
SIMD ProgrammingSIMD Programming
 with Larrabeewith Larrabee

Tom Forsyth

Larrabee Architect

What lies aheadWhat lies ahead

The Larrabee architectureThe Larrabee architecture

Larrabee New InstructionsLarrabee New Instructions

Writing efficient code for LarrabeeWriting efficient code for Larrabee

The rendering pipelineThe rendering pipeline

3

DRAM DRAM

 CONCEPTUAL MODEL ONLY! Actual numbers of cores, texture
units, memory controllers, etc will vary – a lot. Also, structure
of ring & placement of devices on ring is more complex than
shown

Overview of a Larrabee chipOverview of a Larrabee chip

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD DD

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD DD DD

In Order
4 Threads
SIMD-16

II DD

In Order
4 Threads
SIMD-16

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD

In Order
4 Threads
SIMD-16

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD

In Order
4 Threads
SIMD-16

4MB L24MB L2

T
ex

tu
re

S
am

p
le

r

M
em

o
ry

 C
o
n
tr

o
lle

r

M
em

o
ry

 C
o
n
tr

o
lle

r

T
ex

tu
re

S
am

p
le

r

T
ex

tu
re

S
am

p
le

r
T
ex

tu
re

S
am

p
le

r

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD DD

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD DD DD

In Order
4 Threads
SIMD-16

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD DD DD

In Order
4 Threads
SIMD-16

II DD

In Order
4 Threads
SIMD-16

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD

In Order
4 Threads
SIMD-16

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD

In Order
4 Threads
SIMD-16

II II

In Order
4 Threads
SIMD-16

II

In Order
4 Threads
SIMD-16

DD DD DD

In Order
4 Threads
SIMD-16

4MB L24MB L2

T
ex

tu
re

S
am

p
le

r
T
ex

tu
re

S
am

p
le

r

M
em

o
ry

 C
o
n
tr

o
lle

r

M
em

o
ry

 C
o
n
tr

o
lle

r

T
ex

tu
re

S
am

p
le

r
T
ex

tu
re

S
am

p
le

r

T
ex

tu
re

S
am

p
le

r
T
ex

tu
re

S
am

p
le

r
T
ex

tu
re

S
am

p
le

r
T
ex

tu
re

S
am

p
le

r

4

One Larrabee coreOne Larrabee core

Larrabee based on x86 ISALarrabee based on x86 ISA
All of the left “scalar” halfAll of the left “scalar” half
Four threads per coreFour threads per core
No surprises, except that there’s No surprises, except that there’s

LOTS of cores and threadsLOTS of cores and threads

New right-hand vector unitNew right-hand vector unit
Larrabee New InstructionsLarrabee New Instructions
512-bit SIMD vector unit512-bit SIMD vector unit
32 vector registers32 vector registers
Pipelined one-per-clock throughputPipelined one-per-clock throughput
Dual issue with scalar instructionsDual issue with scalar instructions

Scalar
Registers

Vector
Registers

256K L2 Cache
Local Subset

L1 I-cache & D-cache

Vector
Unit

5

Larrabee “old” InstructionsLarrabee “old” Instructions

The x86 you already knowThe x86 you already know
Core originally based on Pentium 1Core originally based on Pentium 1
Upgraded to 64-bitUpgraded to 64-bit
Full cache coherency preservedFull cache coherency preserved
x86 memory ordering preservedx86 memory ordering preserved
Predictable in-order pipeline modelPredictable in-order pipeline model

4 threads per core4 threads per core
Fully independent “hyperthreads” – no shared stateFully independent “hyperthreads” – no shared state
Typically run closely ganged to improve cache usageTypically run closely ganged to improve cache usage
Help to hide instruction & L1$-miss latencyHelp to hide instruction & L1$-miss latency

No surprises – “just works”No surprises – “just works”
““microOS” with pthreads, IO, pre-emptive multitasking, etcmicroOS” with pthreads, IO, pre-emptive multitasking, etc
Compile and run any existing code in any languageCompile and run any existing code in any language

6

Larrabee New InstructionsLarrabee New Instructions

512-bit SIMD512-bit SIMD
int32, float32, float64 ALU supportint32, float32, float64 ALU support
Today’s talk focussed on the 16-wide float32 operationsToday’s talk focussed on the 16-wide float32 operations

Ternary, multiply-addTernary, multiply-add
Ternary = non-destructive ops = fewer register copiesTernary = non-destructive ops = fewer register copies
Multiply-add = more flops in fewer opsMultiply-add = more flops in fewer ops

Load-opLoad-op
Third operand can be taken direct from memory at no costThird operand can be taken direct from memory at no cost
Reduces register pressure and latencyReduces register pressure and latency

7

Larrabee New InstructionsLarrabee New Instructions

Broadcast/swizzleBroadcast/swizzle
Scalar->SIMD data broadcasts (e.g. constants, scales)Scalar->SIMD data broadcasts (e.g. constants, scales)
Crossing of SIMD lanes (e.g. derivatives, horizontal ops)Crossing of SIMD lanes (e.g. derivatives, horizontal ops)

Format conversionFormat conversion
Small formats allow efficient use of caches & bandwidthSmall formats allow efficient use of caches & bandwidth
Free common integer formats int8, int16Free common integer formats int8, int16
Free common graphics formats float16, unorm8Free common graphics formats float16, unorm8
Built-in support for other graphics formats (e.g. 11:11:10)Built-in support for other graphics formats (e.g. 11:11:10)

Predication and gather/scatterPredication and gather/scatter
Makes for a “complete” vector ISAMakes for a “complete” vector ISA
A lot more on these in a bitA lot more on these in a bit

8

Larrabee New InstructionsLarrabee New Instructions

Designed for softwareDesigned for software
Not always the simplest hardwareNot always the simplest hardware
Compiler & code scheduler written during the designCompiler & code scheduler written during the design
Anything the compiler couldn’t grok got fixed or killedAnything the compiler couldn’t grok got fixed or killed

Very few special casesVery few special cases
Compilers don’t cope well with special casesCompilers don’t cope well with special cases
e.g. no hard-wiring of register sourcese.g. no hard-wiring of register sources
Most features work the same in all instructionsMost features work the same in all instructions

Targeted at graphicsTargeted at graphics
Surprisingly, ended up with <10% graphics-specific stuffSurprisingly, ended up with <10% graphics-specific stuff
DX/OGL format supportDX/OGL format support
Rasterizer-specific instructionsRasterizer-specific instructions

9

16 wide SIMD – SOA vs AOS16 wide SIMD – SOA vs AOS

x y z x y z x y z x y z

x y z x y z x y z x y z

x y z x y z x y z x y z

x x x x x x x x x x x

y y y y y y y y y y y

z z z z z z z z z z z

Array of StructuresArray of Structures Structure of ArraysStructure of Arrays

10

Simple SOA exampleSimple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);

++xx+=+= DE ()
First step is to “scalarize” the codeFirst step is to “scalarize” the code

Turn vector notation into scalarsTurn vector notation into scalars
Remember that each “scalar” op is doing 16 things at onceRemember that each “scalar” op is doing 16 things at once

11

Simple SOA exampleSimple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;// temp = a.xyz + b.xyz;

vec3 temp;vec3 temp;

temp.x = a.x + b.x;temp.x = a.x + b.x;

temp.y = a.y + b.y;temp.y = a.y + b.y;

temp.z = a.z + b.z;temp.z = a.z + b.z;

A vec3 add turns into 3 A vec3 add turns into 3
scalar addsscalar adds

12

Simple SOA exampleSimple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;// temp = a.xyz + b.xyz;

vec3 temp;vec3 temp;

temp.x = a.x + b.x;temp.x = a.x + b.x;

temp.y = a.y + b.y;temp.y = a.y + b.y;

temp.z = a.z + b.z;temp.z = a.z + b.z;

// t = dot(c.xyz, temp.xyz);// t = dot(c.xyz, temp.xyz);

float t = temp.x * c.x;float t = temp.x * c.x;

t += temp.y * c.y;t += temp.y * c.y;

t += temp.z * c.z;t += temp.z * c.z;

Note how the dot-product,
which is complex in AOS
code and requires horizontal
adds or lane-shuffling,
becomes easy in SOA code.

13

Simple SOA exampleSimple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;// temp = a.xyz + b.xyz;

vec3 temp;vec3 temp;

temp.x = a.x + b.x;temp.x = a.x + b.x;

temp.y = a.y + b.y;temp.y = a.y + b.y;

temp.z = a.z + b.z;temp.z = a.z + b.z;

// t = dot(c.xyz, temp.xyz);// t = dot(c.xyz, temp.xyz);

float t = temp.x * c.x;float t = temp.x * c.x;

t += temp.y * c.y;t += temp.y * c.y;

t += temp.z * c.z;t += temp.z * c.z;

e += d * t;e += d * t; Scalar operations stay scalar with
no loss of efficiency in SOA

14

Now turn into LRBNI instructionsNow turn into LRBNI instructions

e += d * dot(c.xyz, a.xyz + b.xyz);e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;// temp = a.xyz + b.xyz;

vec3 temp;vec3 temp;

temp.x = a.x + b.x;temp.x = a.x + b.x;

temp.y = a.y + b.y;temp.y = a.y + b.y;

temp.z = a.z + b.z;temp.z = a.z + b.z;

// t = dot(c.xyz, temp.xyz);// t = dot(c.xyz, temp.xyz);

float t = temp.x * c.x;float t = temp.x * c.x;

t += temp.y * c.y;t += temp.y * c.y;

t += temp.z * c.z;t += temp.z * c.z;

e += d * t;e += d * t;

15

Now turn into LRBNI instructionsNow turn into LRBNI instructions

e += d * dot(c.xyz, a.xyz + b.xyz);e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;// temp = a.xyz + b.xyz;

vec3 temp;vec3 temp;

temp.x = a.x + b.x;temp.x = a.x + b.x;

temp.y = a.y + b.y;temp.y = a.y + b.y;

temp.z = a.z + b.z;temp.z = a.z + b.z;

// t = dot(c.xyz, temp.xyz);// t = dot(c.xyz, temp.xyz);

float t = temp.x * c.x;float t = temp.x * c.x;

t += temp.y * c.y;t += temp.y * c.y;

t += temp.z * c.z;t += temp.z * c.z;

e += d * t;e += d * t;

vaddps v20, v0, v3vaddps v20, v0, v3

vaddps v21, v1, v4vaddps v21, v1, v4

vaddps v22, v2, v5vaddps v22, v2, v5

vmulps v23, v20, v6vmulps v23, v20, v6

vmaddps v23, v21, v7vmaddps v23, v21, v7

vmaddps v23, v22, v8vmaddps v23, v22, v8

vmaddps v10, v9, v23vmaddps v10, v9, v23

16

... use names instead of numbers... use names instead of numbers

e += d * dot(c.xyz, a.xyz + b.xyz);e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;// temp = a.xyz + b.xyz;

vec3 temp;vec3 temp;

temp.x = a.x + b.x;temp.x = a.x + b.x;

temp.y = a.y + b.y;temp.y = a.y + b.y;

temp.z = a.z + b.z;temp.z = a.z + b.z;

// t = dot(c.xyz, temp.xyz);// t = dot(c.xyz, temp.xyz);

float t = temp.x * c.x;float t = temp.x * c.x;

t += temp.y * c.y;t += temp.y * c.y;

t += temp.z * c.z;t += temp.z * c.z;

e += d * t;e += d * t;

vaddps vTempx, vAx, vBxvaddps vTempx, vAx, vBx

vaddps vTempy, vAy, vByvaddps vTempy, vAy, vBy

vaddps vTempz, vAz, vBzvaddps vTempz, vAz, vBz

vmulps vT, vTempx, vCxvmulps vT, vTempx, vCx

vmaddps vT, vTempy, vCyvmaddps vT, vTempy, vCy

vmaddps vT, vTempz, vCzvmaddps vT, vTempz, vCz

vmaddps vE, vD, vTvmaddps vE, vD, vT

17

8 16-bit registers k0-k78 16-bit registers k0-k7

Every instruction can take a maskEvery instruction can take a mask
k0 has limited use – encoding often means “no mask”k0 has limited use – encoding often means “no mask”

Act as write masks – bit=0 preserves destAct as write masks – bit=0 preserves dest

 vaddps v1{k6}, v2, v3vaddps v1{k6}, v2, v3

Bits in k6 enable/disable writes to v1Bits in k6 enable/disable writes to v1
Preserves existing register contents in bit=0 lanesPreserves existing register contents in bit=0 lanes
Usually also disables individual ALU lanes to save powerUsually also disables individual ALU lanes to save power

Memory stores also take a write maskMemory stores also take a write mask
Preserves existing values in memoryPreserves existing values in memory

PredicationPredication

25

18

PredicationPredication

Predication allows per-lane conditional flowPredication allows per-lane conditional flow

Vector compare does 16 parallel comparesVector compare does 16 parallel compares
Writes results into a write maskWrites results into a write mask
Mask can be used to protect some of the 16 elements from Mask can be used to protect some of the 16 elements from

being changed by instructionsbeing changed by instructions

Simple predication example:Simple predication example:
;if (v5<v6) {v1 += v3;};if (v5<v6) {v1 += v3;}
vcmppi_lt k7, v5, v6vcmppi_lt k7, v5, v6
vaddpi v1{k7}, v1, v3vaddpi v1{k7}, v1, v3

19

PredicationPredication

;if (v5<v6) {v1 += v3;};if (v5<v6) {v1 += v3;}

v5 = v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 10 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1
v6 = v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 09 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0
vcmppi_lt k7, v5, v6vcmppi_lt k7, v5, v6

20

PredicationPredication

;if (v5<v6) {v1 += v3;};if (v5<v6) {v1 += v3;}

v5 = v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 10 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1
v6 = v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 09 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0
vcmppi_lt k7, v5, v6vcmppi_lt k7, v5, v6
k7 = k7 = 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0

21

PredicationPredication

;if (v5<v6) {v1 += v3;};if (v5<v6) {v1 += v3;}

v5 =v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 10 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1
v6 =v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 09 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0
vcmppi_lt k7, v5, v6vcmppi_lt k7, v5, v6
k7 = k7 = 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0

v3 =v3 = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 85 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
v1 =v1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vaddpi v1{k7}, v1, v3vaddpi v1{k7}, v1, v3

22

PredicationPredication

;if (v5<v6) {v1 += v3;};if (v5<v6) {v1 += v3;}

v5 = v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 10 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1
v6 = v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 09 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0
vcmppi_lt k7, v5, v6vcmppi_lt k7, v5, v6
k7 = k7 = 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0

v3 = v3 = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 85 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
v1 = v1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vaddpi v1{k7}, v1, v3vaddpi v1{k7}, v1, v3
v1 = v1 = 6 1 8 1 1 1 8 9 1 1 1 1 6 1 8 16 1 8 1 1 1 8 9 1 1 1 1 6 1 8 1

Existing values are preserved in disabled lanesExisting values are preserved in disabled lanes

23

; {e+=d*dot(c.xyz,a.xyz+b.xyz);}; {e+=d*dot(c.xyz,a.xyz+b.xyz);}

vaddps vTempx, vAx, vBxvaddps vTempx, vAx, vBx

vaddps vTempy, vAy, vByvaddps vTempy, vAy, vBy

vaddps vTempz, vAz, vBzvaddps vTempz, vAz, vBz

vmulps vT, vTempx, vCxvmulps vT, vTempx, vCx

vmaddps vT, vTempy, vCyvmaddps vT, vTempy, vCy

vmaddps vT, vTempz, vCzvmaddps vT, vTempz, vCz

vmaddps vE, vD, vTvmaddps vE, vD, vT

Predication - functionalPredication - functional

……same dot-product SOA same dot-product SOA
example code as before…example code as before…

24

;if (d > 0);if (d > 0)

; {e+=d*dot(c.xyz,a.xyz+b.xyz);}; {e+=d*dot(c.xyz,a.xyz+b.xyz);}

vaddps vTempx, vAx, vBxvaddps vTempx, vAx, vBx

vaddps vTempy, vAy, vByvaddps vTempy, vAy, vBy

vaddps vTempz, vAz, vBzvaddps vTempz, vAz, vBz

vmulps vT, vTempx, vCxvmulps vT, vTempx, vCx

vmaddps vT, vTempy, vCyvmaddps vT, vTempy, vCy

vmaddps vT, vTempz, vCzvmaddps vT, vTempz, vCz

vcmpps_gt kT, vD, [ConstZero]{1to16}vcmpps_gt kT, vD, [ConstZero]{1to16}

vmaddps vE{kT}, vD, vTvmaddps vE{kT}, vD, vT

;if (d > 0);if (d > 0)

Predication - functionalPredication - functional
Add a conditional clauseAdd a conditional clause

Use load-op and broadcast Use load-op and broadcast
to do a vector compare to do a vector compare
against a constant zero in against a constant zero in
memory.memory.

Predicate the multiply-add.Predicate the multiply-add.

25

Predication – early-out branchesPredication – early-out branches

Move the compare earlier...Move the compare earlier...

Sets the Z flag if kT is all-0Sets the Z flag if kT is all-0

Early-out branchEarly-out branch

All this code is completely All this code is completely
skipped if all 16 values of d skipped if all 16 values of d
are <=0.are <=0.

If only some lanes are zero, If only some lanes are zero,
we run the code, but we we run the code, but we
still get the correct answers still get the correct answers
because of predication.because of predication.

;if (d > 0);if (d > 0)

; {e+=d*dot(c.xyz,a.xyz+b.xyz)}; {e+=d*dot(c.xyz,a.xyz+b.xyz)}

vcmpps_gt kT, vD, [ConstZero]{1to16}vcmpps_gt kT, vD, [ConstZero]{1to16}

kortest kT, kTkortest kT, kT

jz skip_all_thisjz skip_all_this

vaddps vTempx, vAx, vBxvaddps vTempx, vAx, vBx

vaddps vTempy, vAy, vByvaddps vTempy, vAy, vBy

vaddps vTempz, vAz, vBzvaddps vTempz, vAz, vBz

vmulps vT, vTempx, vCxvmulps vT, vTempx, vCx

vmaddps vT, vTempy, vCyvmaddps vT, vTempy, vCy

vmaddps vT, vTempz, vCzvmaddps vT, vTempz, vCz

vmaddps vE{kT}, vD, vTvmaddps vE{kT}, vD, vT

skip_all_this:skip_all_this:

26

Predication – power-efficientPredication – power-efficient

...and we now add ...and we now add
predication to all these predication to all these
instructions, not just the instructions, not just the
final one, which saves final one, which saves
power by not computing power by not computing
results for lanes you won’t results for lanes you won’t
use.use.

;if (d > 0);if (d > 0)

; {e+=d*dot(c.xyz,a.xyz+b.xyz)}; {e+=d*dot(c.xyz,a.xyz+b.xyz)}

vcmpps_gt kT, vD, [ConstZero]{1to16}vcmpps_gt kT, vD, [ConstZero]{1to16}

kortest kT, kTkortest kT, kT

jz skip_all_thisjz skip_all_this

vaddps vTempx{kT}, vAx, vBxvaddps vTempx{kT}, vAx, vBx

vaddps vTempy{kT}, vAy, vByvaddps vTempy{kT}, vAy, vBy

vaddps vTempz{kT}, vAz, vBzvaddps vTempz{kT}, vAz, vBz

vmulps vT{kT}, vTempx, vCxvmulps vT{kT}, vTempx, vCx

vmaddps vT{kT}, vTempy, vCyvmaddps vT{kT}, vTempy, vCy

vmaddps vT{kT}, vTempz, vCzvmaddps vT{kT}, vTempz, vCz

vmaddps vE{kT}, vD, vTvmaddps vE{kT}, vD, vT

skip_all_this:skip_all_this:

27

Predication - loopsPredication - loops

There is still a standard x86 loopThere is still a standard x86 loop
A label and a conditional jumpA label and a conditional jump

A mask stores which lanes are still runningA mask stores which lanes are still running
The mask predicates all operations inside the loopThe mask predicates all operations inside the loop
Predicated lanes remain unchangedPredicated lanes remain unchanged

Do the end-of-loop condition once per laneDo the end-of-loop condition once per lane
If a lane hits its end-of-loop, it clears the mask bitIf a lane hits its end-of-loop, it clears the mask bit
That lane is now stopped – running more loops does not That lane is now stopped – running more loops does not

affect its resultsaffect its results

When all lanes have finished, stop the loopWhen all lanes have finished, stop the loop
Keep looping until the mask register is all-0Keep looping until the mask register is all-0

28

Predication - loopsPredication - loops

Vector compare can take a starting maskVector compare can take a starting mask
Bits that are already zero will stay zeroBits that are already zero will stay zero

; y=1; while(x>0){ y+=y; x--; };; y=1; while(x>0){ y+=y; x--; };

29

Predication - loopsPredication - loops

Vector compare can take a starting maskVector compare can take a starting mask
Bits that are already zero will stay zeroBits that are already zero will stay zero

; y=1; while(x>0){ y+=y; x--; };; y=1; while(x>0){ y+=y; x--; };

vloadpi vY, [ConstOne]{1to16}vloadpi vY, [ConstOne]{1to16}

loop:loop:

vaddpi vY , vY, vYvaddpi vY , vY, vY

vsubpi vX , vX, [ConstOne]{1to16}vsubpi vX , vX, [ConstOne]{1to16}

j?? loopj?? loop

y=1;y=1;

y = y + y;y = y + y;

x = x - 1;x = x - 1;

30

Predication - loopsPredication - loops

Vector compare can take a starting maskVector compare can take a starting mask
Bits that are already zero will stay zeroBits that are already zero will stay zero

; y=1; while(x>0){ y+=y; x--; };; y=1; while(x>0){ y+=y; x--; };

kxnor kL, kLkxnor kL, kL

vloadpi vY, [ConstOne]{1to16}vloadpi vY, [ConstOne]{1to16}

loop:loop:

vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}

vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}

kortest kL, kLkortest kL, kL

jnz loopjnz loop

Sets the loop mask to all-1sSets the loop mask to all-1s

x>0?x>0?

while(any x>0)while(any x>0)

31

Predication – iteration 1Predication – iteration 1

kL =kL = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vY =vY = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vX =vX = 3 0 1 2 5 4 2 1 0 2 3 1 3 5 2 43 0 1 2 5 4 2 1 0 2 3 1 3 5 2 4

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 11 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1

32

kL =kL = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vY =vY = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vX =vX = 3 0 1 2 5 4 2 1 0 2 3 1 3 5 2 43 0 1 2 5 4 2 1 0 2 3 1 3 5 2 4

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 11 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
vY = vY = 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 22 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2

Predication – iteration 1Predication – iteration 1

33

kL =kL = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vY =vY = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vX =vX = 3 0 1 2 5 4 2 1 0 2 3 1 3 5 2 43 0 1 2 5 4 2 1 0 2 3 1 3 5 2 4

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 11 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
vY = vY = 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 22 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2
vX = vX = 2 0 0 1 4 3 1 0 0 1 2 0 2 4 1 32 0 0 1 4 3 1 0 0 1 2 0 2 4 1 3

Predication – iteration 1Predication – iteration 1

34

kL =kL = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vY =vY = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vX =vX = 3 0 1 2 5 4 2 1 0 2 3 1 3 5 2 43 0 1 2 5 4 2 1 0 2 3 1 3 5 2 4

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 11 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
vY = vY = 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 22 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2
vX = vX = 2 0 0 1 4 3 1 0 0 1 2 0 2 4 1 32 0 0 1 4 3 1 0 0 1 2 0 2 4 1 3

Predication – iteration 1Predication – iteration 1

kL is not all-0, so we continue the loopkL is not all-0, so we continue the loop

35

Predication – iteration 2Predication – iteration 2

kL = kL = 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 11 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
vY = vY = 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 22 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2
vX = vX = 2 0 0 1 4 3 1 0 0 1 2 0 2 4 1 32 0 0 1 4 3 1 0 0 1 2 0 2 4 1 3

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 11 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1
vY = vY = 4 1 2 4 4 4 4 2 1 4 4 2 4 4 4 44 1 2 4 4 4 4 2 1 4 4 2 4 4 4 4
vX = vX = 1 0 0 0 3 2 0 0 0 0 1 0 1 3 0 21 0 0 0 3 2 0 0 0 0 1 0 1 3 0 2

Only do the compare on unmasked lanesOnly do the compare on unmasked lanes
Just like every other math instructionJust like every other math instruction

36

Predication – iteration 3Predication – iteration 3

kL = kL = 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 11 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1
vY = vY = 4 1 2 4 4 4 4 2 1 4 4 2 4 4 4 44 1 2 4 4 4 4 2 1 4 4 2 4 4 4 4
vX = vX = 1 0 0 0 3 2 0 0 0 0 1 0 1 3 0 21 0 0 0 3 2 0 0 0 0 1 0 1 3 0 2

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 11 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1
vY = vY = 8 1 2 4 8 8 4 2 1 4 8 2 8 8 4 88 1 2 4 8 8 4 2 1 4 8 2 8 8 4 8
vX = vX = 0 0 0 0 2 1 0 0 0 0 0 0 0 2 0 10 0 0 0 2 1 0 0 0 0 0 0 0 2 0 1

37

Predication – iteration 4Predication – iteration 4

kL = kL = 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 11 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1
vY = vY = 8 1 2 4 8 8 4 2 1 4 8 2 8 8 4 88 1 2 4 8 8 4 2 1 4 8 2 8 8 4 8
vX = vX = 0 0 0 0 2 1 0 0 0 0 0 0 0 2 0 10 0 0 0 2 1 0 0 0 0 0 0 0 2 0 1

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 10 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1
vY = vY = 8 1 2 4 16 16 4 2 1 4 8 2 8 16 4 168 1 2 4 16 16 4 2 1 4 8 2 8 16 4 16
vX = vX = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 00 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

38

Predication – iteration 5Predication – iteration 5

kL = kL = 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 10 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1
vY = vY = 8 1 2 4 16 16 4 2 1 4 8 2 8 16 4 168 1 2 4 16 16 4 2 1 4 8 2 8 16 4 16
vX = vX = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 00 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 00 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
vY = vY = 8 1 2 4 32 16 4 2 1 4 8 2 8 32 4 168 1 2 4 32 16 4 2 1 4 8 2 8 32 4 16
vX = vX = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39

Predication – iteration 6Predication – iteration 6

kL = kL = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 00 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
vY = vY = 8 1 2 4 32 16 4 2 1 4 8 2 8 32 4 168 1 2 4 32 16 4 2 1 4 8 2 8 32 4 16
vX = vX = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

loop:loop:
vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}vcmppi_gt kL{kL}, vX, [ConstZero]{1to16}
vaddpi vY{kL}, vY, vYvaddpi vY{kL}, vY, vY
vsubpi vX{kL}, vX, [ConstOne]{1to16}vsubpi vX{kL}, vX, [ConstOne]{1to16}
kortest kL, kLkortest kL, kL
jnz loopjnz loop

kL = kL = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vY = vY = 8 1 2 4 32 16 4 2 1 4 8 2 8 32 4 168 1 2 4 32 16 4 2 1 4 8 2 8 32 4 16
vX = vX = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kL is now all-0, so we exit the loopkL is now all-0, so we exit the loop

40

Predication – loopsPredication – loops

 kxnor kL, kL
 vorpi vR, vRstart, vRstart
 vorpi vI, vIstart, vIstart
 vxorpi vIter, vIter, vIter
loop:
 vmulps vTemp{kL}, vR, vI
 vaddps vTemp{kL}, vTemp, vTemp
 vmadd213ps vR{kL}, vR, vRstart
 vmsub231ps vR{kL}, vR, vI
 vaddps vI{kL}, vTemp, vIstart
 vaddps vIter{kL}, vIter, [ConstOne]{1to16}
 vmulps vTemp{kL}, vR, vR
 vmaddps vTemp{kL}, vI, vI
 vcmpps_le kL{kL}, vTemp, [ConstOne]{1to16}
 kortest kL, kL
 jnz loop
 ; Result iteration count in vIter

A Mandelbrot set
generator. Again, notice
the comparison that tests
if the point is outside the
unit circle. Once all 16
points are outside, the
loop ends.

41

Gather/scatterGather/scatter

Important part of a wide vector ISAImportant part of a wide vector ISA

SOA mode is difficult to get data intoSOA mode is difficult to get data into
Most data structures are AOSMost data structures are AOS
Natural format for indirections – pointer to each structureNatural format for indirections – pointer to each structure

Gather/scatter allows sparse read/writeGather/scatter allows sparse read/write
Gather gets data into the 16-wide SOA format in registersGather gets data into the 16-wide SOA format in registers
Process data 16-wideProcess data 16-wide
Scatter stores data back out into AOSScatter stores data back out into AOS

Temporaries stay as SOATemporaries stay as SOA
Gets the benefit of load-op and co-issue storesGets the benefit of load-op and co-issue stores

50

42

GatherGather

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

Gather is effectively 16 loads, one per laneGather is effectively 16 loads, one per lane
As usual, a mask register (k2) disables some lanesAs usual, a mask register (k2) disables some lanes

Vector of offsets (v3)Vector of offsets (v3)
Normal x86 address mode would look like [rax+rbx]Normal x86 address mode would look like [rax+rbx]
But here v3 supplies 16 different offsetsBut here v3 supplies 16 different offsets
Offsets may be optionally scaled by 2, 4 or 8 bytesOffsets may be optionally scaled by 2, 4 or 8 bytes
Added to a standard x86 base pointer (rax)Added to a standard x86 base pointer (rax)

Offsets can point anywhere in memoryOffsets can point anywhere in memory
Multiple offsets can point to the same placeMultiple offsets can point to the same place

43

16 independent offsets into memory16 independent offsets into memory

rax+0

rax+1

rax+2

rax+4

55

66

77

88

99

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

v3 = v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 13 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 = k2 = 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 11 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 =v1 = 8 5 6 0 0 9 7 0 7 5 0 0 0 0 7 68 5 6 0 0 9 7 0 7 5 0 0 0 0 7 6

rax+3

44

ScatterScatter

vscatter [rax+v3]{k2}, v1vscatter [rax+v3]{k2}, v1

Same as gather, but in reverseSame as gather, but in reverse
Stores a vector of values to 16 different places in memoryStores a vector of values to 16 different places in memory

If two offsets point to the same place, If two offsets point to the same place,
results are not obviousresults are not obvious
One of them will “win”, but it’s difficult to know whichOne of them will “win”, but it’s difficult to know which
Technically it is well-defined, but I advise not relying on itTechnically it is well-defined, but I advise not relying on it

45

Gather/scatter speedGather/scatter speed

Gather/scatter limited by cache speedGather/scatter limited by cache speed

L1$ can only handle a few accesses per L1$ can only handle a few accesses per
clock, not 16 different onesclock, not 16 different ones
Address generation and virtual->physical are expensiveAddress generation and virtual->physical are expensive
Exact performance variesExact performance varies

Offsets referring to the same cache line can Offsets referring to the same cache line can
happen on the same clockhappen on the same clock
A gather where all offsets point to the same cache line will A gather where all offsets point to the same cache line will

be much faster than one where they point to 16 different be much faster than one where they point to 16 different
cache linescache lines

Gather/scatter allows SOA/AOS mixing, but data layout Gather/scatter allows SOA/AOS mixing, but data layout
design is still important for top speeddesign is still important for top speed

46

Writing fast code for Larrabee

47

PerformancePerformance

Two pipelinesTwo pipelines
One x86 scalar pipe, one LNI vectorOne x86 scalar pipe, one LNI vector
Every clock, you can run an Every clock, you can run an

instruction on eachinstruction on each
Similar to Pentium U/V pairing rulesSimilar to Pentium U/V pairing rules
Mask operations count as scalar opsMask operations count as scalar ops

Vector stores are specialVector stores are special
They can run down the scalar pipeThey can run down the scalar pipe
Can co-issue with a vector math opCan co-issue with a vector math op
Since vector math instructions are all Since vector math instructions are all

load-op, and vector stores co-issue, load-op, and vector stores co-issue,
memory access is very cheap in this memory access is very cheap in this
architecturearchitecture

Scalar
Registers

Vector
Registers

256K L2 Cache
Local Subset

L1 I-cache & D-cache

Vector
Unit

48

Low-level performanceLow-level performance

Almost all vector instructions take one clockAlmost all vector instructions take one clock
Gather/scatter exceptions already mentionedGather/scatter exceptions already mentioned
Most instructions have 4 clocks latency (max is 9)Most instructions have 4 clocks latency (max is 9)

4 threads makes good code easy to write4 threads makes good code easy to write
If a thread misses the cache, it goes to sleep, and its cycles If a thread misses the cache, it goes to sleep, and its cycles

are given to other threadsare given to other threads
When the data comes back, the thread wakes up againWhen the data comes back, the thread wakes up again
Branch misprediction only needs to flush instructions from Branch misprediction only needs to flush instructions from

the same thread – typically only costs 1-2 cyclesthe same thread – typically only costs 1-2 cycles
Live threads help hide latency – with 3 threads running, Live threads help hide latency – with 3 threads running,

4-9 clocks of latency looks like 1-2 independent 4-9 clocks of latency looks like 1-2 independent
instructionsinstructions

49

Memory performanceMemory performance

Good code will usually be memory-limitedGood code will usually be memory-limited
Roughly 2 bytes per core per clock of bandwidthRoughly 2 bytes per core per clock of bandwidth

For each source find best access patternFor each source find best access pattern
Regular layouts benefit greatly from the right patternRegular layouts benefit greatly from the right pattern
Semi-random accesses don’t care – LRU gets 90% benefitSemi-random accesses don’t care – LRU gets 90% benefit
““Use once” sources get zero benefit – always stream themUse once” sources get zero benefit – always stream them

Pick the ordering that gets most benefitPick the ordering that gets most benefit
Focus on good L2$ residencyFocus on good L2$ residency
Let the four threads handle L1$ residencyLet the four threads handle L1$ residency

Explicitly manage streaming dataExplicitly manage streaming data
Prefetch ahead to hide miss latencyPrefetch ahead to hide miss latency
Use strong & weak evict hints behind to free up cacheUse strong & weak evict hints behind to free up cache

50

High-level performanceHigh-level performance

In In thisthis order... order...

Architect for many cores & threadsArchitect for many cores & threads
Amdahl’s law is always waiting to pounceAmdahl’s law is always waiting to pounce
““Task parallel” methods take advantage of high core-to-Task parallel” methods take advantage of high core-to-

core bandwidth and coherent cachescore bandwidth and coherent caches

Design data flow for memory bandwidthDesign data flow for memory bandwidth
Aim for high cache locality on regular data sourcesAim for high cache locality on regular data sources
Explicitly stream when appropriate: read, use, evictExplicitly stream when appropriate: read, use, evict
Try to get the 4 threads per core working on similar dataTry to get the 4 threads per core working on similar data
Coherent caches avoid “cliff edges” in performanceCoherent caches avoid “cliff edges” in performance

Think about 16-wide SIMDThink about 16-wide SIMD
““Complete” vector instruction set means lots of options – Complete” vector instruction set means lots of options –

no need to turn everything into SOAno need to turn everything into SOA

51

High-level performanceHigh-level performance

1. Architect for many cores & threads1. Architect for many cores & threads

2. Design data flow for memory bandwidth2. Design data flow for memory bandwidth

3. Think about SIMD3. Think about SIMD

If this all sounds familiar...If this all sounds familiar...
The same advice works for almost all multi-core systemsThe same advice works for almost all multi-core systems
The thing we focus on as programmers that is new to The thing we focus on as programmers that is new to

Larrabee – the new wide SIMD instructions – are actually Larrabee – the new wide SIMD instructions – are actually
the simplest thing to architect code forthe simplest thing to architect code for

...but they’re still great fun to talk about!...but they’re still great fun to talk about!

52

The rendering pipeline on Larrabee

53

The standard rendering pipelineThe standard rendering pipeline

Input assemblyInput assembly

Vertex shadingVertex shading

Triangle clip/cullTriangle clip/cull

RasterizeRasterize

Early Z/stencilEarly Z/stencil

Pixel shadePixel shade

Late Z/stencilLate Z/stencil

FB BlendFB Blend

54

1. Architect for many cores & threads1. Architect for many cores & threads

Partition the scene into independent chunksPartition the scene into independent chunks
Each chunk is processed by one core, preserving orderEach chunk is processed by one core, preserving order
But different chunks can be processed out of orderBut different chunks can be processed out of order

Partition by rendertargetPartition by rendertarget
Modern scenes have 10-100 rendertargetsModern scenes have 10-100 rendertargets
But they have “render to texture” dependencies But they have “render to texture” dependencies
Limited parallelism, but still usefulLimited parallelism, but still useful
Create DAG of rendertargets, exploit what there isCreate DAG of rendertargets, exploit what there is

Partition each rendertargetPartition each rendertarget
Variety of methods, we chose binning/tilingVariety of methods, we chose binning/tiling
Tiles can be processed out of order = good parallelismTiles can be processed out of order = good parallelism

55

2. Design data flow for memory BW2. Design data flow for memory BW

Input assembly: Input assembly: indicesindices

Vertex shading: Vertex shading: verticesvertices & & some texturessome textures

Triangle clip/cull: Triangle clip/cull: indicesindices & & verticesvertices

Rasterize: Rasterize: vertex positionsvertex positions

Early Z/stencil: Early Z/stencil: depthdepth

Pixel shade: Pixel shade: vertex attributesvertex attributes & & texturestextures

Late Z/stencil: Late Z/stencil: depthdepth

FB Blend: FB Blend: colourcolour
...and remember everything wants good I$ locality!...and remember everything wants good I$ locality!

75

56

2. Design data flow for memory BW2. Design data flow for memory BW

Input assembly & vertex processingInput assembly & vertex processing
Typically “use once” data – order doesn’t matter muchTypically “use once” data – order doesn’t matter much
Also have “constant” data – lights, animation bones, etcAlso have “constant” data – lights, animation bones, etc
Best order is submission orderBest order is submission order

Adjacent DrawPrimitive calls share little dataAdjacent DrawPrimitive calls share little data
So we can parcel them out to different coresSo we can parcel them out to different cores
Can do vertex shading in any orderCan do vertex shading in any order
But must preserve original order when doing Z/pixel blendBut must preserve original order when doing Z/pixel blend

57

2. Design data flow for memory BW2. Design data flow for memory BW

In pixel shaders, textures & FB use most BWIn pixel shaders, textures & FB use most BW
So which should we order by?So which should we order by?

Textures are fairly order-insensitiveTextures are fairly order-insensitive
Mipmapping causes about 1.25 texel misses per sampleMipmapping causes about 1.25 texel misses per sample
Small caches give most of the available benefitSmall caches give most of the available benefit
Need impractically large caches to give benefit beyond thatNeed impractically large caches to give benefit beyond that
Result – they don’t care much about processing orderResult – they don’t care much about processing order

FB colour & depth do cache very wellFB colour & depth do cache very well
Load tile into L2$, do all processing, store the tileLoad tile into L2$, do all processing, store the tile
Choose a tile size that fits in L2$Choose a tile size that fits in L2$
Depends on pixel format, # of channels, and antialias typeDepends on pixel format, # of channels, and antialias type
Typically 32x32 up to 128x128 pixelsTypically 32x32 up to 128x128 pixels

58

3. Think about SIMD3. Think about SIMD

Pixel shaders require 2x2 blocksPixel shaders require 2x2 blocks
Needed for derivative calculations for mipmappingNeeded for derivative calculations for mipmapping
So that’s 4-wide SIMD alreadySo that’s 4-wide SIMD already
We can pack 4 2x2 blocks together to make 16-wide SIMDWe can pack 4 2x2 blocks together to make 16-wide SIMD
Typically (but not always) a 4x4 block of pixelsTypically (but not always) a 4x4 block of pixels
This also keeps texture accesses coherent enough to cacheThis also keeps texture accesses coherent enough to cache

Rasterisation uses a hierarchical descentRasterisation uses a hierarchical descent
Each level of the descent is 16x fewer pixels than the lastEach level of the descent is 16x fewer pixels than the last
Extensive details in Michael Abrash’s GDC 2009 talkExtensive details in Michael Abrash’s GDC 2009 talk

Other parts of the pipeline are simpleOther parts of the pipeline are simple
Shade 16 vertices, setup 16 triangles, etc...Shade 16 vertices, setup 16 triangles, etc...
(though the details can get a little tricky)(though the details can get a little tricky)

59

Our binning/tiling architectureOur binning/tiling architecture

““Front end”Front end”
Input assemblyInput assembly
Vertex shadingVertex shading
Triangle cullingTriangle culling

BinningBinning
Split rendertarget into tilesSplit rendertarget into tiles
Decide which tile(s) each triangle hitsDecide which tile(s) each triangle hits
Make a “bin” for each tile – the list of tris that hit that tileMake a “bin” for each tile – the list of tris that hit that tile

““Back end” - each core picks up a tile+binBack end” - each core picks up a tile+bin
RasterizationRasterization
Early depthEarly depth
Pixel shadingPixel shading
Depth & blendDepth & blend

60

Haven’t people tried binning before?Haven’t people tried binning before?

...and these are the things to be careful of:...and these are the things to be careful of:

Binning hardware can be a bottleneckBinning hardware can be a bottleneck
High rejection rates leaves pixel shader hardware idleHigh rejection rates leaves pixel shader hardware idle
But we don’t have any dedicated units – just coresBut we don’t have any dedicated units – just cores
Cores do whatever jobs need doing & load balanceCores do whatever jobs need doing & load balance

Running out of memoryRunning out of memory
Causes fallback to driver on the host to multi-passCauses fallback to driver on the host to multi-pass
But we’re just as smart as any driverBut we’re just as smart as any driver
Multi-passing is just like doing more rendertargetsMulti-passing is just like doing more rendertargets

Complex intermediate structuresComplex intermediate structures
Not a problem for an x86 processorNot a problem for an x86 processor

61

Challenges of an all-software pipelineChallenges of an all-software pipeline

We can work smarter, not harderWe can work smarter, not harder
We can have multiple versions of the pipelineWe can have multiple versions of the pipeline
Each can be tuned for different app stylesEach can be tuned for different app styles
We can tune for new apps without releasing new hardwareWe can tune for new apps without releasing new hardware
We can support new APIs on existing hardwareWe can support new APIs on existing hardware

But that means a lot of code to writeBut that means a lot of code to write
It all takes time to write, test & tuneIt all takes time to write, test & tune
But once its written, it has little end-user cost (disk space)But once its written, it has little end-user cost (disk space)

...and in case it’s not difficult enough......and in case it’s not difficult enough...
Running under a real grown-up OSRunning under a real grown-up OS
Full pre-emptive multitasking and virtual memoryFull pre-emptive multitasking and virtual memory
Co-existing with other “native” appsCo-existing with other “native” apps
All being hidden under a standard Vista/Win7 DX driverAll being hidden under a standard Vista/Win7 DX driver

62

Larrabee hardware summaryLarrabee hardware summary

Pentium-derived x86 corePentium-derived x86 core
Well-understood pipelineWell-understood pipeline
64-bit x86 instruction set64-bit x86 instruction set
4 threads per core4 threads per core

512-bit wide SIMD512-bit wide SIMD
““Vector complete” float32, int32, float64 instruction setVector complete” float32, int32, float64 instruction set

Local cachesLocal caches
L1 data and instruction cachesL1 data and instruction caches
L2 combined cacheL2 combined cache
Coherent, use standard x86 memory orderingCoherent, use standard x86 memory ordering

High-speed ringHigh-speed ring
Inter-processor comms and shared DRAM accessInter-processor comms and shared DRAM access

63

Larrabee programmer’s summaryLarrabee programmer’s summary

PrioritiesPriorities
Think about how you can feed 100+ threadsThink about how you can feed 100+ threads
Think about how to optimise for limited memory bandwidthThink about how to optimise for limited memory bandwidth
Think about how to do 16 things at onceThink about how to do 16 things at once

You always have standard x86You always have standard x86
All your code will run, even if you don’t SIMD itAll your code will run, even if you don’t SIMD it
Great for the 90% of code that just has to workGreat for the 90% of code that just has to work
Profile it once it’s running, find out which bits need loveProfile it once it’s running, find out which bits need love

Enormous math horsepower availableEnormous math horsepower available
16 float32 multiply-adds per clock, plus scalar control16 float32 multiply-adds per clock, plus scalar control
Flow control and address generation are nearly freeFlow control and address generation are nearly free

Gather & scatter to talk to non-16 layoutsGather & scatter to talk to non-16 layouts
But be mindful of cache bandwidthBut be mindful of cache bandwidth

64

Larrabee resourcesLarrabee resources

GDC 2009 talks by Abrash & ForsythGDC 2009 talks by Abrash & Forsyth

Dr. Dobb’s Journal article by Michael AbrashDr. Dobb’s Journal article by Michael Abrash

SIGGRAPH 2008SIGGRAPH 2008
““Larrabee: A Many-Core x86 Architecture for Visual Larrabee: A Many-Core x86 Architecture for Visual

Computing” Seiler et alComputing” Seiler et al
Assorted other SIGGRAPH and SIGGRAPH Asia talksAssorted other SIGGRAPH and SIGGRAPH Asia talks

C++ Larrabee Prototype LibraryC++ Larrabee Prototype Library
Very close to the intrinsics, works on current hardwareVery close to the intrinsics, works on current hardware

www.intel.com/software/graphicswww.intel.com/software/graphics

Questions?Questions?

http://www.intel.com/software/graphics

65

 Backup

66

4-wide SIMD – SOA or AOS?4-wide SIMD – SOA or AOS?

Using 4-wide SSE, there are two choicesUsing 4-wide SSE, there are two choices

AOS or “packed”: a register holds XYZ_AOS or “packed”: a register holds XYZ_
Each iteration of code produces one resultEach iteration of code produces one result
At most 75% use of math unitsAt most 75% use of math units

SOA or “scalar”: a register holds XXXXSOA or “scalar”: a register holds XXXX
Another register holds YYYY, another holds ZZZZAnother register holds YYYY, another holds ZZZZ
Each iteration of code produces four resultsEach iteration of code produces four results
Code is roughly 3x as longCode is roughly 3x as long
100% use of math units100% use of math units
But you have to have 4 things to doBut you have to have 4 things to do
And the data is usually not in an SOA-friendly formatAnd the data is usually not in an SOA-friendly format

Needs reorg? Intro?

67

16-wide SIMD - AOS16-wide SIMD - AOS

AOS is really two options:AOS is really two options:

Simple: register holds XYZ_____________Simple: register holds XYZ_____________
Basically the same code as SSEBasically the same code as SSE
Only at most 19% use of math unitsOnly at most 19% use of math units
But can still be appropriate if you do have wide vectorsBut can still be appropriate if you do have wide vectors

Matrix math, geometric algebra

4-wide: register holds XYZ_XYZ_XYZ_XYZ_4-wide: register holds XYZ_XYZ_XYZ_XYZ_
Each iteration produces four resultsEach iteration produces four results
Code is the same lengthCode is the same length
At most 75% use of math unitsAt most 75% use of math units
But you have to have 4 things to doBut you have to have 4 things to do
Data is often in a reasonable formatData is often in a reasonable format

7

68

16-wide SIMD - SOA16-wide SIMD - SOA

16-wide register holds: XXXXXXXXXXXXXXX16-wide register holds: XXXXXXXXXXXXXXX
Others hold YYYYYYYYYYYYYYYY, ZZZZZZZZZZZZZZZZOthers hold YYYYYYYYYYYYYYYY, ZZZZZZZZZZZZZZZZ
Each iteration produces 16 resultsEach iteration produces 16 results
Code is roughly 3x as longCode is roughly 3x as long
100% use of math units100% use of math units

But you have to have 16 things to do!But you have to have 16 things to do!
Larrabee adds Larrabee adds predicationpredication
Allows each lane to execute different codeAllows each lane to execute different code

Data is usually not in a friendly format!Data is usually not in a friendly format!
Larrabee adds Larrabee adds scatter/gatherscatter/gather support for reformatting support for reformatting

Allows 90% of our code to use this modeAllows 90% of our code to use this mode
Very little use of AOS modesVery little use of AOS modes

69

Gather exampleGather example

55

66

77

88

99

rax+0

rax+1

rax+2

rax+3

rax+4

Values in Values in
memorymemory

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

v3 = v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 13 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 = k2 = 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 11 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 = v1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70

Gather exampleGather example

rax+0

rax+1

rax+2

rax+3

rax+4

55

66

77

88

99

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

v3 = v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 13 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 = k2 = 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 11 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 =v1 = 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

71

Gather exampleGather example

rax+1

rax+2

rax+3

rax+4

55

66

77

88

99

rax+0

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

v3 = v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 13 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 = k2 = 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 10 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 =v1 = 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 08 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

72

Gather exampleGather example

rax+0

rax+1

rax+2

rax+3

rax+4

55

66

77

88

99

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

v3 =v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 13 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 =k2 = 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 10 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1

v1 =v1 = 8 5 6 0 0 0 0 0 0 0 0 0 0 0 0 08 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0

73

Gather exampleGather example

rax+0

rax+1

rax+2

rax+3

rax+4

55

66

77

88

99

vgather v1{k2},[rax+v3]vgather v1{k2},[rax+v3]

v3 = v3 = 3 0 1 2 5 4 2 1 2 0 3 0 3 6 2 13 0 1 2 5 4 2 1 2 0 3 0 3 6 2 1

k2 =k2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

v1 = v1 = 8 5 6 0 0 9 7 0 7 5 0 0 0 0 7 68 5 6 0 0 9 7 0 7 5 0 0 0 0 7 6

74

y=1;y=1;

while (x>0) {while (x>0) {

 y*=x;y*=x;

 x--;x--;

};};

z = a[y];z = a[y];

Using gatherUsing gather

...same loop as the predication ...same loop as the predication
example before...example before...

...but we use the result to look ...but we use the result to look
up into an array. In the SIMD up into an array. In the SIMD
code, 16 different values are code, 16 different values are
stored in “y”stored in “y”

75

Using gatherUsing gather

Indexed lookup done using gatherIndexed lookup done using gather

; y=1; while(x>0) { y*=x; x--; }; z = a[y];; y=1; while(x>0) { y*=x; x--; }; z = a[y];

kxnor kL, kLkxnor kL, kL

vloadps vY, [ConstOne]{1to16}vloadps vY, [ConstOne]{1to16}

loop:loop:

vmulps vY{kL}, vY, vXvmulps vY{kL}, vY, vX

vsubps vX{kL}, vX, [ConstOne]{1to16}vsubps vX{kL}, vX, [ConstOne]{1to16}

vcmpps_gt kL{kL}, vX, [ConstOne]{1to16}vcmpps_gt kL{kL}, vX, [ConstOne]{1to16}

kortest kL, kLkortest kL, kL

jnz loopjnz loop

kxnor kL, kLkxnor kL, kL

vgather vZ{kL}, [rax+vY]vgather vZ{kL}, [rax+vY]

33

76

Hints and tipsHints and tips

vmadd233psvmadd233ps
Does an arbitrary scale & bias in a single clockDoes an arbitrary scale & bias in a single clock

vcompress, vexpandvcompress, vexpand
Allows you to queue and unqueue sparse dataAllows you to queue and unqueue sparse data
Repack into 16-wide chunks for better SIMD efficiencyRepack into 16-wide chunks for better SIMD efficiency

Format conversions on load and storeFormat conversions on load and store
Keep memory data in float16, unorm8, uint8, etcKeep memory data in float16, unorm8, uint8, etc
Efficient use of memory bandwidth and cache spaceEfficient use of memory bandwidth and cache space

In most code, scalar ops are “free”In most code, scalar ops are “free”
Hide in the shadow of vector opsHide in the shadow of vector ops
As do most vector storesAs do most vector stores

40

Keep? Ditch?

77

C++ Larrabee Prototype LibraryC++ Larrabee Prototype Library

Looks very like an intrinsics libraryLooks very like an intrinsics library
But behind the “intrinsics” is just plain CBut behind the “intrinsics” is just plain C
Just a header – no .lib or .dllJust a header – no .lib or .dll
Compiles on almost anything – ICC, MSVC, GCC, etcCompiles on almost anything – ICC, MSVC, GCC, etc
Should work in any existing projectShould work in any existing project

No claims of lightning speed No claims of lightning speed
Fast enough to develop withFast enough to develop with
Some paths have SSE for a modest boostSome paths have SSE for a modest boost

Precision caution!Precision caution!
It’s just C, so you get whatever precision the compiler hasIt’s just C, so you get whatever precision the compiler has
May not be bit-perfect with Larrabee without careMay not be bit-perfect with Larrabee without care
Multiply-add, square roots, x87 rounding mode, etcMultiply-add, square roots, x87 rounding mode, etc
Same caveats as any other cross-platform developmentSame caveats as any other cross-platform development

Cut’n’paste from DaVinci pres?

Cut prototype library stuff entirely?

78

C++ Larrabee Prototype LibraryC++ Larrabee Prototype Library

Allows experimentation with 16-wide SIMDAllows experimentation with 16-wide SIMD
Debugging is simple – just step into the functionDebugging is simple – just step into the function

Allows porting of algorithms and brainsAllows porting of algorithms and brains
Helps people think “the other way up”Helps people think “the other way up”
Prototype different styles of executionPrototype different styles of execution

Runs on existing machinesRuns on existing machines
Allows LNI code into cross-platform librariesAllows LNI code into cross-platform libraries
Useful for developing on laptops, etcUseful for developing on laptops, etc

C++ Larrabee Prototype Library at C++ Larrabee Prototype Library at
www.intel.com/software/graphicswww.intel.com/software/graphics
Instruction count gives some feel for performanceInstruction count gives some feel for performance
Please give us feedback for the final intrinsics libraryPlease give us feedback for the final intrinsics library

45

79

C++ Larrabee Prototype Library…C++ Larrabee Prototype Library…

m512 mandelbrot (m512 x_in, m512 y_in) {m512 mandelbrot (m512 x_in, m512 y_in) {
 const float ConstOne = 1.0f;const float ConstOne = 1.0f;
 mmask mask = 0xFFFF;mmask mask = 0xFFFF;
 m512 x = x_in;m512 x = x_in;
 m512 y = y_in;m512 y = y_in;
 m512 iter = m512_setzero();m512 iter = m512_setzero();
 do {do {
 m512 temp = m512_mul_ps (x, y);m512 temp = m512_mul_ps (x, y);
 temp = m512_add_ps (temp, temp);temp = m512_add_ps (temp, temp);
 x = m512_mask_madd213_ps (x, mask, x, x_in);x = m512_mask_madd213_ps (x, mask, x, x_in);
 x = x = m512_mask_msub231_psm512_mask_msub231_ps (x, mask, y, y); (x, mask, y, y);
 y = m512_mask_add_ps (y, mask, temp, y_in);y = m512_mask_add_ps (y, mask, temp, y_in);
 iter = m512_mask_add_ps (iter, mask, iter,iter = m512_mask_add_ps (iter, mask, iter,
 m512_swizupconv_float32 (&ConstOne, MM_BROADCAST_1X16));m512_swizupconv_float32 (&ConstOne, MM_BROADCAST_1X16));
 m512 dist = m512_mul_ps (x, x);m512 dist = m512_mul_ps (x, x);
 dist = m512_madd231_ps (dist, y, y);dist = m512_madd231_ps (dist, y, y);
 mask = m512_mask_cmple_ps (mask, dist, mask = m512_mask_cmple_ps (mask, dist,
 m512_swizupconv_float32 (&ConstOne, MM_BROADCAST_1X16));m512_swizupconv_float32 (&ConstOne, MM_BROADCAST_1X16));
 } while (mask !=0);} while (mask !=0);
 return iter;return iter;
}}

80

……raw assemblyraw assembly

ConstOne: DD 1.0ConstOne: DD 1.0
mandelbrot:mandelbrot:
 kxnor k2, k2kxnor k2, k2
 vorpi v0, v2, v2vorpi v0, v2, v2
 vorpi v1, v3, v3vorpi v1, v3, v3
 vxorpi v4, v4, v4vxorpi v4, v4, v4
 loop:loop:
 vmulps v21{k2}, v0, v1vmulps v21{k2}, v0, v1
 vaddps v21{k2}, v21, v21vaddps v21{k2}, v21, v21
 vmadd213ps v0{k2}, v0, v2vmadd213ps v0{k2}, v0, v2
 vmsub231psvmsub231ps v0{k2}, v1, v1 v0{k2}, v1, v1
 vaddps v1{k2}, v21, v3vaddps v1{k2}, v21, v3
 vaddps v4{k2}, v4,vaddps v4{k2}, v4,
 [ConstOne]{1to16}[ConstOne]{1to16}
 vmulps v25{k2}, v0, v0vmulps v25{k2}, v0, v0
 vmaddps v25{k2}, v1, v1vmaddps v25{k2}, v1, v1
 vcmpps_le k2{k2}, v25,vcmpps_le k2{k2}, v25,
 [ConstOne]{1to16}[ConstOne]{1to16}
 kortest k2, k2kortest k2, k2
 jnz loopjnz loop
retret

46

	Slide 1
	What lies ahead
	Slide 3
	One Larrabee core
	Larrabee “old” Instructions
	Larrabee New Instructions
	Slide 7
	Slide 8
	16 wide SIMD – SOA vs AOS
	Simple SOA example
	Slide 11
	Slide 12
	Slide 13
	Now turn into LRBNI instructions
	Slide 15
	... use names instead of numbers
	Predication
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Predication - functional
	Slide 24
	Predication – early-out branches
	Predication – power-efficient
	Predication - loops
	Slide 28
	Slide 29
	Slide 30
	Predication – iteration 1
	Slide 32
	Slide 33
	Slide 34
	Predication – iteration 2
	Predication – iteration 3
	Predication – iteration 4
	Predication – iteration 5
	Predication – iteration 6
	Predication – loops
	Gather/scatter
	Gather
	16 independent offsets into memory
	Scatter
	Gather/scatter speed
	Writing fast code for Larrabee
	Performance
	Low-level performance
	Memory performance
	High-level performance
	Slide 51
	The rendering pipeline on Larrabee
	The standard rendering pipeline
	1. Architect for many cores & threads
	2. Design data flow for memory BW
	Slide 56
	Slide 57
	3. Think about SIMD
	Our binning/tiling architecture
	Haven’t people tried binning before?
	Challenges of an all-software pipeline
	Larrabee hardware summary
	Larrabee programmer’s summary
	Larrabee resources
	Slide 65
	4-wide SIMD – SOA or AOS?
	16-wide SIMD - AOS
	16-wide SIMD - SOA
	Gather example
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Using gather
	Slide 75
	Hints and tips
	C++ Larrabee Prototype Library
	Slide 78
	C++ Larrabee Prototype Library…
	…raw assembly

