ASSIGN MENT

SIEND ME A PARAGRAPH ABOUT YOUR PROSTERT TOPIC

TODAY

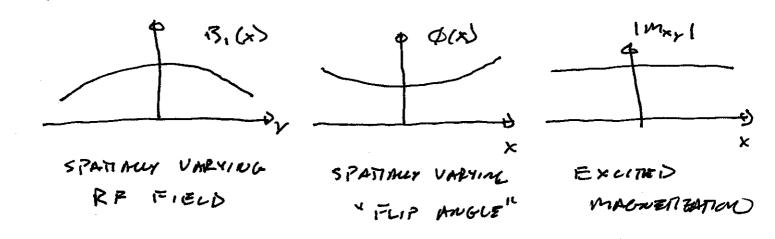
APPLICATIONS DIE PARACLEC TRANSMIT

PULSE DIESION

POWEL AND SAR

PARACLE TRANSMIT US PARACLE RECEIUE

B. MITTONTON


B, SHIMMING MOST COMMON PARMUEL THANSONT
APPCICATION & FLATTEN OUT TRANSONT FIELD

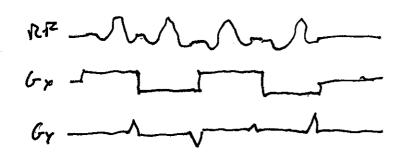
NEXT MOST COMMON 15 B, COURERTON ON MITICATION

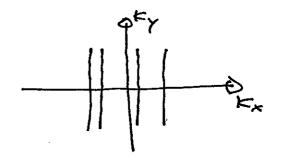
COM 15 TO PRODUCE UNITED FLIP ANGLE EVEN

THOUGH B, VARIES SPATIARY

BASIC IDEA USE A SPATIALLY SELECTUR PULSIE

CONCERTURILY, WE COULD USE ANY OF DAIR

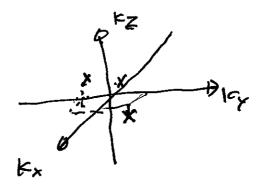

ZD PULSE DESIGN METHODS (OR 3D!)


IN PRACTICE, WE WANT SOMETHING VOELY

SHORT AND SIMPLE

SPOKES AND POINTS PULSES

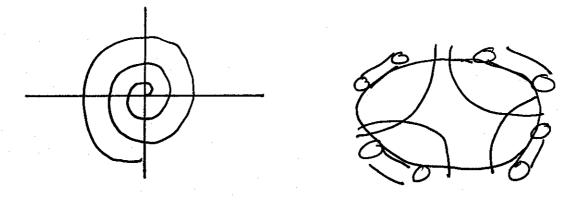
SPORTS PULSE ARE A SEQUENCE OF 11)
PULSES SEPALATED BY BUPS



JUST A FEW LINES IN SPATIAL FREQUENCY (LOW)
SPACINGS AND PULSE PROFILES OPTIMED

ONLY A FEW MS LONG

POINTS PULSES EVEN SIMPLER

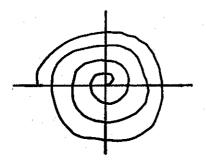

JUST A FEW SPATIAL FREQUENCIES

ARZ EXCITED. AMPLITUDES, PHASES, AND

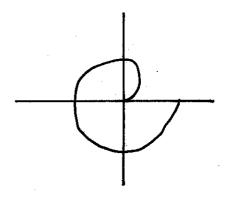
SPATIAL FREQUENCIES ARZ ALL OPTIMIZED).

LARGE FLIP ANGLE PUISES

SO FAR, SMALL-TIP- ANGLE PULSES
PULSES BASED ON INHERENTY REFOCUSED
PULSES ARE LINEAR IN ROTATION ANGLE
SAME HOUSS FOR PARMIEL EXCITATION


EACH COIL PRODUCES ROTATION ABOUT A common AXIS
ROTATIONS ADD

LimiTATIONS


1) DYNAMIC RANGE

NEAR COIL, LARGE ROTATION PIER GRADIENT CYCLE VIOLATES SMAL ROTATION APPROXIMATION

2) HIGH ACCEUMATION

ORIGINAL TRAJ

44 ACCECEMIED
TRAS

ORIGINAL TRAJECTORY WIEL APPROXIMATED

134 CIRCULAR RINGS, INHERENTY REFOUSED

SUBPLISES

ID LINEAR IN POTATION

ACCELERATED TRASECTORY NOT WELL
APPROXIMATED

=> NOT LINEAR IN POTATION

OTHER TRAJECTORIES

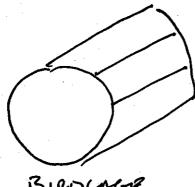
PULSIES THAT ARE NOT LINIER IN POPATION ARZ HARDER TO DIESIGN

SPECTRAL -SPATIAL / E/)

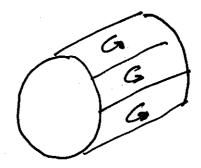
GENERALLY DONZ USING OFTIMIZATION

RF POWER AND SAR

MAJOR MOTUATION FOR PARAMEL TRANSMIT IS PUTENTIAL TO REDUCE SAR


Important FOR ·MIGH FIELD · INTERVENTIONS

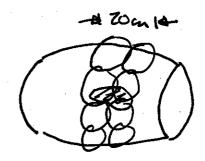
COMPLEX PROBLEM, MMY ISSUES


- · SAR DISMIBUTION DIFFERS From B,
- · SMALER EXCITATION VOLUME REDUCES SAR
- · DIFFIENZAT PULSES

NOTHING FUNDAMENTAL ABOUT PARAUEL TRANSMIT THAT NEDUCES SAR

SAME VOLUME, 13, PRODUCES SAME SAR

BIRDLAGE


RECHNOLINA ARRAY

PRODUCES SAME FIELDS, SAME SAL

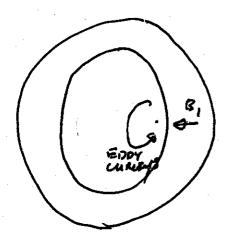
PARALLEL TRANSMIT REDUCES SAR 134 REDUCING EXCITATION VOLUME

VOLUM &

SURPACE COIL
APRAY

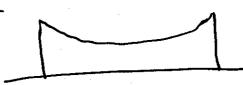
SAR GOES DOWN FASTER THAN LINIZARLY

DETAILED DEPLENDENCE IS COMPLEX, DEPENDS ON COIL GEOMETRY AND CONDUCTUTY OF SUBSECT

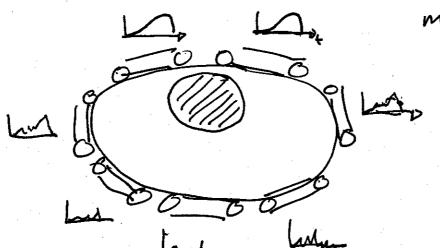

SAR AND IS, CAN HAUZ VIERY DIFFERENT DISTRIBUTIONS

SAR DUE TO E FIELD

SAR ~ S S OCC) [E(E, E)] dvot


RF EDDY CURRENTS IN SUBJECT

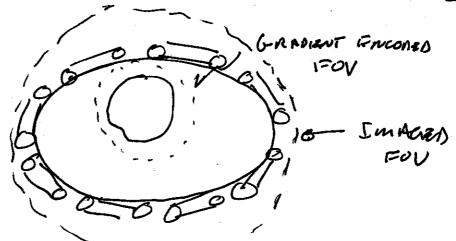
EXAMPLE HEAD COIL AT 71


SAR

EDDY CURRENTS OPPOSE BI, TEND TO SHELD ENTERIOR

COMPUTNO SAR REQUIRES FULL 31) EM SIMULATION

PULSE DESIGN ALSO REFECTS SAR



MOST EXCIMINATION DUL TO CLUSER

PARALLER RECIENCE US PARALLER TRANSMIT

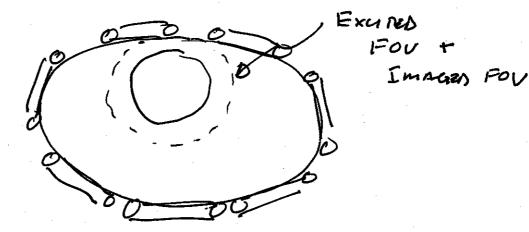
BOTH CAN BE USED TO ACCELERATE IMAGING
PARAMEL RECEIVE

USE COIL SENSITUITIES TO HELP ENCORE

GRADIENT ENCODING HAS ENABEQUATE FOU USE SENSITIVITIES TO SOUT OUT ALIASING SNR LOSS DUE TO

- · REDUCED SCAN TIME
- · CUIL SIENSIAUITIES NUT ORTHONORMAL 13 ASIS

IF SENSITIUITIES ARE COLLECTED IN MATRIX


THEN SUR IS

AND

FOR THE MM PIXEL 4 IS NOISE COUNTINUE.

PARACLEL TRANSMIT

USE COIL SENSITIVITIES TO RIESTRICT FOU

ONLY IMAGE OVER THIS RESTRICTED FOU IN THIS CASE, SNR LOSS IS JUST SCAN TIME

RECAUSE COILS NOT USED FOR ENCOSING

G FACTOR EFFECTS REQUIRED RF HOWER

HIGH G FACTOR, POORLY CONDITIONED PROBLEM

TO LARGE RF AMPLITUDES

ComPARISON

PARMUZE RECEIUZ

- · FULL FOV
- SCAN TIME REPURTUR
- of NR LOSS FROM

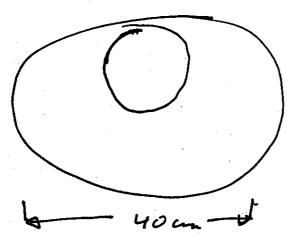
 9 FACTOR

 6 SAME RF POWER

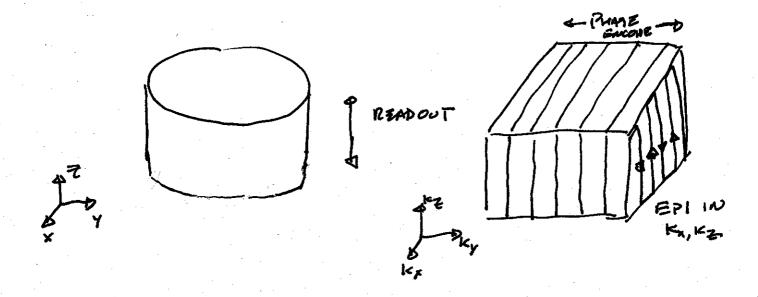
PARALEL TRANSMIT

- o restricted for
- · SNA LOSS FROM SCAN TIME REDUCTION
- NO g-FACTOR SAR LOSS
- OUR TO G FACTOR

BUTH CAN BE COMBINED

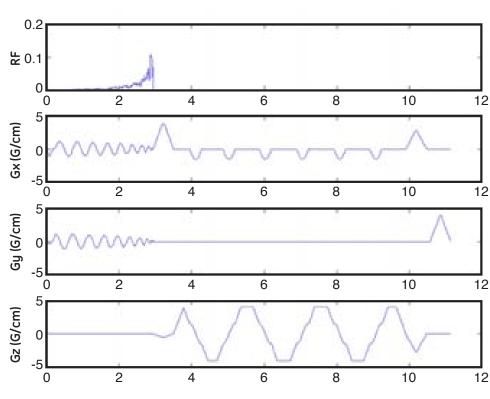

ACCEURAGE 134 A FACTOR OF 4 134

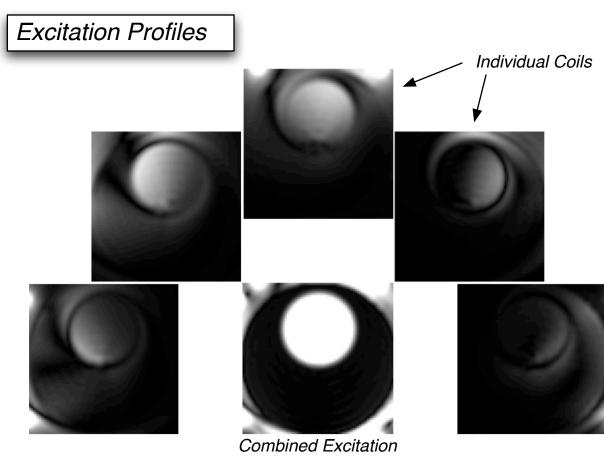
ZX REDUCTION IN FOU


ZX PARMER RECEIVE ACQUISITION

EXAMPLE APPLICATION: CARDIAC IMAGING

EXCITE ONLY 70 cm CYLINIEL AROUND HIZART




ASSUME 8 ZOWN COILS, SURROUNDING BODY NEED FOU RESTRICTION IN Z, REMOOUT

Restricted FOV Imaging

Pulse Sequence

