in_y) \sin(\varphi/2)$$

- Magnitude constraint: $qq^* + ββ^* = 1$

Magnetization from Spin Domain

Simple to compute slice profiles from spin domain:

$$M_{xy} = 2a^*\beta M_0$$

$$M_z = (1-2\beta\beta^*) M_0$$

$$M_{xy}^{+} = -\beta^2 (M_{xy}^{-})^*$$

Excitation

Inversion/Saturation

Refocusing

Hard Pulse Approximation

- Represent RF as impulses separated by free precession intervals (discrete time approximation)
- Spinors are two polynomials $A_N(z)$ and $B_N(z)$ in $z=e^{i\lambda G \times \Delta t}$ where Δt is sampling time
- This is invertible, given $A_N(z)$ and $B_N(z)$ we can find $B_1(t)$

Shinnar-Le Roux Algorithm

 $\ensuremath{\circ}$ Design $B_N(z)$ to approximate the desired flip angle profile

$$\beta(x) = -i(n_x + in_y) \sin(\varphi(x)/2)$$

- using a Fourier design (filter design).
- \circ Find a consistent $A_N(z)$ using magnitude constraint, minimum power (min phase)
- Solve for $B_1(t)$ $B_1(t) = SLR^{-1}(A_N(z), B_N(z))$

Example: Spin Echo Pulse

Other Phase Profiles

Minimum phase pulse can have half the transition width

Other Phase Profiles

Minimum Phase

Non-linear Phase

- Linear, minimum phase: high peak power
- Optimized non-linear phase reduces peak power
- Same total power (SAR)
- Identical magnitude profile

Designing Spin Echoes

- M_{xy} at the echo is $M_{xy} = (2q_{90}\beta^*_{90})(-\beta^2_{180}) M_0$
- Choose

$$\beta_{90} = (1/\sqrt{2})(i\beta^2_{180})$$

Matches profile and phase

$$M_{xy} \simeq |\beta_{180}|^4 M_0$$

Non-Linear Phase Example

- Phases exactly cancel
- Perfect linear phase spin echo
- 90 is twice as long as 180

Near-Contiguous Spin Echoes

Used for arterial spin labeling, where the sharp transition is important

Zun, et al. Magn. Reson. in Med, online (2013)

Non-Linear Phase CPMG

Non-Linear Phase CPMG

CPMG Echoes

 $\beta_{90} = (1/\sqrt{2})(i\beta_{180}) => M_{xy,90} \approx i\beta_{180} M_0$ $M_{xy} \approx i\beta_{180} |\beta_{180}|^2 M_0$

Echo has same phase profile as initial Mxy

Non-Linear Phase CPMG

- Echoes all have same profile and polarity
- Works for any phase profile, including frequency sweeps (SPEN)

Overlapping Pulses

2.5 ms Echo Time (immediately after end of pulse)

- The two pulses don't need to be distinct
- Give (a_{90}, β_{90}) and (a_{180}, β_{180}) $\beta_{PP} = z^D \beta_{90} a_{180}^* + a_{90} \beta_{180}$ $\alpha_{PP} = z^{-D} \alpha_{90} \alpha_{180} - \beta_{90} \beta_{180}^*$
- D is the echo delay (in samples)
- Find B₁(t) via SLR back recursion

Pulse Sequence

- z-Gradient needs added area
- Same as if it was on constantly until echo time
- Conjugate phase suppresses crushed component from 180

Slice Profiles

- Single pulse has spin echo and crushed signal
- Crushed component subtracts out

Slice Selective ³¹P Spectra

- Pulse pairs with different echo delays
- Axial 3.3 cm sllice of brain
- 1.5T, 250 ms A/D, 2 s TR

Non-Linear Phase B's

- Many ways to design non-linear phase B
 Widely studied for saturation pulses
- Many options:
 - Add quadratic phase to a linear phase β
 - Use complex Remez algorithm
 - Design a minimum phase pulse, factor, and zero flip
 - Use an adiabatic pulse as a prototype

Quadratic Phase

- Complex Remez algorithm will produce an optimal design for a specified phase and amplitude profile
- Paper by Schulte et al. tells you what to ask for!

Zero Flipping

TBW= N has 2^N possible phase profiles! Max peak amplitude reduced ~1/ \sqrt{N}

Adiabatic Pulses

Slice selective inversion Insensitive to amplitude

 $B_1(t) = A_0 \operatorname{sech}(\beta t) e^{-i\mu\beta \tanh(\beta t)t}$

Adiabatic Pulse Pairs

- Pulse pair with adiabatic 180, and overlapping phase compensated 90
- Compensates for B1 at 7T

True Self Refocusing Pulses

- Another option: start with a minimum phase excitation, and add phase to Q
- The original May is $M_{xy} = 2a^*\beta M_0$
- Add phase compensation p to a to delay echo $M_{xy} = 2(ap)^*\beta M_0$
- One cycle of linear phase across slice delays echo by one main lobe width
- Adds one 180 in power (expensive!)

True Self Refocusing Pulses

- Zero echo time
- No crushed or unrefocused signal
- Echo delayed by adding phase, and RF power

Multi-Dimensional Pulses

- Excitation and acquisition are duals
- Any acquisition technique can be used as an excitation pulse (spiral, EPI)
- EPI RF pulses are most useful for MRS, Spectral-Spatial pulses
- Do two things with one pulse!

Spectral-Spatial Pulses

Product Pulse Design:

- Sampled spectral pulse (large tip angle)
- Spatial subpulses (small tip angle)
- Also, full 2D design

Spectral-Spatial Profile

- Periodic in frequency
- N/2 "Ghost" sidelobes
- Continuous in space

Frequency

Pulse Pair Envelope Time (ms)

Positive Contrast SPIO

Imaging

- Spin echo image of frequency shifted signals
- Positive contrast

Balchandani, et al. Magnetic Resonance in Medicine 62:183:192 (2009)

Conclusions

- Much to be gained by focusing on the MR signal instead of the RF pulses
- Benefits include
 - Sharper profiles
 - Shorter echo time
 - Better control of the signal