
1EE469B Fall 2019
RF Pulse Design for MRI

EE469B: Assignment 5

Due Thursday Oct. 31

1. Spinor Magnitude Constraint Starting from the expressions for α and β as a function of a
rotation angle θ about a unit vector n = (nx, ny, nz), show that

αα∗ + ββ∗ = 1

2. Composite Pulses Often combinations of pulses are used to perform specific tasks more ac-
curately. One example is the sequence consisting of a rotation of θ about the x axis, followed
by a rotation by the same θ about the y axis. Our goal in this case is to start from equilbirum
M = (0, 0,M0) and to accurately make Mz zero. The magnetization is left somewhere in the
transverse plane, but we don’t care where.

a) Solve for α and β for this pulse sequence.

b) Find a simple expression for the longitudinal magnetization. Solve for the θ that produces
an Mz = 0. Plot the Mz as a function of θ for 0 < θ < π. What range of θ will result in Mz being
less than 0.05M0?

c) Find a simple expression for the transverse magnetization. Plot Mxy as a function of θ for
0 < θ < π.

d) Plot 6 Mxy as a function of θ for 0 < θ < π. Note that this function is approximately linear
about θ = π/2. Hence, what this composite pulse does is trade off accuracy in Mz for phase error
in Mxy. One use for this pulse sequence is the measurement of the RF field strength, since the
actual flip angle θa is approximately the negative of magnetization phase −6 Mxy. How far can θa
vary from π/2 before the error in this approximation is 5◦?.

Hint: For these problems the half and double angle formulas are useful

sin θ = 2 sin(θ/2) cos(θ/2)

cos θ = cos2(θ/2)− sin2(θ/2)

Your answers shouldn’t have any half angles.

3. Inverse SLR Transform On the web site are several m-files that implement the inverse SLR
transform. These are

b2a.m, mag2mp.m, ab2rf.m

The first is b2a.m. This takes a beta polynomial and returns the consistent, minimum phase, alpha
polynomial. It uses mag2mp.m to go from the magnitude profile of alpha to the minimum phase
alpha. Then ab2rf.m takes the alpha and beta polynomials, and returns the corresponding RF
pulse. There is also an m-file,



2

ab2inv.m

that takes the output of the simulator abrm.m, and returns the Mz profile that is produced.
Given a suitably scaled beta polynomial (i.e. the passband amplitude is sin(θ/2)), then the RF

pulse can be computed as

>> a = b2a(b);
>> RF = ab2rf(a,b);

One way to think about the inverse SLR transform is that it corrects for the nonlinearity of the
Bloch Equation. We can design the beta polynomial using Fourier arguments, just as a small tip
angle pulse. Then scale the beta polynomial to sin(θ/2), and apply the inverse SLR transform to
produce the RF pulse with that beta profile.

a) Design a TBW=8 windowed sinc RF pulse, and scale it to a π radian rotation. Plot the RF
pulse scaled to Gauss. Assume a pulse length of 8 ms, and a gradient strength of 0.425 G/cm.
Simulate and plot the inversion profile. Choose an interesting range of spatial locations, and
compute the inversion profile with

>> mz = ab2inv(abrm(rf,x));

b) Now, use the windowed sinc waveform as the beta polynomial. First, scale it to the proper
value for an inversion. Then find the corresponding minimum phase (and minimum power) alpha
polynomial using b2a.m. Next compute the RF pulse using ab2rf.m. Plot the SLR inversion
pulse and the windowed sinc inversion pulse from part (a), both scaled to Gauss. By what factor
has the peak amplitude increased?

c) Simulate the inversion profile of the SLR inversion pulse from part (b), and plot it along
with the inversion profile of the windowed sinc pulse of part (a).


