
Building Software Systems at Google and

Lessons Learned

Jeff Dean
jeff@google.com

mailto:jeff@google.com
mailto:jeff@google.com
mailto:jeff@google.com
mailto:jeff@google.com

Plan for Today

• Evolution of various systems at Google
–computing hardware
–core search systems
–infrastructure software

• Techniques for building large-scale systems
–decomposition into services
–design patterns for performance & reliability

–Joint work with many, many people

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X
~1000X

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X

~3X
~1000X

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X

~3X
~1000X

~50000X

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X

~3X
~1000X

~50000X

~5X

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X

~3X
~1000X

~50000X

~5X

~1000X

• # docs: tens of millions to tens of billions
• queries processed/day:
• per doc info in index:
• update latency: months to tens of secs
• avg. query latency: <1s to <0.2s

• More machines * faster machines:

Google Web Search: 1999 vs. 2010

~1000X

~3X
~1000X

~50000X

~5X

~1000X

Continuous evolution:
–7 significant revisions in last 11 years
–often rolled out without users realizing we’ve made major

changes

“Google” Circa 1997 (google.stanford.edu)

Research Project, circa 1997

Frontend Web Server

I0 I1 I2 IN

Index shards

D0 D1 DM

query

Index servers Doc servers

⋯ ⋯
Doc shards

• Index Servers:
–given (query) return sorted list of <docid, score> pairs
–partitioned (“sharded”) by docid
–index shards are replicated for capacity
–cost is O(# queries * # docs in index)

Basic Principles

• Index Servers:
–given (query) return sorted list of <docid, score> pairs
–partitioned (“sharded”) by docid
–index shards are replicated for capacity
–cost is O(# queries * # docs in index)

Basic Principles

• Doc Servers
–given (docid, query) generate (title, snippet)

– snippet is query-dependent
–map from docid to full text of docs (usually on disk)
–also partitioned by docid
–cost is O(# queries)

“Corkboards” (1999)

Serving System, circa 1999

Frontend Web Server

I0 I1 I2 IN

I0 I1 I2 IN

I0 I1 I2 IN

Re
pli
ca
s ⋯

⋯

Index shards

D0 D1 DM

D0 D1 DM

D0 D1 DM
Re
pli
ca
s ⋯

⋯
Doc shards

query

Index servers

Cache servers

C0 C1 CK⋯

Doc servers

Ad System

• Cache servers:
–cache both index results and doc snippets
–hit rates typically 30-60%

• depends on frequency of index updates, mix of query traffic, level
of personalization, etc

• Main benefits:
– performance! a few machines do work of 100s or 1000s
– much lower query latency on hits

• queries that hit in cache tend to be both popular and expensive
(common words, lots of documents to score, etc.)

• Beware: big latency spike/capacity drop when index
updated or cache flushed

Caching in Web Search Systems

• Simple batch indexing system
–No real checkpointing, so machine failures painful
–No checksumming of raw data, so hardware bit errors

caused problems
• Exacerbated by early machines having no ECC, no parity
• Sort 1 TB of data without parity: ends up "mostly sorted"
• Sort it again: "mostly sorted" another way

• “Programming with adversarial memory”
–Developed file abstraction that stores checksums of

small records and can skip and resynchronize after
corrupted records

Indexing (circa 1998-1999)

Google Data Center (2000)

Google Data Center (2000)

Google Data Center (2000)

Google (new data center 2001)

Google Data Center (3 days later)

• Huge increases in index size in ’99, ’00, ’01, ...
– From ~50M pages to more than 1000M pages

• At same time as huge traffic increases
– ~20% growth per month in 1999, 2000, ...
– ... plus major new partners (e.g. Yahoo in July 2000 doubled

traffic overnight)

• Performance of index servers was paramount
– Deploying more machines continuously, but...
– Needed ~10-30% software-based improvement every month

Increasing Index Size and Query Capacity

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

I0 I1 I2 I3 I4 I10⋯

⋯ ⋯

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

I0 I1 I2 I3 I4 I10⋯

⋯ ⋯

I60⋯
I60⋯
I60⋯
I60⋯

⋯

of disk seeks is
O(#shards*#terms/query)

Dealing with Growth

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Re
pli
ca
s

Index shards

I0 I1 I2

I0 I1 I2

I3

I3

I0 I1 I2 I3

I4

I4

I4

I10⋯
I10⋯
I10⋯

I0 I1 I2 I3 I4 I10⋯

⋯ ⋯

I60⋯
I60⋯
I60⋯
I60⋯

⋯

of disk seeks is
O(#shards*#terms/query)

Eventually have enough
replicas so that total
memory across all index
machines can hold ONE
entire copy of index in
memory

Early 2001: In-Memory Index

Frontend Web Server

query

Index servers

Cache servers

Ad System

Doc Servers

Cache Servers

Index shards

Shard 0

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Shard 1

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Shard 2

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Shard N

I0 I1 I2

I14

I3

I12

bal

I4 I5

⋯
I13

Balancers

⋯

• Many positives:
–big increase in throughput
–big decrease in query latency

• especially at the tail: expensive queries that previously needed
GBs of disk I/O became much faster and cheaper

e.g. [“circle of life”]

In-Memory Indexing Systems

• Many positives:
–big increase in throughput
–big decrease in query latency

• especially at the tail: expensive queries that previously needed
GBs of disk I/O became much faster and cheaper

e.g. [“circle of life”]

In-Memory Indexing Systems

• Some issues:
–Variance: query touches 1000s of machines, not dozens

• e.g. randomized cron jobs caused us trouble for a while

–Availability: 1 or few replicas of each doc’s index data
• Availability of index data when machine failed (esp for important

docs): replicate important docs
• Queries of death that kill all the backends at once: very bad

Canary Requests

• Problem: requests sometimes cause server process to crash
– testing can help reduce probability, but can’t eliminate

• If sending same or similar request to 1000s of machines:
– they all might crash!
– recovery time for 1000s of processes pretty slow

• Solution: send canary request first to one machine
– if RPC finishes successfully, go ahead and send to all the rest
– if RPC fails unexpectedly, try another machine

(might have just been coincidence)
– if fails K times, reject request

• Crash only a few servers, not 1000s

Query Serving System, 2004 edition

Root

…

…

Parent
Servers

…
…

Leaf
Servers

Repository
Shards…

Repository
Manager

File
Loaders

Cache servers
Requests

GFS

Query Serving System, 2004 edition

Root

…

…

Parent
Servers

…
…

Leaf
Servers

Repository
Shards…

Repository
Manager

File
Loaders

Cache servers
Requests

GFS

Multi-level tree for
query distribution

Query Serving System, 2004 edition

Root

…

…

Parent
Servers

…
…

Leaf
Servers

Repository
Shards…

Repository
Manager

File
Loaders

Cache servers
Requests

GFS

Multi-level tree for
query distribution

Leaf servers handle both index
& doc requests from in-memory
data structures

Query Serving System, 2004 edition

Root

…

…

Parent
Servers

…
…

Leaf
Servers

Repository
Shards…

Repository
Manager

File
Loaders

Cache servers
Requests

GFS

Coordinates index
switching as new shards
become available

Multi-level tree for
query distribution

Leaf servers handle both index
& doc requests from in-memory
data structures

Features

• Clean abstractions:
–Repository
–Document
–Attachments
–Scoring functions

• Easy experimentation
–Attach new doc and index data without full reindexing

• Higher performance: designed from ground up to
assume data is in memory

New Index Format

• Old disk and in-memory index used two-level scheme:
– Each hit was encoded as (docid, word position in doc) pair
– Docid deltas encoded with Rice encoding
– Very good compression (originally designed for disk-based indices),

but slow/CPU-intensive to decode

• New format: single flat position space
– Data structures on side keep track of doc boundaries
– Posting lists are just lists of delta-encoded positions
– Need to be compact (can’t afford 32 bit value per occurrence)
– … but need to be very fast to decode

Byte-Aligned Variable-length Encodings

• Varint encoding:
– 7 bits per byte with continuation bit
– Con: Decoding requires lots of branches/shifts/masks

0000111100000001 0000001111111111 1111111111111111 00000111

1 15 511 131071

Byte-Aligned Variable-length Encodings

• Varint encoding:
– 7 bits per byte with continuation bit
– Con: Decoding requires lots of branches/shifts/masks

0000111100000001 0000001111111111 1111111111111111 00000111

1 15 511 131071

• Idea: Encode byte length using 2 bits
– Better: fewer branches, shifts, and masks
– Con: Limited to 30-bit values, still some shifting to decode

0000111100000001 0000001101111111 1111111110 111111 00000111

1 15 511 131071

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000011101111111 1111111110 111111 00000111

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000011101111111 1111111110 111111 00000111

00000110

Tags

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000011101111111 1111111110 111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000011101111111 1111111110 111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

• Decode: Load prefix byte and use value to lookup in 256-entry table:

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000011101111111 1111111110 111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

• Decode: Load prefix byte and use value to lookup in 256-entry table:

00000110 Offsets: +1,+2,+3,+5; Masks: ff, ff, ffff, ffffff
⋯
⋯

Group Varint Encoding
• Idea: encode groups of 4 32-bit values in 5-17 bytes

– Pull out 4 2-bit binary lengths into single byte prefix

0000111100000001 0000011101111111 1111111110 111111 00000111

0000111100000001 11111111 11111111

1 15 511 131071

00000001 11111111 0000000100000110

Tags

• Much faster than alternatives:
– 7-bit-per-byte varint: decode ~180M numbers/second
– 30-bit Varint w/ 2-bit length: decode ~240M numbers/second
– Group varint: decode ~400M numbers/second

• Decode: Load prefix byte and use value to lookup in 256-entry table:

00000110 Offsets: +1,+2,+3,+5; Masks: ff, ff, ffff, ffffff
⋯
⋯

2007: Universal Search

Frontend Web Server

query

Cache servers

Ad System

News

Super root

Images

Web

Blogs
Video

Books

Local

Indexing Service

Universal Search

• Search all corpora in parallel

• Performance: most of the corpora weren’t designed to
deal with high QPS level of web search

• Mixing: Which corpora are relevant to query?
–changes over time

• UI: How to organize results from different corpora?
–interleaved?
–separate sections for different types of documents?

System Software Evolution

Machines + Racks

• In-house rack design
• PC-class motherboards
• Low-end storage & networking

hardware
• Linux
• + in-house software

Clusters

The Joys of Real Hardware
Typical first year for a new cluster:

~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures
~thousands of hard drive failures
slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

The Joys of Real Hardware
Typical first year for a new cluster:

~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures
~thousands of hard drive failures
slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

Reliability/availability must come from software!

Low-Level Systems Software Desires

• If you have lots of machines, you want to:

• Store data persistently
–w/ high availability
–high read and write bandwidth

• Run large-scale computations reliably
–without having to deal with machine failures

• Master manages metadata
• Data transfers are directly between clients/chunkservers
• Files broken into chunks (typically 64 MB)
• Chunks replicated across multiple machines (usually 3)

Client

Client

Misc. servers

ClientRe
pl

ica
s

Masters

GFS Master

GFS Master

C0 C1

C2C5

Chunkserver 1

C0

C2

C5

Chunkserver N

C1

C3C5

Chunkserver 2

…

Google File System (GFS) Design

• Cluster is 5K-20K machines, typically one or handful of hw configurations

• File system (GFS or Colossus) + cluster scheduling system are core
services

• Typically 100s to 1000s of active jobs (some w/1 task, some w/1000s)

• mix of batch and low-latency, user-facing production jobs

Google Cluster Software Environment

Linux
Commodity HW

Linux
Commodity HW

Machine 1

...

Machine N

• Cluster is 5K-20K machines, typically one or handful of hw configurations

• File system (GFS or Colossus) + cluster scheduling system are core
services

• Typically 100s to 1000s of active jobs (some w/1 task, some w/1000s)

• mix of batch and low-latency, user-facing production jobs

Google Cluster Software Environment

Linux
Commodity HW

Linux
Commodity HW

Machine 1

...

Machine N

chunk
server

chunk
server

GFS
master

• Cluster is 5K-20K machines, typically one or handful of hw configurations

• File system (GFS or Colossus) + cluster scheduling system are core
services

• Typically 100s to 1000s of active jobs (some w/1 task, some w/1000s)

• mix of batch and low-latency, user-facing production jobs

Google Cluster Software Environment

Linux
Commodity HW

Linux
Commodity HW

Machine 1

...

Machine N

scheduling
daemon

scheduling
daemon

scheduling
master

chunk
server

chunk
server

GFS
master

• Cluster is 5K-20K machines, typically one or handful of hw configurations

• File system (GFS or Colossus) + cluster scheduling system are core
services

• Typically 100s to 1000s of active jobs (some w/1 task, some w/1000s)

• mix of batch and low-latency, user-facing production jobs

Google Cluster Software Environment

Linux
Commodity HW

Linux
Commodity HW

Machine 1

...

Machine N

scheduling
daemon

scheduling
daemon

scheduling
master

chunk
server

chunk
server

GFS
master

Chubby
lock service

• Cluster is 5K-20K machines, typically one or handful of hw configurations

• File system (GFS or Colossus) + cluster scheduling system are core
services

• Typically 100s to 1000s of active jobs (some w/1 task, some w/1000s)

• mix of batch and low-latency, user-facing production jobs

Google Cluster Software Environment

Linux
Commodity HW

Linux
Commodity HW

...job 1
task

job 3
task

job 12
task

job 7
task

job 3
task

job 5
task

Machine 1

...

Machine N

scheduling
daemon

scheduling
daemon

scheduling
master

chunk
server

chunk
server

GFS
master

Chubby
lock service

Problem: lots of data

• Example: 20+ billion web pages x 20KB = 400+
terabytes

• One computer can read 50 MB/sec from disk
– ~three months to read the web

• ~1,000 hard drives just to store the web

• Even more to do something with the data

Solution: spread work over many machines

• Good news: same problem with 1000 machines, < 3 hours

• Bad news: programming work
– communication and coordination
– recovering from machine failure
– status reporting
– debugging
– optimization
– locality

• Bad news II: repeat for every problem you want to solve

MapReduce History

• 2003: Working on rewriting indexing system:
–start with raw page contents on disk
–many phases:

• duplicate elimination, anchor text extraction, language
identification, index shard generation, etc.

–end with data structures for index and doc serving

• Each phase was hand written parallel computation:
–hand parallelized
–hand-written checkpointing code for fault-tolerance

MapReduce

• A simple programming model that applies to many
large-scale computing problems
– allowed us to express all phases of our indexing system
– since used across broad range of computer science areas, plus

other scientific fields
– Hadoop open-source implementation seeing significant usage

• Hide messy details in MapReduce runtime library:
– automatic parallelization
– load balancing
– network and disk transfer optimizations
– handling of machine failures
– robustness
– improvements to core library benefit all users of library!

Typical problem solved by MapReduce

• Read a lot of data
• Map: extract something you care about from each record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, or transform
• Write the results

Outline stays the same,
User writes Map and Reduce functions to fit the problem

Example: Rendering Map Tiles

Input Map Shuffle Reduce Output
Emit feature to all

overlapping latitude-
longitude rectangles

Sort by key
(key= Rect.

Id)

Render tile using
data for all enclosed

features
Rendered tiles

Geographic
feature list

I-5

Lake Washington

WA-520

I-90

(0, I-5)

(0, Lake Wash.)

(0, WA-520)

(1, I-90)

(1, I-5)

(1, Lake Wash.)

(0, I-5)

(0, Lake Wash.)

(0, WA-520)

(1, I-90)

0

1 (1, I-5)

(1, Lake Wash.)

…

…

…

…

MapReduce: Scheduling

• One master, many workers
– Input data split into M map tasks (typically 64 MB in size)
– Reduce phase partitioned into R reduce tasks
– Tasks are assigned to workers dynamically
– Often: M=200,000; R=4,000; workers=2,000

• Master assigns each map task to a free worker
– Considers locality of data to worker when assigning task
– Worker reads task input (often from local disk!)
– Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker
– Worker reads intermediate k/v pairs from map workers
– Worker sorts & applies user’s Reduce op to produce the output

Parallel MapReduce

Map Map Map Map

Input
data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

Parallel MapReduce

Map Map Map Map

Input
data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

For large enough problems, it’s more about disk and
network performance than CPU & DRAM

Task Granularity and Pipelining

• Fine granularity tasks: many more map tasks than
machines
–Minimizes time for fault recovery
–Can pipeline shuffling with map execution
–Better dynamic load balancing

• Often use 200,000 map/5000 reduce tasks w/ 2000
machines

Fault tolerance: Handled via re-execution

On worker failure:
• Detect failure via periodic heartbeats
• Re-execute completed and in-progress map tasks
• Re-execute in progress reduce tasks
• Task completion committed through master

On master failure:
• State is checkpointed to GFS: new master recovers &

continues

Very Robust: lost 1600 of 1800 machines once, but finished fine

Refinement: Backup Tasks

• Slow workers significantly lengthen completion time
–Other jobs consuming resources on machine
–Bad disks with soft errors transfer data very slowly
–Weird things: processor caches disabled (!!)

• Solution: Near end of phase, spawn backup copies
of tasks
–Whichever one finishes first "wins"

• Effect: Dramatically shortens job completion time

Refinement: Locality Optimization

Master scheduling policy:
• Asks GFS for locations of replicas of input file blocks
• Map tasks typically split into 64MB (== GFS block size)
• Map tasks scheduled so GFS input block replica are on

same machine or same rack

Effect: Thousands of machines read input at local
disk speed

• Without this, rack switches limit read rate

MapReduce Usage Statistics Over Time

Number of jobs
Aug, ‘04

29K
Mar, ‘06

171K
Sep, '07
2,217K

May, ’10
4,474K

Average completion time (secs) 634 874 395 748

Machine years used 217 2,002 11,081 39,121

Input data read (TB) 3,288 52,254 403,152 946,460

Intermediate data (TB) 758 6,743 34,774 132,960

Output data written (TB) 193 2,970 14,018 45,720

Average worker machines 157 268 394 368

Current Work: Spanner

• Storage & computation system that runs across many datacenters
– single global namespace

• names are independent of location(s) of data
• fine-grained replication configurations

– support mix of strong and weak consistency across datacenters
• Strong consistency implemented with Paxos across tablet replicas
• Full support for distributed transactions across directories/machines

– much more automated operation
• automatically changes replication based on constraints and usage patterns
• automated allocation of resources across entire fleet of machines

• Future scale: ~105 to 107 machines, ~1013 directories,
~1018 bytes of storage, spread at 100s to 1000s of
locations around the world

– zones of semi-autonomous control
– consistency after disconnected operation
– users specify high-level desires:

“99%ile latency for accessing this data should be <50ms”
“Store this data on at least 2 disks in EU, 2 in U.S. & 1 in Asia”

Design Goals for Spanner

System Building Experiences and Patterns

• Experiences from building a variety of systems
–A collection of patterns that have emerged
–Not all encompassing, obviously, but good rules of

thumb

Many Internal Services

• Break large complex systems down into many services!

• Simpler from a software engineering standpoint
– few dependencies, clearly specified
– easy to test and deploy new versions of individual services
– ability to run lots of experiments
– easy to reimplement service without affecting clients

• Development cycles largely decoupled
– lots of benefits: small teams can work independently
– easier to have many engineering offices around the world

• e.g. google.com search touches 200+ services
–ads, web search, books, news, spelling correction, ...

Designing Efficient Systems

Given a basic problem definition, how do you choose "best"
solution?

• Best might be simplest, highest performance, easiest to extend, etc.

Important skill: ability to estimate performance of a system design
– without actually having to build it!

Numbers Everyone Should Know

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K w/cheap compression algorithm 3,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

Back of the Envelope Calculations

How long to generate image results page (30 thumbnails)?

Design 1: Read serially, thumbnail 256K images on the fly
30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Back of the Envelope Calculations

How long to generate image results page (30 thumbnails)?

Design 1: Read serially, thumbnail 256K images on the fly
30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Design 2: Issue reads in parallel:
10 ms/seek + 256K read / 30 MB/s = 18 ms

(Ignores variance, so really more like 30-60 ms, probably)

Back of the Envelope Calculations

How long to generate image results page (30 thumbnails)?

Design 1: Read serially, thumbnail 256K images on the fly
30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Design 2: Issue reads in parallel:
10 ms/seek + 256K read / 30 MB/s = 18 ms

(Ignores variance, so really more like 30-60 ms, probably)

Lots of variations:
– caching (single images? whole sets of thumbnails?)
– pre-computing thumbnails
– …

Back of the envelope helps identify most promising…

Know Your Basic Building Blocks

Core language libraries, basic data structures, protocol buffers,
GFS, BigTable, indexing systems, MapReduce, …

Not just their interfaces, but understand their
implementations (at least at a high level)

If you don’t know what’s going on, you can’t do decent
back-of-the-envelope calculations!

Designing & Building Infrastructure
Identify common problems, and build software systems to

address them in a general way

• Important to not try to be all things to all people
– Clients might be demanding 8 different things
– Doing 6 of them is easy
– …handling 7 of them requires real thought
– …dealing with all 8 usually results in a worse system

• more complex, compromises other clients in trying to satisfy
everyone

Designing & Building Infrastructure (cont)
Don't build infrastructure just for its own sake:
• Identify common needs and address them
• Don't imagine unlikely potential needs that aren't really there

Best approach: use your own infrastructure (especially at first!)
• (much more rapid feedback about what works, what doesn't)

Design for Growth

Try to anticipate how requirements will evolve
keep likely features in mind as you design base system

Don’t design to scale infinitely:
~5X - 50X growth good to consider
>100X probably requires rethink and rewrite

Pattern: Single Master, 1000s of Workers
• Master orchestrates global operation of system

– load balancing, assignment of work, reassignment when
machines fail, etc.

– ... but client interaction with master is fairly minimal

• Examples:
– GFS, BigTable, MapReduce, file transfer service, cluster

scheduling system, ...

Client

Misc. servers
Re

pl
ica

s
Masters

Master

Master
Client

Worker 1 Worker 2 Worker N

Client

Pattern: Single Master, 1000s of Workers (cont)

• Often: hot standby of master waiting to take over
• Always: bulk of data transfer directly between clients and workers

• Pro:
– simpler to reason about state of system with centralized master

• Caveats:
– careful design required to keep master out of common case ops
– scales to 1000s of workers, but not 100,000s of workers

• Problem: Single machine sending 1000s of RPCs overloads NIC
on machine when handling replies
– wide fan in causes TCP drops/retransmits, significant latency
– CPU becomes bottleneck on single machine

Pattern: Tree Distribution of Requests

Root

Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6

• Solution: Use tree distribution of requests/responses
– fan in at root is smaller
– cost of processing leaf responses spread across many parents

• Most effective when parent processing can trim/combine leaf data
– can also co-locate parents on same rack as leaves

Pattern: Tree Distribution of Requests

Root

Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6

Parent Parent

Pattern: Backup Requests to Minimize Latency

• Problem: variance high when requests go to 1000s of machines
– last few machines to respond stretch out latency tail substantially

• Often, multiple replicas can handle same kind of request
• When few tasks remaining, send backup requests to other replicas
• Whichever duplicate request finishes first wins

– useful when variance is unrelated to specifics of request
– increases overall load by a tiny percentage
– decreases latency tail significantly

Pattern: Backup Requests to Minimize Latency

• Problem: variance high when requests go to 1000s of machines
– last few machines to respond stretch out latency tail substantially

• Often, multiple replicas can handle same kind of request
• When few tasks remaining, send backup requests to other replicas
• Whichever duplicate request finishes first wins

– useful when variance is unrelated to specifics of request
– increases overall load by a tiny percentage
– decreases latency tail significantly

• Examples:
– MapReduce backup tasks (granularity: many seconds)
– various query serving systems (granularity: milliseconds)

Pattern: Multiple Smaller Units per Machine

• Problems:
– want to minimize recovery time when machine crashes
– want to do fine-grained load balancing

• Having each machine manage 1 unit of work is inflexible
– slow recovery: new replica must recover data that is O(machine

state) in size
– load balancing much harder

single
work

chunk

Machine

Pattern: Multiple Smaller Units per Machine

• Have each machine manage many smaller units of work/data
– typical: ~10-100 units/machine
– allows fine grained load balancing (shed or add one unit)
– fast recovery from failure (N machines each pick up 1 unit)

• Examples:
– map and reduce tasks, GFS chunks, Bigtable tablets, query

serving system index shards

C0 C1

C2C5
Machine

C9

C8

C17C6C11

Pattern: Elastic Systems

• Problem: Planning for exact peak load is hard
– overcapacity: wasted resources
– undercapacity: meltdown

• Design system to adapt:
– automatically shrink capacity during idle period
– automatically grow capacity as load grows

• Make system resilient to overload:
– do something reasonable even up to 2X planned capacity

• e.g. shrink size of index searched, back off to less CPU
intensive algorithms, drop spelling correction tips, etc.

– more aggressive load balancing when imbalance more severe

Pattern: Combine Multiple Implementations

• Example: Google web search system wants all of these:
– freshness (update documents in ~1 second)
– massive capacity (10000s of requests per second)
– high quality retrieval (lots of information about each document)
– massive size (billions of documents)

• Very difficult to accomplish in single implementation

• Partition problem into several subproblems with different
engineering tradeoffs. E.g.
– realtime system: few docs, ok to pay lots of $$$/doc
– base system: high # of docs, optimized for low $/doc
– realtime+base: high # of docs, fresh, low $/doc

Final Thoughts

Today: exciting collection of trends:
• large-scale datacenters +
• increasing scale and diversity of available data sets +
• proliferation of more powerful client devices

Many interesting opportunities:
– planetary scale distributed systems
– development of new CPU and data intensive services
– new tools and techniques for constructing such systems

• Fun and interesting times are ahead of us!

Thanks! Questions...?

Further reading:
• Ghemawat, Gobioff, & Leung. Google File System, SOSP 2003.

• Barroso, Dean, & Hölzle. Web Search for a Planet: The Google Cluster Architecture, IEEE Micro, 2003.

• Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.

• Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable: A Distributed
Storage System for Structured Data, OSDI 2006.

• Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Systems. OSDI 2006.

• Pinheiro, Weber, & Barroso. Failure Trends in a Large Disk Drive Population. FAST 2007.

• Brants, Popat, Xu, Och, & Dean. Large Language Models in Machine Translation, EMNLP 2007.

• Barroso & Hölzle. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Morgan & Claypool Synthesis Series on Computer Architecture, 2009.

• Malewicz et al. Pregel: A System for Large-Scale Graph Processing. PODC, 2009.

• Schroeder, Pinheiro, & Weber. DRAM Errors in the Wild: A Large-Scale Field Study. SEGMETRICS’09.

• Protocol Buffers. http://code.google.com/p/protobuf/

These and many more available at: http://labs.google.com/papers.html

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://labs.google.com/papers.html
http://labs.google.com/papers.html

