
Rethinking Time
in Distributed Systems

Can We Build Complex Systems Simply?

Paul Borrill

Stanford EE Computer Systems Colloquium
4:15PM, Wednesday, Nov 11, 2009

NEC Auditorium, Gates Computer Science Building B03
http://ee380.stanford.edu

radical simplicity

Radical Simplicity

Agenda
•Motivation: Conquering Complexity

• Complexity destroys Availability, Scaling & Recovery

•Computer Scientists Notion of Time?

• History & State of Affairs

•The World is Massively Asynchronous

• Humans think Sequentially; Programmers are Humans

•The Need to Rethink Distributed Systems

• Why we need a new Theory of Infrastructure (TOI)

•A Way Forward?

• Re-examine the Axiom of Time in Computer Science

Failures, Disasters, Attacks:
may be inevitable ...

But what’s stopping our
systems from recovering
quickly?

Part 1: Motivation
January 28, 1986

September 11, 2001

The Computer Industry 2009
• The processor industry: In a Concurrency Crisis

• Gets worse with each generation of processor (the
number of cores doubles each generation instead of
the performance of each core)

• No-one has thought about the software (John Hennessy)

• The storage industry: In a Complexity Crisis

• We “have to” scale-out, because “scale-up” systems
are impossible to make sufficiently reliable

• No-one has thought about the software (Paul Borrill)

Might there be a common cause behind
these problems?

Radical Simplicity

Complexity Crisis in IT
Complexity is holding
our industry back ... a lot
of what is bought and
paid for doesn’t get
implemented because of
complexity. Ray Lane,
ex COO, Oracle

This is the sort of
industry trauma that
precedes a major
paradigm shift. Pip
Coburn, UBS Warburg.

IT has lost control over
systems: the state of the
art really is reactive
firefighting. Harrick Vin,
Professor, Computer
Science University of
Texas at Austin.

IT complexity acts as a
significant tax on IT
value. Bob Zukis,
Pricewaterhouse
Coopers.

Complexity leads to
brittleness and high
costs. Frank
Modruson, CIO,
Accenture.

CIOs are standing in the
path of a fire hose
spewing complexity, and
many are getting
soaked. Galen
Gruman, CIO

The problem is that we
keep going through the
same problems over and
over and over again.
Peter Neumann SRI

The IT industry is long
past denial. IT today is in
a state that we should
be ashamed of; its
embarrassing. Greg
Papadopoulos, CTO,
Sun Microsystems.

That’s why they’ve failed
in the past; they don’t
look at the lifecycle; all
of a sudden, they hit the
[complexity] wall. Rolin
Ford, CIO, Wal-Mart

Every IT manager,
system administrator,
and developer is fighting
against the monster of
computing complexity.
Mike Shapiro, Sun
Microsystems

Complexity has arisen
from evolution, of:
Operating systems,
apps, workload types,
volumes & users.
Systems must constantly
adapt to changes.
Harrick Vin, Prof, CS,
UTA

Each additional
technology wasn’t a
tipping point; it was just
one more thing. But at
some point you realize
you’ve reached a tipping
point. It’s easy to end up
with unnecessary
complexity due to
technological and
business-process
diversity. Ray Dury,
CIO, Fifth Third
Bancorp

Everyone knows a
bout it

,

why doesn’t s
omeone do

something about it
?

Henry David Thoreau

“Men have
become tools of

their tools”

Radical Simplicity

The Perfect Storm
All happening at once:

• IT Complexity Exponentiating

• Baby Boomer (Experts) Retiring

• Fewer IT Graduates

• Fewer IT Immigrants

• Economic Downturn C
IO

Co
mp

lex
ity

Radical Simplicity

Complexity Scaling

N

N
2

2
N

! Linear Complexity

 Solved by Hardware

! Quadratic Complexity

 Solved by Software

! Exponential Complexity

 Left to Administration!
N

N
2

2
N

! Linear Complexity

 Solved by Hardware

! Quadratic Complexity

 Solved by Software

! Exponential Complexity

 Left to Administration!

Herbert Simon

“What information consumes is
rather obvious: it consumes
the attention of its recipients.

Hence a wealth of information
creates a poverty of attention,
and a need to allocate that
attention efficiently among the
overabundance of information
sources that might consume it”

Part II Time & Causality

•Simultaneity is a Myth

•Causality is a Myth

•Time is not Continuous

•Time does not flow

•Time has no direction

 Albert Einstein

“It is utterly beyond our power to measure
the changes of things by time” Quite the
contrary, time is an abstraction at which
we arrive through the changes of things”

Ernst Mach

“A persistently stubborn illusion”

What is Time?

Computer Scientists & Time ?

• A relationship with time is intrinsic to everything
we do in computing, modifying and moving data

• The understanding of the concept of time among
computer scientists appears far behind that of
physicists and philosophers

• If fundamental flaws exist in the time axioms
underlying the algorithms that govern access to
and evolution of our data, then our systems will
fail in unpredictable ways, and any number of
undesirable characteristics may follow

Radical Simplicity

Causality is a Myth
“Computer Scientists imagine that causation is one of the
fundamental axioms or postulates of physics, yet, oddly
enough, in real scientific disciplines such as special and general
relativity, and quantum mechanics, the word “cause” never
occurs. To me it seems that computer science ought not to
assume such legislative functions, and that the reason why
physics has ceased to look for causes is that in fact there are
no such things. The law of causality, I believe, like much that
passes muster among computer scientists, is a relic of a
bygone age, surviving, like a belief in God, only because it is
erroneously supposed to do no harm”

~Paul Borrill (with apologies to Bertrand Russell)

Radical Simplicity

What do I mean by God?
• It has nothing to do with religion:

• GEV=God’s Eye View: the way programmers think.
c.f. Client-server, Linearizability

• LOV=Local Observer View: the way the world
really works

Related to the now obsolete context of “observer and
system” in Quantum Theory. Otherwise known as event
symmetry: we are all mutual observers*

* See: The internal description of a causal set: What the universe looks like from the inside. Fotini Markopoulou

Radical Simplicity

Determinism is a Myth
• Distributed systems are fundamentally non-

deterministic

• From the metastability of our logic gates to the
decoherence of our communication links

• The problem goes deep into physics, and ultimately
to the question of free will (FWF)*

If we have free will, then so do elementary particles*

* See: John Conway & Simon Kochen. The Free Will Theorem.

Radical Simplicity

Where do computer scientists
get their notion of time?

A mathematically seductive idealization of a one dimensional object in ℝ

Alan Turing

Radical Simplicity

Simultaneity is a Myth
Maurice Herlihy and Nir Shavit:

The Art of Multiprocessor Programming [2008]:

"In 1689, Isaac Newton stated ‘absolute, true and
mathematical time, of itself and from its own nature,
flows equably without relation to anything external.’
We endorse his notion of time"

A notion of time proven incorrect over a hundred years ago ...

Simultaneity is a Myth
• In 1905 Einstein showed us that the concept of “now”

is meaningless except for events occurring “here”

• In 1978, Leslie Lamport published “Time, Clocks and
the Ordering of Events”, in which he defined the
happened before relation

• Unfortunately, happened before is meaningless unless
intimately associated with happened where. Lamport
understood this, but many who read his paper don't

• In 2009, most Computer Scientists and programmers
implicitly base their algorithms on absolute
(Newtonian) Time, or use Lamport’s timestamps as a
crutch to sweep their issues with time under the rug

Breakdown in Simultaneity - 1

Courtesy Kevin Brown
http://www.mathpages.com/rr/s4-08/4-08.htm

Breakdown in Simultaneity - 2

Courtesy Kevin Brown
http://www.mathpages.com/rr/s4-08/4-08.htm

Breakdown in Simultaneity - 3

Courtesy Kevin Brown
http://www.mathpages.com/rr/s4-08/4-08.htm

But wait - can’t we assume an
“inertial system”?
• Our computers reside:

• On the Surface of a Rotating Sphere

• In a Gravitational Field

• Orbiting a Star

• Our Computers are connected:

• Not with light signals in a vacuum, but with a
stochastic latency distribution network

• Equivalence of Acceleration and variability of
transmission delay in the propagation of packets

• Creating coherent time sources is “problematic”

Other difficulties with “time”
•Time is not a continuous background*
• Time is change. Events are unique in spacetime. There is no

such thing as an indivisible instant.

•Time does not flow
• There is no more evidence for the existence of anything

real between one event and another, than there is for an
aether to support the propagation of electromagnetic waves
through empty space

• In Physics, Time has no direction
• Time is intrinsically symmetric. We experience irreversible

processes that capture “change” like a probability ratchet
that prevents a wheel going backwards (the 2nd law)

* See: The Case for Background Independence, Lee Smolin [ArXiv:hep-th/0507235v1 25-Jul 2005]

Leslie Lamport 1978

• Defined “happened before” relation: a partial order

• Defined “logical timestamps” which force an arbitrary
total order, restricting the available concurrency of a
system (i.e. the algorithm can proceed no faster than
it would in a single processor)

• This “concurrency efficiency loss” gets worse as:

• We add more nodes to a distributed system

• These nodes become more spatially separated

• Our processors and networks get faster

• Our processors are comprised of more cores

Time-stamps - Event 24

P

P:0

Q:--

R:--

Q

P:--

Q:0

R:--

R

P:--

Q:--

R:0

P

P:1

Q:2

R:1

P

P:2

Q:2

R:1

P

P:3

Q:3

R:3

Q

P:--

Q:1

R:1

Q

P:--

Q:2

R:1

Q

P:--

Q:3

R:1

Q

P:2

Q:4

R:1

Q

P:2

Q:5

R:1

R

P:--

Q:--

R:1

R

P:--

Q:3

R:2

R

P:--

Q:3

R:3

R

P:2

Q:5

R:4

R

P:2

Q:5

R:5

P

P:4

Q:5

R:5

t

Process

Causal History

Future
Effect

sl
op

e
!
 c

sl
op

e
!
 c

slope ! c

slope ! c

11 12 13 14

21 22
23

24 25

3231 33 34 35

Time-stamps - Event 32

26

P

P:0

Q:--

R:--

Q

P:--

Q:0

R:--

R

P:--

Q:--

R:0

P

P:1

Q:2

R:1

P

P:2

Q:2

R:1

P

P:3

Q:3

R:3

Q

P:--

Q:1

R:1

Q

P:--

Q:2

R:1

Q

P:--

Q:3

R:1

Q

P:2

Q:4

R:1

Q

P:2

Q:5

R:1

R

P:--

Q:--

R:1

R

P:--

Q:3

R:2

R

P:--

Q:3

R:3

R

P:2

Q:5

R:4

R

P:2

Q:5

R:5

P

P:4

Q:5

R:5

t

Process

Causal History

sl
op

e
!
 c

sl
op

e
!
 c

slope ! c

11 12 13 14

21 22 23 24 25

3231 33 34 35

Future
Effect

Lamport
Fig. 1.

a, CY ,Y

(9 (9 ~o
~ o

P4'

P3

P2'

Pl ~

q7

q6

q5

q l

r 4

r 3

r 2

r 1

event. We are assuming that the events of a process form

a sequence, where a occurs before b in this sequence if

a happens before b. In other words, a single process is

defined to be a set of events with an a priori total

ordering. This seems to be what is generally meant by a

process.~ It would be trivial to extend our definition to

allow a process to split into distinct subprocesses, but we

will not bother to do so.

We assume that sending or receiving a message is an

event in a process. We can then define the "happened

before" relation, denoted by "---~", as follows.

Definition. The relation "---->" on the set of events of

a system is the smallest relation satisfying the following

three conditions: (1) I f a and b are events in the same

process, and a comes before b, then a ~ b. (2) I f a is the

sending of a message by one process and b is the receipt

o f the same message by another process, then a ~ b. (3)

I f a ~ b and b ~ c then a ---* c. Two distinct events a

and b are said to be concurrent if a ~ b and b -/-* a.

We assume that a ~ a for any event a. (Systems in

which an event can happen before itself do not seem to

be physically meaningful.) This implies that ~ is an

irreflexive partial ordering on the set of all events in the

system.

It is helpful to view this definition in terms of a

"space-time diagram" such as Figure 1. The horizontal

direction represents space, and the vertical direction

represents t ime-- la ter times being higher than earlier

ones. The dots denote events, the vertical lines denote

processes, and the wavy lines denote messagesfl It is easy

to see that a ~ b means that one can go from a to b in

' The choice of what constitutes an event affects the ordering of

events in a process. For example, the receipt of a message might denote

the setting of an interrupt bit in a computer, or the execution of a

subprogram to handle that interrupt. Since interrupts need not be

handled in the order that they occur, this choice will affect the order-
ing of a process' message-receiving events.

2 Observe that messages may be received out of order. We allow

the sending of several messages to be a single event, but for convenience

we will assume that the receipt of a single message does not coincide
with the sending or receipt of any other message.

559

Fig. 2.

cy c~

(9 (9 ~)
O O U

- 2 - - - q6 -- ;#.i
Y _ P3' ~ ~ ~ ~ ~ _ ~ ~ - ~ r3

the diagram by moving forward in time along process

and message lines. For example, we have p, --~ r4 in

Figure 1.

Another way of viewing the definition is to say that

a --) b means that it is possible for event a to causally

affect event b. Two events are concurrent if neither can

causally affect the other. For example, events pa and q:~

of Figure 1 are concurrent. Even though we have drawn

the diagram to imply that q3 occurs at an earlier physical

time than 1)3, process P cannot know what process Q did

at qa until it receives the message at p , (Before event p4,

P could at most know what Q was planning to do at q:~.)
This definition will appear quite natural to the reader

familiar with the invariant space-time formulation of

special relativity, as described for example in [1] or the

first chapter of [2]. In relativity, the ordering of events is

defined in terms of messages that could be sent. However,

we have taken the more pragmatic approach of only

considering messages that actually are sent. We should

be able to determine if a system performed correctly by

knowing only those events which did occur, without

knowing which events could have occurred.

Logical Clocks

We now introduce clocks into the system. We begin

with an abstract point of view in which a clock is just a

way of assigning a number to an event, where the number

is thought of as the time at which the event occurred.

More precisely, we define a clock Ci for each process Pi

to be a function which assigns a number Ci(a) to any

event a in that process. The entire system ofc lbcks is

represented by the function C which assigns to any event

b the number C(b) , where C(b) = C/(b) i fb is an event

in process Pj. For now, we make no assumption about

the relation of the numbers Ci(a) to physical time, so we

can think of the clocks Ci as logical rather than physical

clocks. They may be implemented by counters with no

actual timing mechanism.

Communications July 1978

of Volume 21

the ACM Number 7

Fig. 1.

a, CY ,Y

(9 (9 ~o
~ o

P4'

P3

P2'

Pl ~

q7

q6

q5

q l

r 4

r 3

r 2

r 1

event. We are assuming that the events of a process form

a sequence, where a occurs before b in this sequence if

a happens before b. In other words, a single process is

defined to be a set of events with an a priori total

ordering. This seems to be what is generally meant by a

process.~ It would be trivial to extend our definition to

allow a process to split into distinct subprocesses, but we

will not bother to do so.

We assume that sending or receiving a message is an

event in a process. We can then define the "happened

before" relation, denoted by "---~", as follows.

Definition. The relation "---->" on the set of events of

a system is the smallest relation satisfying the following

three conditions: (1) I f a and b are events in the same

process, and a comes before b, then a ~ b. (2) I f a is the

sending of a message by one process and b is the receipt

o f the same message by another process, then a ~ b. (3)

I f a ~ b and b ~ c then a ---* c. Two distinct events a

and b are said to be concurrent if a ~ b and b -/-* a.

We assume that a ~ a for any event a. (Systems in

which an event can happen before itself do not seem to

be physically meaningful.) This implies that ~ is an

irreflexive partial ordering on the set of all events in the

system.

It is helpful to view this definition in terms of a

"space-time diagram" such as Figure 1. The horizontal

direction represents space, and the vertical direction

represents t ime-- la ter times being higher than earlier

ones. The dots denote events, the vertical lines denote

processes, and the wavy lines denote messagesfl It is easy

to see that a ~ b means that one can go from a to b in

' The choice of what constitutes an event affects the ordering of

events in a process. For example, the receipt of a message might denote

the setting of an interrupt bit in a computer, or the execution of a

subprogram to handle that interrupt. Since interrupts need not be

handled in the order that they occur, this choice will affect the order-
ing of a process' message-receiving events.

2 Observe that messages may be received out of order. We allow

the sending of several messages to be a single event, but for convenience

we will assume that the receipt of a single message does not coincide
with the sending or receipt of any other message.

559

Fig. 2.

cy c~

(9 (9 ~)
O O U

- 2 - - - q6 -- ;#.i
Y _ P3' ~ ~ ~ ~ ~ _ ~ ~ - ~ r3

the diagram by moving forward in time along process

and message lines. For example, we have p, --~ r4 in

Figure 1.

Another way of viewing the definition is to say that

a --) b means that it is possible for event a to causally

affect event b. Two events are concurrent if neither can

causally affect the other. For example, events pa and q:~

of Figure 1 are concurrent. Even though we have drawn

the diagram to imply that q3 occurs at an earlier physical

time than 1)3, process P cannot know what process Q did

at qa until it receives the message at p , (Before event p4,

P could at most know what Q was planning to do at q:~.)
This definition will appear quite natural to the reader

familiar with the invariant space-time formulation of

special relativity, as described for example in [1] or the

first chapter of [2]. In relativity, the ordering of events is

defined in terms of messages that could be sent. However,

we have taken the more pragmatic approach of only

considering messages that actually are sent. We should

be able to determine if a system performed correctly by

knowing only those events which did occur, without

knowing which events could have occurred.

Logical Clocks

We now introduce clocks into the system. We begin

with an abstract point of view in which a clock is just a

way of assigning a number to an event, where the number

is thought of as the time at which the event occurred.

More precisely, we define a clock Ci for each process Pi

to be a function which assigns a number Ci(a) to any

event a in that process. The entire system ofc lbcks is

represented by the function C which assigns to any event

b the number C(b) , where C(b) = C/(b) i fb is an event

in process Pj. For now, we make no assumption about

the relation of the numbers Ci(a) to physical time, so we

can think of the clocks Ci as logical rather than physical

clocks. They may be implemented by counters with no

actual timing mechanism.

Communications July 1978

of Volume 21

the ACM Number 7

Fig. 3.
CY n¢

8 8 8

c~! ~ ~iLql ~ .r 4

We now consider what it means for such a system of

clocks to be correct. We cannot base our definition of

correctness on physical time, since that would require

introducing clocks which keep physical time. Our defi-

nition must be based on the order in which events occur.

The strongest reasonable condition is that if an event a

occurs before another event b, then a should happen at

an earlier time than b. We state this condition more

formally as follows.

Clock Condition. For any events a, b:

if a---> b then C(a) < C(b) .

Note that we cannot expect the converse condition to

hold as well, since that would imply that any two con-

current events must occur at the same time. In Figure 1,

p2 and p.~ are both concurrent with q3, so this would

mean that they both must occur at the same time as q.~,

which would contradict the Clock Condition because p2

-----> /93.

It is easy to see from our definition of the relation

"---~" that the Clock Condition is satisfied if the following

two conditions hold.

C 1. I f a and b are events in process P~, and a comes

before b, then Ci(a) < Ci(b).

C2. I f a is the sending of a message by process Pi

and b is the receipt of that message by process Pi, then

Ci(a) < Ci(b).

Let us consider the clocks in terms of a space-time

diagram. We imagine that a process' clock "ticks"

through every number, with the ticks occurring between

the process' events. For example, if a and b are consec-

utive events in process Pi with Ci(a) = 4 and Ci(b) = 7,

then clock ticks 5, 6, and 7 occur between the two events.

We draw a dashed "tick line" through all the like-

numbered ticks of the different processes. The space-

time diagram of Figure 1 might then yield the picture in

Figure 2. Condition C 1 means that there must be a tick

line between any two events on a process line, and

560

condition C2 means that every message line must cross

a tick line. From the pictorial meaning of--->, it is easy to

see why these two conditions imply the Clock Con-

dition.

We can consider the tick lines to be the time coordi-

nate lines of some Cartesian coordinate system on space-

time. We can redraw Figure 2 to straighten these coor-

dinate lines, thus obtaining Figure 3. Figure 3 is a valid

alternate way of representing the same system of events

as Figure 2. Without introducing the concept of physical

time into the system (which requires introducing physical

clocks), there is no way to decide which of these pictures

is a better representation.

The reader may find it helpful to visualize a two-

dimensional spatial network of processes, which yields a

three-dimensional space-time diagram. Processes and

messages are still represented by lines, but tick lines

become two-dimensional surfaces.

Let us now assume that the processes are algorithms,

and the events represent certain actions during their

execution. We will show how to introduce clocks into the

processes which satisfy the Clock Condition. Process Pi's

clock is represented by a register Ci, so that C~(a) is the

value contained by C~ during the event a. The value of

C~ will change between events, so changing Ci does not

itself constitute an event.

To guarantee that the system of clocks satisfies the

Clock Condition, we will insure that it satisfies conditions

C 1 and C2. Condition C 1 is simple; the processes need

only obey the following implementat ion rule:

IR1. Each process P~ increments Ci between any

two successive events.

To meet condition C2, we require that each message

m contain a timestamp Tm which equals the time at which

the message was sent. Upon receiving a message time-

s tamped Tin, a process must advance its clock to be later

than Tin. More precisely, we have the following rule.

IR2. (a) I f event a is the sending of a message m

by process P~, then the message m contains a t imestamp

Tm= Ci(a). (b) Upon receiving a message m, process

Pi sets Ci greater than or equal to its present value and

greater than Tin.

In IR2(b) we consider the event which represents the

receipt of the message m to occur after the setting of C i.

(This is just a notational nuisance, and is irrelevant in

any actual implementation.) Obviously, IR2 insures that

C2 is satisfied. Hence, the simple implementat ion rules

IR l and IR2 imply that the Clock Condition is satisfied,

so they guarantee a correct system of logical clocks.

Ordering the Events Totally

We can use a system of clocks satisfying the Clock

Condition to place a total ordering on the set of all

system events. We simply order the events by the times

Communications July 1978
of Volume 21
the ACM Number 7

duct ion to the subject. The methods described in the

l i terature are useful for est imating the message delays

ktm and for adjust ing the clock frequencies d C i / d t (for

clocks which permit such an adjustment) . However , the

requi rement that clocks are never set backwards seems

to distinguish our si tuation f rom ones previously studied,

and we believe this theorem to be a new result.

C o n c l u s i o n

W e have seen that the concept o f "happen ing before"

defines an invar iant par t ia l ordering of the events in a

dis t r ibuted mul t iprocess system. We described an algo-

r i thm for extending that part ial ordering to a somewhat

a rb i t ra ry total ordering, and showed how this total or-

der ing can be used to solve a s imple synchronizat ion

problem. A future pape r will show how this approach

can be extended to solve any synchronizat ion problem.

The total order ing def ined by the a lgor i thm is some-

what arbi t rary. It can produce anomalous behav io r if it

disagrees with the order ing perceived by the system's

users. This can be p reven ted by the use of p roper ly

synchronized physical clocks. Our theorem showed how

closely the clocks can be synchronized.

In a dis t r ibuted system, it is impor tan t to realize that

the order in which events occur is only a part ial ordering.

W e believe that this idea is useful in unders tanding any

mult iprocess system. It should help one to unders tand

the basic p rob lems o f mult iprocessing independent ly of

the mechan i sms used to solve them.

A p p e n d i x

P r o o f o f the T h e o r e m

For any i and t, let us define C~ t to be a clock which

is set equal to C~ at t ime t and runs at the same rate as

Ci, but is never reset. In other words,

C i t (t ') = Ci(t) + [d C z (t) / d t l d t (1)

for all t' >_ t. Note that

Ci(t') >_ Cit(t ') for all t' >__ t. (2)

Suppose process P~ at t ime tl sends a message to

process Pz which is received at t ime t2 with an unpre-

dictable delay _< ~, where to <- ta _< t2. Then for all t ___ t2

we have:

C~(t) >_ C~(t2) + (1 - x)(t - t2) [by (1) and PCI]

> Cfftl) +/~m + (1 -- x)(t -- t2) [by IR2 ' (b)]

= Cl(t l) + (1 - x) (t - t l) - [(t2 - tO - ~m] + x (t 2 - t ,)

>-- Cl(tl) + (1 - x) (t - t l) - 4.

Hence, with these assumptions, for all t >_ t2 we have:

C~(t) _> Cl(tl) + (1 - x)(t - / 1) - - 4" (3)

NOW suppose that for i = 1, . . . , n we have t, _< t ~, <

t i+l, to <-- t~, and that at t ime t[process Pi sends a message

to process Pi+l which is received at t ime ti+l with an

unpredic table delay less than 4. Then repeated applica-

t ion o f the inequal i ty (3) yields the following result for

t >_ tn+l .

Ct~t(t) --> Cl(tl ') + (1 - ~)(t - tl ') - n~. (4)

F r o m PC1, I R I ' and 2' we deduce that

C l (/ l ') >" C l (t l) + (1 -- K)(tl ' - - /1).

Combin ing this with (4) and using (2), we get

Cn+a(t) > C~(tl) + (1 - x)(t - t~) - n~ (5)

for t > tn+l .

For any two processes P and P', we can find a

sequence of processes P -- Po, P~ Pn+~ = P', n _< d,

with communica t i on arcs f rom each Pi to Pi+~. By hy-

pothesis (b) we can find t imes t i , t[with t[- ti <- T and

ti+l - t" <_ v, where v = # + 4. Hence, an inequal i ty o f

the fo rm (5) holds with n <_ d whenever t >_ t~ + d('r +

v). Fo r any i, j and any t, tl with tl > to and t ___ t~ + d(z

+ v) we therefore have:

Ci(t) _> Cj(ta) + (1 - x) (t - tx) - d~. (6)

N o w let m be any message t imes tamped Tin, and

suppose it is sent at t ime t and received at t ime t'. We

pre tend that m has a clock Cm which runs at a constant

rate such that C,~(t) = tm and Cm(t') = tm +/~m. Then

#0, ___ t' - t implies that d C m / d t _< 1. Rule IR2 ' (b) s imply

sets Cj(t') to m a x i m u m (Cj(t' - 0), Cm(t')). Hence, clocks

are reset only by setting them equal to other clocks.

Fo r any t ime tx >-- to + / ~ / (1 - ~), let Cx be the clock

having the largest value at t ime t~. Since all clocks run

at a rate less than 1 + x, we have for all i and all t >_ tx:

Ci(t) _< Cx(tx) + (1 + x) (t - tx). (7)

W e now consider the following two cases: (i) Cx is the

clock Cq o f process Pq. (ii) Cx is the clock Cm of a

message sent at t ime ta by process Pq. In case (i), (7)

s imply becomes

El(t) -< Cq(tx) + (1 + x) (t - tx). (8i)

In case (ii), since Cm(tx) = Cq(t l) and d C m / d t _ 1, we

have

Cx(tx) <_ Cq(tl) + (tx - tO.

Hence, (7) yields

Ci(t) <-~ Cq(/1) + (1 + K)(t -- /1).

Since tx

C q (t x - -

(8ii)

>-- to + ~t/(1 -- X), we get

~/(1 -- K)) <_ Cq(tx) - ~ [by PCI]

___ Cm(tx) - / z [by choice o f m]

-< Cm(tx) - (tx - t l) # m / V m [tXm <-- r.t, tx - t l <_ v,,]

= T m [by defini t ion o f Cm]

= Cq(tl) [by IR2'(a)] .

Hence, Cq(tx - / L / (1 - x)) ___ Cq(tl), so tx - t l < - / x / (l -

~) and thus ll ~ to.

564 Communications July 1978
of Volume 21
the ACM Number 7

More Lamport

• “We can consider the tick lines to be the time coordinate
lines of some Cartesian coordinate system on space-time”

• “Processes and messages are still represented by lines but
tick lines become two dimensional surfaces”

• This is barely consistent with SR, it is not consistent with
GR

• More importantly, there is no “Cartesian coordinate
system” in current physics. if anything, we use relative
(invariant) coordinate systems in GR

• Everything is relative, even when you think it isn’t

Radical SimplicityPart III Can we Build
Complex Systems Simply?
• Continuing to build storage systems the way we do is

no longer a viable strategy

• System requirements are inherently conflicting, diverse
and are often unknowable

• Large systems are not designed, they are evolved,
and they fail constantly

• We have no choice but to embrace Commodity Reliability
And Practices to make the economics work

• We cannot employ a God’s-Eye View, or centralized control,
if we expect our systems to scale

• We must trade off abundant resources for scarce
resources; skilled people are the scarce resource

A New Theory of Infrastructure?

• We need a cure; not an endless overlay of band-aids
that mask failed architectural theories

• The Curse of the God’s Eye View (GEV)
• Time & Causality
• Identity & Individuality
• Persistence & Change

• These problems are not adequately appreciated in
the computer science literature

• GEV designers don’t relieve us of complexity - they
cause it!

Radical Simplicity

Approaches

• Decentralize everything: no more master nodes, master
copies, master programs; to make scalability possible

• Employ adaptive architectures which grow and evolve as the
organization’s needs and challenges develop

• Build systems out of independent, autonomous units that
can be cloned, distributed, and replaced at will

• Eliminate diversity: make elements substitutable, standardize
hardware, software, configurations

• Require systems to manage their own configuration, healing,
provisioning and migration, don’t make slaves out of humans

A Theory of Exchanged Quantities (EQ)

• Every interaction exchanges specified quantities

• Quantities may be conserved (e.g. locks, money
transactions, minimum numbers of replicas)

• EQ overcomes many of the problems of time and
causality, allowing all events to be processed
between nodes rather than attempt to recreate a
GEV for time or control

• Conserved quantities can be recovered (e.g. locks,
lost replicas) and audited (e.g. money transacitons)

• Corresponds with “safe assumptions” regarding
time from physics and philosophy

Ludwig Wittgenstein

Wittgenstein asked a friend: why
do people always say it was
natural for man to assume that
the Sun went around the Earth
rather than that the Earth was
rotating?" His friend replied,
"Well obviously because it just
looks as though the Sun is
going around the Earth!

Wittgenstein replied ... "Well
what would it have looked like if
it had looked as though the
Earth was rotating?"

Richard Dawkins

God’s Eye View

• So what would it look like, if we were not able
to reach out as designers, and to be unable to
directly control things as the number,
connectivity and diversity of things scale?

• Maybe it would look exactly like what we are
experiencing: the out of control complexity
robbing us of our productivity, preventing us being
able to scale our systems, to exploit the available
concurrency, or recover from perturbations

Bertrand Russell

“The ultimate goal of
machine production
– from which, it is true, we
are as yet far removed –
is a system in which
everything uninteresting is
done by machines and
human beings are reserved
for work involving variety
and initiative”

Thank You
Simplicity is the ultimate sophistication

~ Leonardo da Vinci

paul@replicus.com

radical simplicity

