
Another Go at Language Design
Rob Pike

golang.org
April 28, 2010

http://golang.org
Wednesday, April 28, 2010

http://golang.org
http://golang.org

Who

Russ Cox
Robert Griesemer
Rob Pike
Ian Taylor
Ken Thompson

plus David Symonds, Nigel Tao, Andrew
Gerrand, Stephen Ma, and others,

plus many contributions from the open
source community.

Wednesday, April 28, 2010

Outline

1. History

2. A niche

3. Tour of Go

4. Status

Wednesday, April 28, 2010

Part 1

1. History

2. A niche

3. Tour of Go

4. Status

Wednesday, April 28, 2010

History

I'm always delighted by the light touch and stillness of
early programming languages. Not much text; a lot gets
done. Old programs read like quiet conversations
between a well-spoken research worker and a well-
studied mechanical colleague, not as a debate with a
compiler. Who'd have guessed sophistication bought
such noise?

-Dick Gabriel

Wednesday, April 28, 2010

Sophistication

If more than one function is selected, any function
template specializations in the set are eliminated if the
set also contains a non-template function, and any
given function template specialization F1 is eliminated if
the set contains a second function template
specialization whose function template is more
specialized than the function template of F1 according
to the partial ordering rules of 14.5.6.2. After such
eliminations, if any, there shall remain exactly one
selected function.
(C++0x, §13.4 [4])

Wednesday, April 28, 2010

Sophistication

Which Boost templated pointer type should I use?

- linked_ptr
- scoped_ptr
- shared_ptr
- smart_ptr
- weak_ptr
- intrusive_ptr
- exception_ptr

Wednesday, April 28, 2010

Noise

public static <I, O> ListenableFuture<O>
chain(ListenableFuture<I> input, Function<? super
I, ? extends ListenableFuture<? extends O>>
function) dear god make it stop
 - a recently observed chat status

foo::Foo *myFoo = new foo::Foo(foo::FOO_INIT)
 - but in the original Foo was a longer word

Wednesday, April 28, 2010

How did we get here?
A personal analysis:

1) C and Unix became dominant in research.

2) The desire for a higher-level language led to C++,
which grafted the Simula style of object-oriented
programming onto C. It was a poor fit but since it
compiled to C it brought high-level programming to Unix.

3) C++ became the language of choice in parts of industry
and in many research universities.

4) Java arose as a clearer, stripped-down C++.

5) By the late 1990s, a teaching language was needed that
seemed relevant, and Java was chosen.

Wednesday, April 28, 2010

Programming became too hard

These languages are hard to use.

They are subtle, intricate, and verbose.

Their standard model is oversold, and we respond with
add-on models such as "patterns".

(Norvig: patterns are a demonstration of weakness in a
language.)

Yet these languages are successful and vital.

Wednesday, April 28, 2010

A reaction
The inherent clumsiness of the main languages has caused
a reaction.

A number of successful simpler languages (Python, Ruby,
Lua, JavaScript, Erlang, ...) have become popular, in part as
a rejection of the standard languages.

Some beautiful and rigorous languages designed by
domain experts (Scala, Haskell, ...) have also arisen,
although they are not as widely adopted.

So despite the standard model, other approaches are
popular and there are signs of a growth in "outsider"
languages, a renaissance of language invention.

Wednesday, April 28, 2010

A confusion

The standard languages (Java, C++) are statically typed.

Most outsider languages (Ruby, Python, JavaScript) are
interpreted and dynamically typed.

Perhaps as a result, non-expert programmers have
confused "ease of use" with interpretation and dynamic
typing.

This confusion arose because of how we got here: grafting
an orthodoxy onto a language that couldn't support it
cleanly.

Wednesday, April 28, 2010

Part 2

1. History

2. A niche

3. Tour of Go

4. Status

Wednesday, April 28, 2010

The good

The standard languages are very strong: type-safe,
effective, efficient.

In the hands of experts, they are great.

Huge systems and huge companies are built on them.

In practice they work well for large scale programming:
big programs, many programmers.

Wednesday, April 28, 2010

The bad

The standard languages are hard to use.

Compilers are slow and fussy. Binaries are huge.

Effective work needs language-aware tools, distributed
compilation farms, ...

Many programmers prefer to avoid them.

The languages are at least 10 years old and poorly adapted
to the current computing environment: clouds of networked
multicore CPUs.

Wednesday, April 28, 2010

Flight to the suburbs

This is partly why Python et al. have become so popular:
They don't have much of the "bad".

- dynamically typed (fewer noisy keystrokes)
- interpreted (no compiler to wait for)
- good tools (interpreters make things easier)

But they also don't have the "good":
- slow
- not type-safe (static errors occur at runtime)
- very poor at scale

And they're also not very modern.

Wednesday, April 28, 2010

A niche

There is a niche to be filled: a language that has the good,
avoids the bad, and is suitable to modern computing
infrastructure:

- comprehensible
- statically typed
- light on the page
- fast to work in
- scales well
- doesn't require tools, but supports them well
- good at networking and multiprocessing

Wednesday, April 28, 2010

Part 3

1. History

2. A niche

3. Tour of Go

4. Status

Wednesday, April 28, 2010

The target

Go aims to combine the safety and performance of a
statically typed compiled language with the expressiveness
and convenience of a dynamically typed interpreted
language.

It also aims to be suitable for modern systems
programming.

Wednesday, April 28, 2010

Hello, world 2.0
Serving http://localhost:8080/world:
package main
import (
 "fmt"
 "http"
)

func handler(c *http.Conn, r *http.Request) {
 fmt.Fprintf(c, "Hello, %s.", r.URL.Path[1:])
}

func main() {
 http.ListenAndServe(":8080",
 http.HandlerFunc(handler))
}

Wednesday, April 28, 2010

How does Go fill the niche?
Fast compilation

Expressive type system

Concurrency

Garbage collection

Systems programming capabilities

Clarity and orthogonality

Wednesday, April 28, 2010

Compilation demo

Wednesday, April 28, 2010

Why so fast?
New clean compiler worth ~5X compared to gcc.

We want a millionX for large programs, so we need to fix
the dependency problem.

In Go, programs compile into packages and each compiled
package file imports transitive dependency info.

If A.go depends on B.go depends on C.go:
- compile C.go, B.go, then A.go.
- to compile A.go, compiler reads B.o but not C.o.

At scale, this can be a huge speedup.

Wednesday, April 28, 2010

Trim the tree
Large C++ programs (Firefox, OpenOffice, Chromium) have
huge build times. On a Mac (OS X 10.5.7, gcc 4.0.1):

- C: #include <stdio.h>
reads 360 lines from 9 files

- C++: #include <iostream>
reads 25,326 lines from 131 files

- Objective-C: #include <Cocoa/Cocoa.h>
reads 112,047 lines from 689 files

But we haven't done any real work yet!

In Go, import "fmt" reads one file:
195 lines summarizing 6 dependent packages.

As we scale, the improvement becomes exponential.

Wednesday, April 28, 2010

Expressive type system
Go is an object-oriented language, but unusually so.

There is no such thing as a class.

There is no subclassing.

Any types, even basic types such as integers and strings,
can have methods.

Objects implicitly satisfy interfaces, which are just sets of
methods.

Wednesday, April 28, 2010

Any named type can have methods
type Day int

var dayName = []string{"Sunday", "Monday"} // and so on

func (d Day) String() string {
 if 0 <= d && int(d) < len(dayName) { return dayName[d] }
 return "NoSuchDay"
}

type Fahrenheit float

func (t Fahrenheit) String() string {
 return fmt.Sprintf("%.1f°F", t)
}

Note that these methods do not take a pointer (although
they could).
This is not the same notion as Java's Integer type: it's
really an int (float). There is no box.

Wednesday, April 28, 2010

Interfaces
type Stringer interface {
 String() string
}

func print(args ...Stringer) {
 for i, s := range args {
 if i > 0 { os.Stdout.WriteString(" ") }
 os.Stdout.WriteString(s.String())
 }
}

print(Day(1), Fahrenheit(72.29))
 => Monday 72.3°F

Again, these methods do not take a pointer, although
another type might define a String() method that does,
and it too would satisfy Stringer.

Wednesday, April 28, 2010

Empty Interface
The empty interface (interface {}) has no methods. Every
type satisfies the empty interface.

func print(args ...interface{}) {
 for i, arg := range args {
 if i > 0 { os.Stdout.WriteString(" ") }
 switch a := arg.(type) { // "type switch"
 case Stringer: os.Stdout.WriteString(a.String())
 case int: os.Stdout.WriteString(itoa(a))
 case string: os.Stdout.WriteString(a)
 // more types can be used
 default: os.Stdout.WriteString("????")
 }
 }
}

print(Day(1), "was", Fahrenheit(72.29))
 => Monday was 72.3°F

Wednesday, April 28, 2010

Small and implicit

Fahrenheit and Day satisfied Stringer implicitly; other
types might too. A type satisfies an interface simply by
implementing its methods. There is no "implements"
declaration; interfaces are satisfied implicitly.

It's a form of duck typing, but (usually) checkable at compile
time.

An object can (and usually does) satisfy many interfaces
simultaneously. For instance, Fahrenheit and Day satisfy
Stringer and also the empty interface.

In Go, interfaces are usually small: one or two or even zero
methods.

Wednesday, April 28, 2010

Reader
type Reader interface {
 Read(p []byte) (n int, err os.Error)
}
// And similarly for Writer

Anything with a Read method implements Reader.
 - Sources: files, buffers, network connections, pipes
 - Filters: buffers, checksums, decompressors, decrypters

JPEG decoder takes a Reader, so it can decode from disk,
network, gzipped HTTP,
Buffering just wraps a Reader:
 var bufferedInput Reader = bufio.NewReader(os.Stdin)

Fprintf uses a Writer:
 func Fprintf(w Writer, fmt string, a ...interface{})

Wednesday, April 28, 2010

Interfaces can be retrofitted
Had an existing RPC implementation that used custom wire
format. Changed to an interface:
type Encoding interface {
 ReadRequestHeader(*Request) os.Error
 ReadRequestBody(interface{}) os.Error
 WriteResponse(*Response, interface{}) os.Error
 Close() os.Error
}

Two functions (send, recv) changed signature. Before:
 func sendResponse(sending *sync.Mutex, req *Request,
 reply interface{}, enc *gob.Encoder, errmsg string)

After (and similarly for receiving):
 func sendResponse(sending *sync.Mutex, req *Request,
 reply interface{}, enc Encoding, errmsg string)

That is almost the whole change to the RPC implementation.

Wednesday, April 28, 2010

Post facto abstraction
We saw an opportunity: RPC needed only Encode and
Decode methods. Put those in an interface and you've
abstracted the codec.
Total time: 20 minutes, including writing and testing the
JSON implementation of the interface.
(We also wrote a trivial wrapper to adapt the existing codec
for the new rpc.Encoding interface.)

In Java, RPC would be refactored into a half-abstract class,
subclassed to create JsonRPC and StandardRPC.

In Go, there is no need to manage a type hierarchy: just
pass in an encoding interface stub (and nothing else).

Wednesday, April 28, 2010

Concurrency
Systems software must often manage connections and
clients.

Go provides independently executing goroutines that
communicate and synchronize using channels.

Analogy with Unix: processes connected by pipes. But in Go
things are fully typed and lighter weight.

Wednesday, April 28, 2010

Goroutines
Start a new flow of control with the go keyword.
Parallel computation is easy:

func main() {
 go expensiveComputation(x, y, z)
 anotherExpensiveComputation(a, b, c)
}

Roughly speaking, a goroutine is like a thread, but lighter
weight:

- stacks are small, segmented, sized on demand
- goroutines are muxed by demand onto true threads
- requires support from language, compiler, runtime

- can't just be a C++ library

Wednesday, April 28, 2010

Thread per connection
Doesn't scale in practice, so in most languages we use
event-driven callbacks and continuations.

But in Go, a goroutine per connection model scales well.

for {
 rw := socket.Accept()
 conn := newConn(rw, handler)
 go conn.serve()
}

Wednesday, April 28, 2010

Channels
Our trivial parallel program again:

func main() {
 go expensiveComputation(x, y, z)
 anotherExpensiveComputation(a, b, c)
}

Need to know when the computations are done.
Need to know the result.

A Go channel provides the capability: a typed synchronous
communications mechanism.

Wednesday, April 28, 2010

Channels
Goroutines communicate using channels.

func computeAndSend(x, y, z int) chan int {
 ch := make(chan int)
 go func() {
 ch <- expensiveComputation(x, y, z)
 }()
 return ch
}

func main() {
 ch := computeAndSend(x, y, z)
 v2 := anotherExpensiveComputation(a, b, c)
 v1 := <-ch
 fmt.Println(v1, v2)
}

Wednesday, April 28, 2010

A worker pool
Traditional approach (C++, etc.) is to communicate by
sharing memory:

- shared data structures protected by mutexes

Server would use shared memory to apportion work:

type Work struct {
 x, y, z int
 assigned, done bool
}

type WorkSet struct {
 mu sync.Mutex
 work []*Work
}

But not in Go.

Wednesday, April 28, 2010

Share memory by communicating
In Go, you reverse the equation.

- channels use the <- operator to synchronize and
 communicate

Typically don't need or want mutexes.

type Work struct { x, y, z int }
func worker(in <-chan *Work, out chan <- *Work) {
 for w := range in {
 w.z = w.x * w.y
 out <- w
 }
}
func main() {
 in, out := make(chan *Work), make(chan *Work)
 for i := 0; i < 10; i++ { go worker(in, out) }
 go sendLotsOfWork(in)
 receiveLotsOfResults(out)
}

Wednesday, April 28, 2010

Garbage collection
Automatic memory management simplifies life.

GC is critical for concurrent programming; otherwise it's
too fussy and error-prone to track ownership as data
moves around.

GC also clarifies design. A large part of the design of C
and C++ libraries is about deciding who owns memory,
who destroys resources.

But garbage collection isn't enough.

Wednesday, April 28, 2010

Memory safety
Memory in Go is intrinsically safer:

- pointers but no pointer arithmetic
- no dangling pointers (locals move to heap as needed)
- no pointer-to-integer conversions*
- all variables are zero-initialized
- all indexing is bounds-checked

Should have far fewer buffer overflow exploits.

* Package unsafe allows this but labels the code as dangerous; used mainly in
some low-level libraries.

Wednesday, April 28, 2010

Systems language
By systems language, we mean suitable for writing systems
software.

- web servers
- web browsers
- web crawlers
- search indexers
- databases
- compilers
- programming tools (debuggers, analyzers, ...)
- IDEs
- operating systems (maybe)
...

Wednesday, April 28, 2010

Systems programming
From http://loadcode.blogspot.com/2009/12/go-vs-java.html

"[Git] is known to be very fast. It is written in C. A Java
version JGit was made. It was considerably slower. Handling
of memory and lack of unsigned types [were] some of the
important reasons."

Shawn O. Pearce wrote on the git mailing list:

"JGit struggles with not having an efficient way to represent
a SHA-1. C can just say "unsigned char[20]" and have it
inline into the container's memory allocation. A byte[20] in
Java will cost an *additional* 16 bytes of memory, and be
slower to access because the bytes themselves are in a
different area of memory from the container object."

Wednesday, April 28, 2010

Control of bits and memory
Like C, Go has

- full set of unsigned types
- bit-level operations
- programmer control of memory layout
type T struct {
 x int
 buf [20]byte
 ...
}

- pointers to inner values
p := &t.buf

Wednesday, April 28, 2010

Simplicity and clarity
Go's design aims for being easy to use, which means it must
be easy to understand, even if that sometimes contradicts
superficial ease of use.

Some examples:

No implicit numeric conversions, although the way
constants work ameliorates the inconvenience. (Next slide.)

No method overloading. For a given type, there is only one
method with that name.

There is no "public" or "private" label. Instead, items with
UpperCaseNames are visible to clients; lowerCaseNames are
not.

Wednesday, April 28, 2010

Constants
Numeric constants are "ideal numbers": no size or signed/
unsigned distinction, hence no L or U or UL endings.
077 // octal
0xFEEDBEEEEEEEEEEEEEEEEEEEEF // hexadecimal
1 << 100

Syntax of literal determines default type:
1.234e5 // float
1e2	 // float
100	 // int

But they are just numbers that can be used at will and
assigned to variables with no conversions necessary.

seconds := time.Nanoseconds()/1e9 // result has integer type

Wednesday, April 28, 2010

High precision constants
Arithmetic with constants is high precision. Only when
assigned to a variable are they rounded or truncated to fit.

const MaxUint = 1<<32 - 1
const Ln2 = 0.6931471805599453094172321214581\
 76568075500134360255254120680009
const Log2E = 1/Ln2 // accurate reciprocal
var x float64 = Log2E // rounded to nearest float64 value

The value assigned to x will be as precise as possible in a
64-bit float.

Wednesday, April 28, 2010

And more
There are other aspects of Go that make it easy and
expressive yet scalable and efficient:
- clear package structure
- initialization

- clear rules about how a program begins execution
- top-level initializing functions and values

- composite values
var freq = map[string]float{"C4":261.626, "A4":440} // etc.

- tagged values
var s = Point{x:27, y:-13.2}

- function literals and closures
go func() { for { c1 <- <-c2 } }()

- reflection
- and more....
Plus automatic document generation and formatting.

Wednesday, April 28, 2010

Go is different
Go is object-oriented not type-oriented

– inheritance is not primary
– methods on any type, but no classes or subclasses

Go is (mostly) implicit not explicit
– types are inferred not declared
– objects have interfaces but they are derived, not

specified
Go is concurrent not parallel

– intended for program structure, not max performance
– but still can keep all the cores humming nicely
– ... and many programs are more nicely expressed with

concurrent ideas even if not parallel at all

Wednesday, April 28, 2010

Part 4

1. History

2. A niche

3. Tour of Go

4. Status

Wednesday, April 28, 2010

Implementation
The language is designed and usable. Two compiler suites:
Gc, written in C, generates OK code very quickly.

- unusual design based on the Plan 9 compiler suite
Gccgo, written in C++, generates good code more slowly

- uses GCC's code generator and tools

Libraries good and growing, but some pieces are still
preliminary.

Garbage collector works fine (simple mark and sweep) but is
being rewritten for more concurrency, less latency.

Available for Linux etc., Mac OS X. Windows port underway.

All available as open source; see http://golang.org.

Wednesday, April 28, 2010

Acceptance
Go was the 2009 TIOBE "Language of the year" two months
after it was released.

Wednesday, April 28, 2010

Testimonials
"I have reimplemented a networking project from Scala to
Go. Scala code is 6000 lines. Go is about 3000.
Even though Go does not have the power of abbreviation,
the flexible type system seems to out-run Scala when
the programs start getting longer.
Hence, Go produces much shorter code asymptotically."
- Petar Maymounkov

"Go is unique because of the set of things it does well. It has
areas for improvement, but for my needs it is the best
match I've found when compared to: C, C++, Erlang,
Python, Ruby, C#, D, Java, and Scala."
- Hans Stimer

Wednesday, April 28, 2010

Utility
For those on the team, it's the main day-to-day language
now. It has rough spots but mostly in the libraries, which
are improving fast.

Productivity seems much higher. (I get behind on mail much
more often.) Most builds take a fraction of a second.

Starting to be used inside Google for some production work.

We haven't built truly large software in Go yet, but all
indicators are positive.

Wednesday, April 28, 2010

Try it out

This is a true open source project.

Full source, documentation and much more at

http://golang.org

Wednesday, April 28, 2010

Another Go at Language Design
Rob Pike

golang.org
April 28, 2010

http://golang.org
Wednesday, April 28, 2010

http://golang.org
http://golang.org

