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What lies ahead

The Larrabee architecture
Larrabee New Instructions
Writing efficient code for Larrabee
The rendering pipeline



Overview of a Larrabee chip
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* CONCEPTUAL MODEL ONLY! Actual numbers of cores, texture
units, memory controllers, etc will vary - a lot. Also, structure
of ring & placement of devices on ring is more complex than
shown



One Larrabee core

Instruction Decode

Scalar
Unit

Scalar
Registers

Vector
Registers

L1 I-cache & D-cache

256K L2 Cache
Local Subset

Ring

Larrabee based on x86 ISA

All of the left “scalar” half
Four threads per core

No surprises, except that there’s
LOTS of cores and threads

New right-hand vector unit
Larrabee New Instructions
512-bit SIMD vector unit
32 vector registers
Pipelined one-per-clock throughput
Dual issue with scalar instructions



Larrabee “"old” Instructions

The x86 you already know
Core originally based on Pentium 1
Upgraded to 64-bit
Full cache coherency preserved
Xx86 memory ordering preserved
Predictable in-order pipeline model

4 threads per core

Fully independent “hyperthreads” — no shared state
Typically run closely ganged to improve cache usage
Help to hide instruction & L1$-miss latency

No surprises — “just works”

“microOS” with pthreads, IO, pre-emptive multitasking, etc
Compile and run any existing code in any language
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Larrabee New Instructions

512-bit SIMD

int32, float32, float64 ALU support
Today’s talk focussed on the 16-wide float32 operations

Ternary, multiply-add

Ternary = non-destructive ops = fewer register copies
Multiply-add = more flops in fewer ops

Load-op
Third operand can be taken direct from memory at no cost
Reduces register pressure and latency



Larrabee New Instructions

Broadcast/swizzle

Scalar->SIMD data broadcasts (e.g. constants, scales)
Crossing of SIMD lanes (e.g. derivatives, horizontal ops)

Format conversion
Small formats allow efficient use of caches & bandwidth
Free common integer formats int8, int16
Free common graphics formats float16, unorm8
Built-in support for other graphics formats (e.g. 11:11:10)

Predication and gather/scatter

Makes for a "complete” vector ISA
A lot more on these in a bit



Larrabee New Instructions

Designed for software

Not always the simplest hardware
Compiler & code scheduler written during the design
Anything the compiler couldn’t grok got fixed or killed

Very few special cases
Compilers don‘t cope well with special cases
e.g. no hard-wiring of register sources
Most features work the same in all instructions

Targeted at graphics
Surprisingly, ended up with <10% graphics-specific stuff
DX/OGL format support
Rasterizer-specific instructions



16 wide SIMD - SOA vs AOS
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Simple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);

E +=Dx0 +

First step is to “scalarize” the code

Turn vector notation into scalars
Remember that each “scalar” op is doing 16 things at once
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Simple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;

vec3 temp;

temp. x
temp.y
temp. z

a.x + b.x;
a.y + b.y;
a.z + b.z;

A vec3 add turns into 3
scalar adds
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Simple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;
vec3 temp;

temp.x
temp.y = a.y + b.y;
temp. z

/] t

float £t = temp.x * c.x;

Note how the dot-product,
which is complex in AOS
code and requires horizontal
adds or lane-shuffling,
becomes easy in SOA code.

dot (c.xyz, temp.xyz) ;

t += temp.y * c.y;
t += temp.z * c.z;
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Simple SOA example

e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;
vec3 temp;

temp.x
temp.y = a.y + b.y;
temp. z

// t

float £t = temp.x * c.x;

dot (c.xyz, temp.xyz) ;

t += temp.y * c.y;
t += temp.z * c.z;
e +t=d * t; Scalar operations stay scalar with

no loss of efficiency in SOA

intel)
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Now turn into LRBNI instructions

e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;
vec3 temp;

temp.x
temp.y = a.y + b.y;
temp. z

// t = dot(c.xyz, temp.xyz);
float £t = temp.x * c.x;
t += temp.y * c.y;
t += temp.z * c.z;

e +t=d * t;
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Now turn into LRBNI instructions

e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;
vec3 temp;

temp.x = a.x + b.x; vaddps v20, v0, v3
temp.y = a.y + b.y; vaddps v21, vl, v4
temp.z = a.z + b.z; vaddps v22, v2, v5
// t = dot(c.xyz, temp.xyz);

float £t = temp.x * c.x; vmulps w23, v20, v6
t += temp.y * c.y; vmaddps v23, v21, v/
t += temp.z * c.z; vmaddps v23, v22, v8
e +=d * t; vmaddps w10, w9, v23
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... USe@ names instead of numbers

e += d * dot(c.xyz, a.xyz + b.xyz);

// temp = a.xyz + b.xyz;
vec3 temp;

temp.x = a.x + b.x;

temp.y = a.y + b.y;

temp.z = a.z + b.z;

// t = dot(c.xyz, temp.xyz);
float £t = temp.x * c.x;

t += temp.y * c.y;

t += temp.z * c.z;

e +t=d * t;
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vaddps vTempx, VAX,

vaddps vTempy, VAy,

vaddps vTempz, VAZz,

vmulps

vmaddps
vmaddps
vmaddps

vT,
vT,
vT,

VE ,

viempx,
vIiempy,
viempz,
vD, vT

vBx
vBz
vCx

vCy

vCz



Predication
8 16-bit registers k0-k7

Every instruction can take a mask
kO has limited use — encoding often means “"no mask”

Act as write masks — bit=0 preserves dest
vaddps v1{k6}, v2, v3

Bits in k6 enable/disable writes to v1

Preserves existing register contents in bit=0 lanes
Usually also disables individual ALU lanes to save power

Memory stores also take a write mask
Preserves existing values in memory
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Predication

Predication allows per-lane conditional flow

Vector compare does 16 parallel compares

Writes results into a write mask

Mask can be used to protect some of the 16 elements from
being changed by instructions

Simple predication example:

;if (vB<wv6) {vl += v3;}
vemppi 1t k7, v5, v6
vaddpi v1{k7}, vl, v3

18



Predication
;if (vB<v6) {vl += v3;}
a0 4 7 8 3 92063894501
43 a 9 4 8 2 0 9455 346091320

vemppi 1t k7, v5, v6

)



Predication

;if (vB<v6) {vl += v3;}
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Predication

;if (v5<v6) {vl += v3;}
vARER 0 4 7 8 3 9 2

vemppi 1t k7, v5, v6

Iyl 01 0001100001010

YXBEd S 6 7 8 5 6 785 6 785 6 78

voe a1 1 1 111 1111111111

vaddpi v1{k7}, vl, v3

21



Predication

;if (vB<v6) {vl += v3;}

CIEN0 4 7 8 3 920638094501
Y49 4820945534601 30
vemppi 1t k7, v5, v6

iyl 1l 01 00011 00001010

<35 6 7856 7 8567 85|67 8
vl 1111111 1{11111111
vaddpi v1{k7}, vl, w3

36 1 811189(111186/181

Existing values are preserved in disabled lanes

22



Predication - functional

;  {e+=d*dot (c.xyz,a.xyz+b.xyz) ;}

vaddps vTempx, VAXx,
vaddps vTempy, VAy,
vaddps vTempz, VAz,
vmulps vvT, vTempx,
vmaddps vT, vTempy,

vmaddps vT, vTempz,

vmaddps VE, vD,

vBx

vBz

vCx

vCz

vT

23

...same dot-product SOA
example code as before...



Predication - functional

;if (d > 0) Add a conditional clause
; {et=d*dot(c.xyz,a.xyz+b.xyz) ;}

vaddps vTempx, VAx, VBx
vaddps vTempy, VAy, VBy
vaddps vTempz, vAz, VvBz

vmulps vvT, vTempx, vCx

vmaddps vT, vTempy, VvCy Use load-op and broadcast
to do a vector compare

against a constant zero in
vempps gt kT, vD, [ConstZero]{1tol6} Memory.

vmaddps vE{kT}, vD, vT Predicate the multiply-add.

vmaddps vT, vTempz, vCz
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Predication — early-out branches

;if (d > 0)

;  {e+=d*dot (c.xyz,a.xyz+b.xyz) }
vempps gt kT, vD, [ConstZero] {1tol6}

kortest kT, kT

Jz skip all this
vaddps vTempx, VAx,
vaddps vTempy, VAy,
vaddps vTempz, VAz,
vmulps vvT, vTempx,
vmaddps vT, vTempy,

vmaddps vT, vTempz,

vmaddps vE{kT}, vD,
skip all this:

vBx

vBz

vCx

vCz

vT
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Move the compare earlier...

Sets the Z flag if kT is all-0
Early-out branch

All this code is completely
skipped if all 16 values of d
are <=0.

If only some lanes are zero,
we run the code, but we

still get the correct answers
because of predication.



Predication — power-efficient

;if (d > 0)

;  {e+=d*dot (c.xyz,a.xyz+b.xyz) }
vempps_gt kT, vD, [ConstZero] {1tol6}

kortest kT, kT

jz skip all this
vaddps vTempx{kT},6 vAx,
vaddps vTempy{kT}, vAy,
vaddps vTempz{kT}, vAz,
vmulps vT{kT}, vTempx,
vmaddps vT{kT},6 vTempy,
vmaddps vT{kT},6 vTempz,

vmaddps vE{kT}, vD, vT
skip all this:

vBx

vBz

vCx

vCz
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...and we now add
predication to all these
instructions, not just the
final one, which saves
power by not computing
results for lanes you won't
use.



Predication - loops

There is still a standard x86 loop
A label and a conditional jump

A mask stores which lanes are still running

The mask predicates all operations inside the loop
Predicated lanes remain unchanged

Do the end-of-loop condition once per lane

If a lane hits its end-of-loop, it clears the mask bit

That lane is now stopped — running more loops does not
affect its results

When all lanes have finished, stop the loop
Keep looping until the mask register is all-0

27



Predication - loops

Vector compare can take a starting mask
Bits that are already zero will stay zero

; y=1; while (x>0){ y+=y; x--; };

28



Predication - loops

Vector compare can take a starting mask
Bits that are already zero will stay zero

; y=1; while(x>0){ y+=y; x--; };

vloadpi vY, [ConstOne]{1ltolé6} y=1;
loop:

vaddpi vY , vY, vY Y=Y 1Y,
vsubpi wvX ., vX, [ConstOne] {l1tol6} X=X-1;
3J?? loop
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Predication - loops

Vector compare can take a starting mask
Bits that are already zero will stay zero

; y=1; while(x>0){ y+=y; x--; };
kxnor kL, kL Sets the loop mask to all-1s
vloadpi vY, [ConstOne]{1ltolé6}

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltol6} x>07?

vaddpi vY{kL},6 vY, vY¥Y

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

while(any x>0)
Jjnz loop
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Predication - iteration 1

kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltol6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

jnz loop

kL

chl




Predication - iteration 1

kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL},6 v¥, vY

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

jnz loop

vY
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Predication - iteration 1

kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne] {1ltol6}
kortest kL, kL

jnz loop

vY
vX
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kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

Jjnz loop

vY
vX
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Predication - iteration 2

kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltol6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

jnz loop

vY
vX

Only do the compare on unmasked lanes
Just like every other math instruction

35
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kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL},6 vX,
kortest kL, kL
jnz loop

vY
vX

[ConstOne] {1tol6}
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kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL},6 vX,
kortest kL, kL
jnz loop

vY
vX

[ConstOne] {1tol6}
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Predication - iteration 5

kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

jnz loop

vY
vX
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Predication - iteration 6

kL =
vY
vX

loop:

vemppi gt kL{kL}, vX, [ConstZero]{ltolé6}
vaddpi vY{kL}, vY, vY

vsubpi vX{kL}, vX, [ConstOne] {1tolé6}
kortest kL, kL

Jjnz loop

vY
vX

KL is now all-0, so we exit the loop

39



Predication

kxnor kL, kL

vorpi VvR, vRstart, vRstart

vorpi vI, vIstart, vIstart

vxorpli vIter, vIter, vIter
loop:

vmulps vTemp{kL}, vR, vI

vaddps vTemp{kL}, vTemp, vTemp

vmadd213ps vR{kL}, vR, vRstart

vmsub231lps vR{kL}, vR, vI

vaddps vI{kL}, vTemp, vIstart

- loops

A Mandelbrot set
generator. Again, notice
the comparison that tests
if the point is outside the
unit circle. Once all 16
points are outside, the
loop ends.

vaddps vIter{kL}, vIter, [ConstOne] {1ltolé6}

vmulps vTemp{kL}, VvR, VR
vmaddps vTemp{kL}, vI, vI

vempps _le kL{kL}, vTemp, [ConstOne]{ltolé6}

kortest kL, kL
jnz loop
; Result iteration count in vIter

40



Gather/scatter

Important part of a wide vector ISA
SOA mode is difficult to get data into

Most data structures are AOS
Natural format for indirections — pointer to each structure

Gather/scatter allows sparse read/write
Gather gets data into the 16-wide SOA format in registers

Process data 16-wide
Scatter stores data back out into AOS

Temporaries stay as SOA
Gets the benefit of load-op and co-issue stores

41



Gather

vgather v1{k2},6 [rax+v3]

Gather is effectively 16 loads, one per lane
As usual, a mask register (k2) disables some lanes

Vector of offsets (v3)

Normal x86 address mode would look like [rax+rbx]
But here v3 supplies 16 different offsets

Offsets may be optionally scaled by 2, 4 or 8 bytes
Added to a standard x86 base pointer (rax)

Offsets can point anywhere in memory
Multiple offsets can point to the same place

42



16 independent offsets into memory

vgather v1{k2}, [rax+v3]

el 3 01 2542120303621

@ @ > <— rax+0
@ ® > H<— rax+1
3 ‘ ‘ > <— rax+2
® >3 H<— rax+3
T > n<— rax+4
vVVYV VV VYV VvV
P31 11 00110311000011
22 R R AR 2
%W s 5 6 0097075000076
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Scatter

vscatter [rax+v3]{k2}, vl

Same as gather, but in reverse
Stores a vector of values to 16 different places in memory

If two offsets point to the same place,
results are not obvious

One of them will *win”, but it’s difficult to know which
Technically it is well-defined, but I advise not relying on it
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Gather/scatter speed

Gather/scatter limited by cache speed

L1$ can only handle a few accesses per
clock, not 16 different ones

Address generation and virtual->physical are expensive
Exact performance varies

Offsets referring to the same cache line can
happen on the same clock

A gather where all offsets point to the same cache line will
be much faster than one where they point to 16 different
cache lines

Gather/scatter allows SOA/AOS mixing, but data layout
design is still important for top speed
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Writing fast code for Larrabee



Performance

Two pipelines
One x86 scalar pipe, one LNI vector
- | Every clock, you can run an
calar Vector - :
instruction on each
Similar to Pentium U/V pairing rules
— Vector Mask operations count as scalar ops

Registers Registers

Instruction Decode

Vector stores are special

They can run down the scalar pipe
Can co-issue with a vector math op

L1 I-cache & D-cache

256K L2 Cache ) ) )
Local Subset Since vector math instructions are all
load-op, and vector stores co-issue,
Ring memory access is very cheap in this

architecture

intel)
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Low-level performance

Almost all vector instructions take one clock

Gather/scatter exceptions already mentioned
Most instructions have 4 clocks latency (max is 9)

4 threads makes good code easy to write

If a thread misses the cache, it goes to sleep, and its cycles
are given to other threads

When the data comes back, the thread wakes up again

Branch misprediction only needs to flush instructions from
the same thread - typically only costs 1-2 cycles

Live threads help hide latency — with 3 threads running,
4-9 clocks of latency looks like 1-2 independent
instructions

48



Memory performance

Good code will usually be memory-limited
Roughly 2 bytes per core per clock of bandwidth

For each source find best access pattern
Regular layouts benefit greatly from the right pattern
Semi-random accesses don’t care — LRU gets 90% benefit
“Use once” sources get zero benefit — always stream them

Pick the ordering that gets most benefit
Focus on good L2$ residency
Let the four threads handle L1$ residency

Explicitly manage streaming data
Prefetch ahead to hide miss latency
Use strong & weak evict hints behind to free up cache

intel)
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High-level performance

In this order...

Architect for many cores & threads

Amdahl’s law is always waiting to pounce

“Task parallel” methods take advantage of high core-to-
core bandwidth and coherent caches

Design data flow for memory bandwidth

Aim for high cache locality on regular data sources
Explicitly stream when appropriate: read, use, evict

Try to get the 4 threads per core working on similar data
Coherent caches avoid “cliff edges” in performance

Think about 16-wide SIMD

“Complete” vector instruction set means lots of options —
no need to turn everything into SOA
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High-level performance

1. Architect for many cores & threads
2. Design data flow for memory bandwidth

3. Think about SIMD

If this all sounds familiar...
The same advice works for almost all multi-core systems

The thing we focus on as programmers that is new to
Larrabee - the new wide SIMD instructions — are actually
the simplest thing to architect code for

...but they're still great fun to talk about!
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The rendering pipeline on Larrabee



The standard rendering pipeline

Input assembly
Vertex shading
Triangle clip/cull
Rasterize
Early Z/stencil
Pixel shade
Late Z/stencil
FB Blend



1. Architect for many cores & threads

Partition the scene into independent chunks

Each chunk is processed by one core, preserving order
But different chunks can be processed out of order

Partition by rendertarget

Modern scenes have 10-100 rendertargets

But they have “render to texture” dependencies
Limited parallelism, but still useful

Create DAG of rendertargets, exploit what there is

Partition each rendertarget

Variety of methods, we chose binning/tiling
Tiles can be processed out of order = good parallelism
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2. Design data flow for memory BW

Input assembly: indices

Vertex shading: vertices & some textures
Triangle clip/cull: indices & vertices
Rasterize: vertex positions

Early Z/stencil:

Pixel shade: vertex attributes &

Late Z/stencil:

FB Blend:

...and remember everything wants good I$ locality!

intel)



2. Design data flow for memory BW

Input assembly & vertex processing

Typically “use once” data — order doesn’t matter much
Also have “constant” data — lights, animation bones, etc
Best order is submission order

Adjacent DrawPrimitive calls share little data

So we can parcel them out to different cores
Can do vertex shading in any order
But must preserve original order when doing Z/pixel blend
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2. Design data flow for memory BW

In pixel shaders, textures & FB use most BW
So which should we order by?

Textures are fairly order-insensitive
Mipmapping causes about 1.25 texel misses per sample
Small caches give most of the available benefit
Need impractically large caches to give benefit beyond that
Result — they don’t care much about processing order

FB colour & depth do cache very well

Load tile into L2$, do all processing, store the tile
Choose a tile size that fits in L2%$
Depends on pixel format, # of channels, and antialias type

Typically 32x32 up to 128x128 pixels
intel)
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3. Think about SIMD

Pixel shaders require 2x2 blocks
Needed for derivative calculations for mipmapping

So that’s 4-wide SIMD already
We can pack 4 2x2 blocks together to make 16-wide SIMD

Typically (but not always) a 4x4 block of pixels
This also keeps texture accesses coherent enough to cache

Rasterisation uses a hierarchical descent

Each level of the descent is 16x fewer pixels than the last
Extensive details in Michael Abrash’s GDC 2009 talk

Other parts of the pipeline are simple

Shade 16 vertices, setup 16 triangles, etc...
(though the details can get a little tricky)
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Our binning/tiling architecture

“Front end”
Input assembly
Vertex shading
Triangle culling

Binning
Split rendertarget into tiles
Decide which tile(s) each triangle hits
Make a “bin” for each tile — the list of tris that hit that tile

“Back end” - each core picks up a tile+bin
Rasterization
Early depth
Pixel shading
Depth & blend
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Haven't people tried binning before?

...and these are the things to be careful of:

Binning hardware can be a bottleneck

High rejection rates leaves pixel shader hardware idle
But we don’t have any dedicated units — just cores
Cores do whatever jobs need doing & load balance

Running out of memory

Causes fallback to driver on the host to multi-pass
But we're just as smart as any driver
Multi-passing is just like doing more rendertargets

Complex intermediate structures
Not a problem for an x86 processor

60



Challenges of an all-software pipeline

We can work smarter, not harder

We can have multiple versions of the pipeline
Each can be tuned for different app styles
We can tune for new apps without releasing new hardware

We can support new APIs on existing hardware

But that means a lot of code to write

It all takes time to write, test & tune
But once its written, it has little end-user cost (disk space)

...and in case it’s not difficult enough...
Running under a real grown-up OS
Full pre-emptive multitasking and virtual memory
Co-existing with other “native” apps
All being hidden under a standard Vista/Win7 DX driver
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Larrabee hardware summary

Pentium-derived x86 core

Well-understood pipeline
64-bit x86 instruction set
4 threads per core

512-bit wide SIMD

“Vector complete” float32, int32, float64 instruction set

Local caches

L1 data and instruction caches
L2 combined cache
Coherent, use standard x86 memory ordering

High-speed ring

Inter-processor comms and shared DRAM access
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Larrabee programmer’s summary

Priorities
Think about how you can feed 100+ threads
Think about how to optimise for limited memory bandwidth
Think about how to do 16 things at once

You always have standard x86

All your code will run, even if you don’t SIMD it
Great for the 90% of code that just has to work
Profile it once it's running, find out which bits need love

Enormous math horsepower available

16 float32 multiply-adds per clock, plus scalar control
Flow control and address generation are nearly free

Gather & scatter to talk to non-16 layouts
But be mindful of cache bandwidth intel)
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Larrabee resources

GDC 2009 talks by Abrash & Forsyth
Dr. Dobb’s Journal article by Michael Abrash
SIGGRAPH 2008

“Larrabee: A Many-Core x86 Architecture for Visual
Computing” Seiler et al

Assorted other SIGGRAPH and SIGGRAPH Asia talks

C++ Larrabee Prototype Library
Very close to the intrinsics, works on current hardware

www.intel.com/software/graphics

Questions?
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4-wide SIMD - SOA or AOS?

Using 4_Widf\ CCLC +hAavrAaA ArA Fiain t:hoices

Needs reorg? Intro?

AQOS or "pa¢ XYZ_
Each iteratior
At most 75%

SOA or “sce 9,9,0,4
Another regis L7
Each iteratior. . ____ _. ______ __. . ___. __

Code is roughly 3x as long

100% use of math units

But you have to have 4 things to do

And the data is usually not in an SOA-friendly format
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16-wide SIMD - AOS

AQOS is really two options:

Simple: register holds XYZ
Basically the same code as SSE
Only at most 19% use of math units

But can still be appropriate if you do have wide vectors
Matrix math, geometric algebra

4-wide: register holds XYZ_XYZ_XYZ_XYZ

Each iteration produces four results
Code is the same length

At most 75% use of math units

But you have to have 4 things to do
Data is often in a reasonable format
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16-wide SIMD - SOA

16-wide register holds: XXXXXXXXXXXXXXX

Others hold YYYYYYYYYYYYYYYY, Z227272727727277777777
Each iteration produces 16 results

Code is roughly 3x as long

100% use of math units

But you have to have 16 things to do!

Larrabee adds predication
Allows each lane to execute different code

Data is usually not in a friendly format!
Larrabee adds scatter/gather support for reformatting

Allows 90% of our code to use this mode
Very little use of AOS modes
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Gather example

vgather v1{k2}, [rax+v3]

el 3 01 2542120303621

¥4 1l 1 1 0011011000011

28 0 0 00 00O0O00O0O0OO0OO0OOO0DO

(]

Values in
memory



Gather example

vgather v1{k2}, [rax+v3]

<130 1 2542120303621

o < rax+0
B<— rax+1
/8 <— rax+2

> B<— rax+3

A

¥4 1l 1 1 0011011000011

vl

8 000000O0OO0OO0OOCOOOOO

|| |
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Gather example

vgather v1{k2}, [rax+v3]

%<1 301 2542120303621

701 1 0011011000011

Vv

28 8 5 0000 00000O0O0CCO0O0CDO
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/8 <— rax+2



Gather example

vgather v1{k2}, [rax+v3]

%<l 3 01 2542120303621

700 1 0 011011000011

Vv

28 8 5 6 00000000O0O0O0O0C0O
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o < rax+0
> B<— rax+1
/8 <— rax+2



Gather example

vgather v1{k2}, [rax+v3]

el 3 01 2 542120303862 %

\4
'¥2E40 0 0 0.0 00 0000000 0!!

2l 8 5 6 00 97075000076

|<
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o < rax+0
> B<— rax+1
/8 <— rax+2



y=1;
while (x>0) {

y*=x;

Using gather

...same loop as the predication
example before...

...but we use the result to look
up into an array. In the SIMD
code, 16 different values are

A\ /4

stored in “y
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Using gather
Indexed lookup done using gather

; y=1; while (x>0) { y*=x; x--; }; z = al[yl];
kxnor kL, kL

vloadps vY, [ConstOne] {1tol6}

loop:

vmulps vY{kL}, vY, vX

vsubps vX{kL}, vX, [ConstOne] {1tolé6}
vempps_ gt kL{kL}, vX, [ConstOne]{ltolé6}
kortest kL, kL

jnz loop

kxnor kL, kL

vgather vZ{kL},6K [raxtvY]
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Hints and tips

Vmadd233p’lzeep? Ditch?

Does an arbit ck
VCOMPress,

Allows you to ta

Repack into 1 efficiency
Format con tore

Keep memory .. ... ..cc.__, «..—....—, -....3, etc

Efficient use of memory bandwidth and cache space

In most code, scalar ops are “free”

Hide in the shadow of vector ops
As do most vector stores
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C++ Larrabee Prototype Library

liloA ~nh vk rirnmeci~~ 1A pkA -
LOOkS V_e ry Cut’'n’paste from DaVinci pres? y
But behind th

Just a header
Compiles on : Cut prototype library stuff entirely? 5CC, etc

Should work

No claims o
Fast enough t

Some paths have s>c 101 a nvuest vuust

Precision caution!
It’s just C, so you get whatever precision the compiler has
May not be bit-perfect with Larrabee without care
Multiply-add, square roots, x87 rounding mode, etc
Same caveats as any other cross-platform development
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C++ Larrabee Prototype Library

Allows experimentation with 16-wide SIMD
Debugging is simple — just step into the function

Allows porting of algorithms and brains

Helps people think “the other way up”
Prototype different styles of execution

Runs on existing machines

Allows LNI code into cross-platform libraries
Useful for developing on laptops, etc

C+4 Larrabee Prototype Library at
www.intel.com/software/graphics

Instruction count gives some feel for performance
Please give us feedback for the final intrinsics library
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C++ Larrabee Prototype Library...

m512 mandelbrot ( m512 x in, m512 y in ) {
const float ConstOne = 1.0f;
mmask mask = OxXFFFF;
m512 x = x _in;
m512 y = y in;
m512 iter = m512 setzero() ;
do {
m512 temp = m512 mul ps ( x, y )’
temp = m512 add ps ( temp, temp );
x = m512 mask madd213 ps ( x, mask, x, X in );
x = m512 mask msub231 ps ( x, mask, y, y )’
y = m512 mask add ps ( y, mask, temp, y in );
iter = m512 mask add ps ( iter, mask, iter,
m512 swizupconv_float32 ( &ConstOne, MM BROADCAST 1X16) ) ;
m512 dist = m512 mul ps ( x, x );
dist = m512 madd231 ps ( dist, y, y )’
mask = m512 mask cmple ps ( mask, dist,
m512 swizupconv_float32 ( &ConstOne, MM BROADCAST 1X16) ) ;
} while ( mask '=0 ) ;
return iter;

=
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ConstOne: DD 1.0
mandelbrot:
kxnor k2, k2
vorpi vO0, v2, v2
vorpi vl, v3, v3

...raw assembly

vxorpi v4, v4, v4

loop:

vmulps v21{k2}, v0O, vl

vaddps v21{k2}, v21, v21
vmadd213ps v0{k2}, vO0O, v2
vmsub231ps v0{k2}, vl, vl

vaddps v1{k2},
vaddps v4{k2},

v21l, v3
v4,

[ConstOne] {1tol6}
vmulps v25{k2}, vO0, vO
vmaddps v25{k2}, vl, vl
vempps_le k2{k2}, v25,

[ConstOne] {1tol6}

kortest k2, k2
jnz loop
ret
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