E392m • Spring 2009

EE392m Fault Diagnostics Systems Introduction

Dimitry Gorinevsky Consulting Professor Information Systems Laboratory

2009 Gorinevsky

Course Subject

- Engineering of fault diagnostics systems
- Embedded computer interacting with real world
 - Detect abnormal operation
 - Fault tolerance: more than 80% of critical control code
- Operations and maintenance
 - More than 50% of the system lifetime costs
 - Troubleshooting support
 - Condition-based maintenance CBM

Prerequisites and Course Place

- The subject is not covered in other courses
- Prerequisites (helpful but not necessary)
 - Stat 116; EE263 or Eng 207a; EE278 or Eng 207b
- The course is about technical approaches that are actually used in fault diagnostics applications
 - Survived demands of real life
 - Used and supported by BS-level engineers in industry
 - Should be accessible to a Stanford grad student

Course Mechanics

- Class website: www.stanford.edu/class/ee392M/
- Weekly seminars
 - Follow website announcements
- Guest lecturers from diverse industries
 - Co-sponsored by NASA
 - Travel support for lecturers
 - Lecture notes will be posted as available
- Attendance
- Reference texts
 - Isermann; Chiang, Russel, & Braatz; Patton, Clark & Frank
 - Different coverage
 - Contact me if you have a specific interest

On-line (Embedded) Functions

- Embedded system, anomaly warnings
 - BIT Built-in-Test
 - BITE Built-in-Test Equipment
- FDIR
 - Fault Detection Identification and Recovery
- FT-RM
 - Fault Tolerance and Redundancy Management

Off-line Functions

- Reliability
 - FMECA- Failure Mode, Effects, and Criticality Analysis
 - Design time analysis open loop
- Maintenance and Support
 - Diagnostics for maintenance
 - Troubleshooting support
 - Test equipment
 - CBM Condition Based Maintenance
 - Pre-testing disk drives

Fault Diagnostics in Industry

- Space systems
- Defense systems: aviation, marine, and ground
- Commercial aerospace
 - Aircraft, jet engines
- Ground vehicles
 - Locomotives, trucks, cars
- High-tech
 - Networks and IT systems
 - Disk drives
 - Server farms
- Process control
 - IC Manufacturing
 - Refineries
 - Power plants
- Oil and gas drilling

2009 Gorinevsky

Guest Lecture Overview

#	Date	Lector	From	Diagnostics Application
1	31-Mar-09	Gorinevsky	Stanford	Introduction and overview
2	7-Apr-09	Rabover	VMTurbo (EMC)	Networks and IT systems
3	14-Apr-09	Tuv	Intel	IC Manufacturing processes
4	21-Apr-09	Felke	Honeywell	Avionics of commercial aircraft
5	28-Apr-09	Adibhatla	GE Infrastructure	Jet engines
6	5-May-09			
7	12-May-09	Urmanov	Sun	Computing systems
8	19-May-09	Bodden	Lockheed	Military aircraft systems
9	26-May-09	Kolmanovsky	Ford	Automotive powertrain
10	2-Jun-09			

Diagnostics Methods Overview

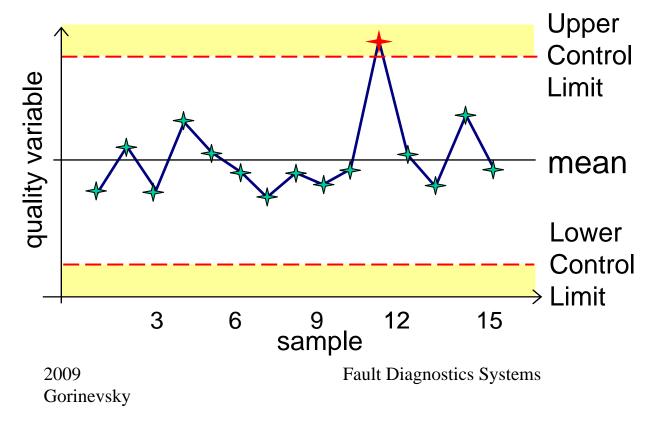
- Shewhart chart (Control chart)
- Multivariable SPC, T²
- Model-based estimation
 - Least squares estimation
- Integrated diagnostics
 - Cascaded design

Abnormality Detection - SPC

- SPC Statistical Process Control
 - monitoring of manufacturing processes
 - warning for off-target quality
- Main SPC method
 - Shewhart Chart (1920s)
- Also see
 - EWMA (1940s)
 - CuSum (1950s)
 - Western Electric Rules (1950s)

SPC: Shewhart Control Chart

- W.Shewhart, Bell Labs, 1924
- Statistical Process Control (SPC)
- UCL = mean + $3 \cdot \sigma$
- LCL = mean $3 \cdot \sigma$



Walter Shewhart (1891-1967)

Shewhart Chart, cont'd

- Quality variable assumed randomly changing around a steady state value
- Detection: $y(t) > UCL = mean + 3 \cdot \sigma$
- For normal distribution, false <u>alarm</u> probability is less than 0.27%

$$e(t) = \frac{y(t) - \mu_0}{\sigma}$$

$$P(e > 3) = 1 - \Phi(3) = 0.1350 \cdot 10^{-2} \int_{0}^{\frac{\pi}{2}} d^2$$

$$P(e < 3) = \Phi(-3) = 0.1350 \cdot 10^{-2}$$

Shewhart Chart –Hypothesis Test

- Null hypothesis
 - given mean and covariance

$$H_0: y(t) \sim N(\mu_0, \sigma^2)$$
 $P(H_0) = p_0$

- Fault hypothesis
 - a different mean

$$H_1: y(t) \sim N(\mu_1 \neq \mu_0, \sigma^2) \qquad P(H_1) = p_1$$

• Hypothesis testing

given
$$Y = y(t)$$

find $X \in \{H_0, H_1\}$

Fault Diagnostics Systems

2009 Gorinevsky

Bayesian Formulation

X — Underlying State

• Bayes rule

 $P(X \mid Y) = P(Y \mid X) \cdot P(X) \cdot c$

Rev. Thomas Bayes (1702-1761)

- Observation model: P(Y | X)
- Prior model:
- Maximum A posteriori Probability estimate

$$X = \arg\min(-\log P(Y \mid X) - \log P(X))$$

P(X)

L-log-posterior index

2009 Gorinevsky Fault Diagnostics Systems

14

Hypothesis Testing

• Null hypothesis $-\log P(Y \mid X) = \frac{1}{2\sigma^2} (y - \mu_0)^2$ $-\log P(X) = -\log p_0$ • Fault hypothesis

$$-\log P(Y \mid X) = \frac{1}{2\sigma^2} (y - \mu_1)^2 = 0 \qquad -\log P(X) = -\log p_1$$

og-likelihood ratio
$$p_0 = 1 - p_1$$

Log-likelihood ratio

$$\Lambda = \log \frac{P(H_1 | Y)}{P(H_0 | Y)} = L_0 - L_1$$

Declare fault if lacksquare

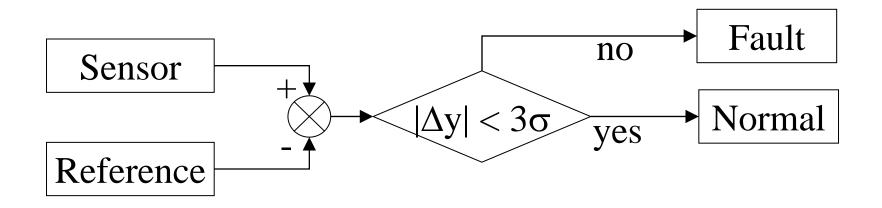
$$\Lambda = L_0 - L_1 = \frac{1}{2\sigma^2} (y - \mu_0)^2 - \log(p_0/p_1) > 0$$

$$|y - \mu_0| > \sigma \sqrt{2\log(1 - p_1)/p_1} \qquad p_1 = 0.0113 \Rightarrow 3\sigma$$

2009 Gorinevsky

Shewhart Chart: Use Examples

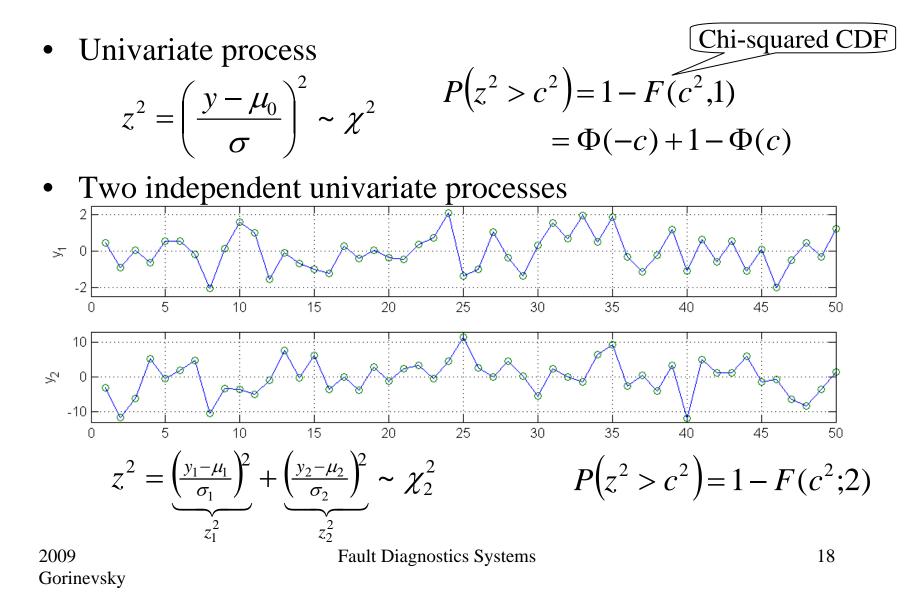
- SPC in manufacturing
- Fault monitoring
- Fault tolerance sensor integrity monitoring



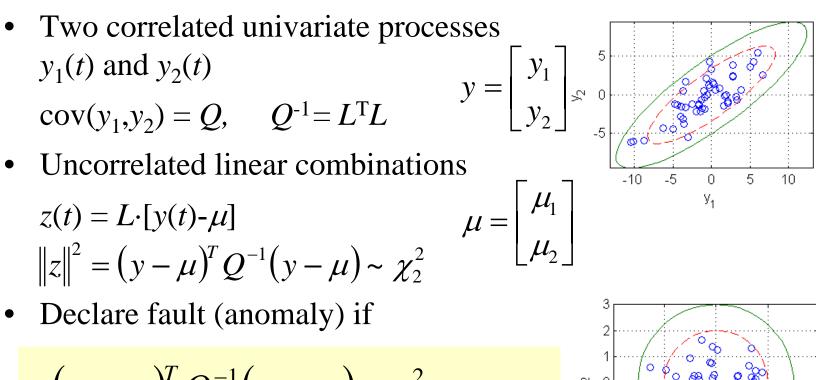
Diagnostics Methods Overview

- Shewhart chart (Control chart)
- Multivariable SPC, T²
- Model-based estimation
 - Least squares estimation
- Integrated diagnostics
 - Cascaded design

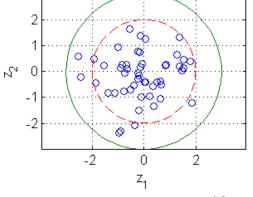
Multivariable SPC



Multivariable SPC



$$(y - \mu)^{T} Q^{-1}(y - \mu) > c^{2}$$
$$P(z^{2} > c^{2}) = 1 - F(c^{2};2)$$



2009 Gorinevsky Fault Diagnostics Systems

19

Multivariate SPC - Hotelling's T²

• Empirical parameter estimates

$$\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} y(t) \approx E(X)$$
$$\hat{Q} = \frac{1}{n} \sum_{t=1}^{n} (y(t) - \mu)(y^{T}(t) - \mu^{T}) \approx \operatorname{cov}(y - \mu)$$

Harold Hotelling (1895-1973)

• Hotelling's T^2 statistics is

$$T^{2} = (y(t) - \mu)^{T} \hat{Q}^{-1} (y(t) - \mu)$$

• T^2 can be trended as a univariate SPC variable

Diagnostics Methods Overview

- Shewhart chart (Control chart)
- Multivariable SPC, T²
- Model-based estimation
 - Least squares estimation
- Integrated diagnostics
 - Cascaded design

Least Squares Estimation

• Linear observation model:

Y = CX + v

- Fault signature model
 - Columns of *C* are fault signatures
 - Could be obtained from physics model
 - secant method
 - Could be identified from data:
 - regression, data mining
- Estimate
 - regularized least squares

Carl Friedrich Gauss (1777-1855)

 $\hat{X} = \left(C^T C + rI\right)^{-1} C^T Y$

2009 Gorinevsky

Bayesian Estimation

• Observation model: P(Y|X)

$$Y = CX + v \qquad v \sim N(0, Q)$$

• Prior models: P(X)

$$X \sim N(0, R) - \log P(X) = \frac{1}{2} X^T R^{-1} X + ...$$

• MAP estimate:

$$\hat{X} = \arg\min_{\substack{\frac{1}{2} \|Y - CX\|_{Q^{-1}}^2 \\ -\log P(Y|X)}} \underbrace{\frac{1}{2} \|X\|_{R^{-1}}^2}_{-\log P(X)} + \underbrace{\frac{1}{2} \|X\|_{R^{-1}}^2}_{-\log P(X)}$$

$$\hat{X} = \left(C^T Q^{-1} C + R^{-1}\right)^{-1} Q^{-1} C^T Y$$

Fault Diagnostics Systems

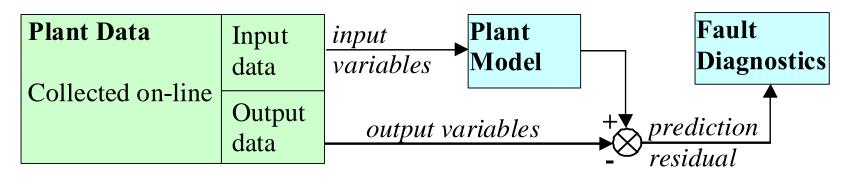
2009 Gorinevsky

Model-based Residuals

• Compute model-based prediction residual

 $Y = Y_{raw} - f(U,X)$

- If X = 0 (nominal case) we should have Y = 0.
- Residuals *Y* reflect faults
 - Sensor fault model additive output change
 - Actuator fault model additive input change



Example: Jet Engine Model

- Nonlinear jet engine model
 - static map
- Residuals

$$Y = Y_{raw} - f(U, X)$$

• Linearized model

$$Y = CX + v$$
$$C = -\frac{\partial f(U, X)}{\partial X}$$

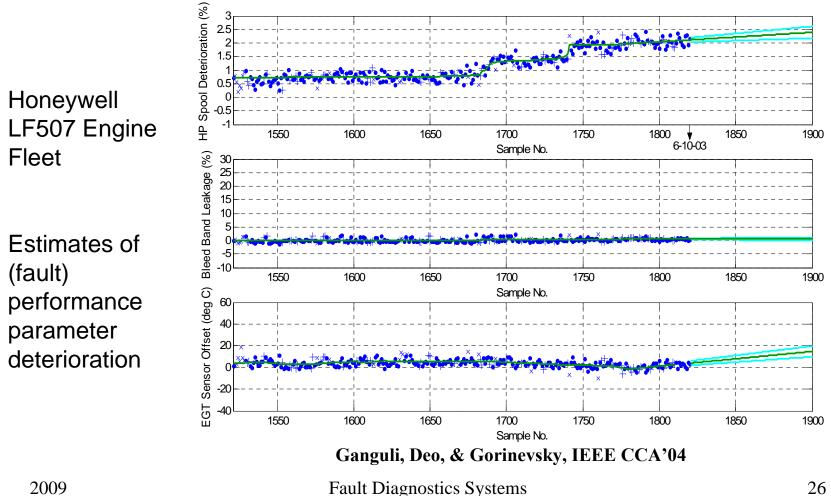
2009 Gorinevsky



$$X = \begin{bmatrix} \text{Turbine deterioration} \\ \text{Bleed band leak} \\ \text{EGT sensor drift} \end{bmatrix}$$

Example: Fault Estimates

• Maintenance decision support tool



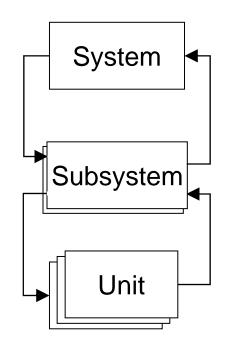
2009 Gorinevsky

Diagnostics Methods Overview

- Shewhart chart (Control chart)
- Multivariable SPC, T²
- Model-based estimation
 - Least squares estimation
- Integrated diagnostics
 - <u>Cascaded design</u>

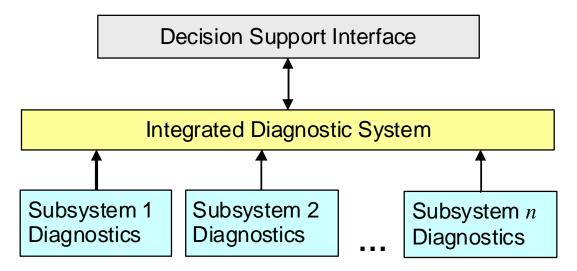
Cascaded Design

- Increasing complexity and integration of system ↑
- Slower time scale \uparrow
- Simple inner loop models
- Examples
 - Control systems
 - Estimation and data fusion
 - Fault diagnostics systems



Integrated System Diagnostics

- Complex integrated systems
- Examples
 - Aerospace vehicle, e.g. B777
 - Large scale computer network
 - Medical equipment



Discrete Fault Signatures

Model of root cause fault k: $Y^k = B^k$

$\underline{\qquad \text{Root Cause } \rightarrow}$	#0	#1	#2	#3	#4	#5	#6
\checkmark Symptom Code	Null						
#1	0	0	1	1	0	0	1
#2	0	0	1	1	0	1	0
#3	0	1	0	1	0	0	1
#4	0	1	0	0	0	0	0
#5	0	1	0	0	0	1	0
#6	0	0	0	0	1	1	0
#7	0	1	1	0	1	0	0

Estimation Algorithm

• Diagnosis problem:

Given data Y, diagnose root cause k

• Solution:

$$k = \arg\min\left\|Y - B^k\right\|_1$$

- Minimal Hamming distance
- Justifications
 - Case-based reasoning (table of fault cases)
 - Model-based reasoning (fault signature model)
 - Bayesian

Bayesian Justification

• Data

$$Y \qquad X = \{H_0: 0, H_1: B^1, \dots, H_n: B^n\}$$

• Observation model

$$P(Y \mid X) = P(y_{j} = b_{j}^{k} \mid H_{k}) = 1 - p_{1} \quad y_{j} \text{ follows the model}$$

$$P(y_{j} \neq b_{j}^{k} \mid H_{k}) = p_{1} \quad \text{deviates from the model}$$

$$-\log P(Y \mid H_{k}) = \sum_{y_{j} = b_{j}^{k}} -\log(1 - p_{1}) + \sum_{y_{j} \neq b_{j}^{k}} -\log p_{1} = -n \cdot \log(1 - p_{1}) - \sum_{j=0}^{n} |y_{j} - b_{j}^{k}| \cdot \left(\log p_{1} - \log(1 - p_{1})\right)$$

$$-\log P(Y \mid H_{k}) = c + w \|y - b^{k}\|_{1}$$

Fault Diagnostics Systems

2009 Gorinevsky

Bayesian Justification

• Prior model

 $P(X) \qquad P(H_k) = 1/(n+1)$ $-\log P(H_k) = d$

• MAP Estimate

$$k = \arg\min\left(-\log P(Y \mid H_k) - \log P(H_k)\right)$$
$$k = \arg\min_k \left(c + w \|y - b^k\|_1 + d\right)$$
$$k = \arg\min_k \|y - b^k\|_1$$

2009 Gorinevsky

Conclusions

- Basic diagnostics estimation methods
 - Are known for long time
 - Used in on-line systems for less time
 - Can be explained in several ways, e.g., Bayesian
- Engineering of fault diagnostics systems
 - Is new and current
 - Will be discussed in guest lectures
 - Not just diagnostics algorithms

Guest Lectures: Approaches

#	Date	Lector	From	Application	Approach
2	7-Apr-09	Rabover	EMC	Network	Integrated diagnostics
3	14-Apr-09	Tuv	Intel	IC Manufacture	Fault signature ID
4	21-Apr-09	Felke	Honeywell	Aircraft	Integrated diagnostics
5	28-Apr-09	Adibhatla	GE Infra	Jet Engines	Multivariate estimation
7	12-May-09	Urmanov	Sun	Computing	Multivariate SPC, ML
8	19-May-09	Bodden	Lockheed	Aircraft	Fault tolerance
9	26-May-09	Kolmanovsky	Ford	Automotive	Model-based