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Agenda
•Motivation: Conquering Complexity

• Complexity destroys Availability, Scaling & Recovery

•Computer Scientists Notion of Time?

• History & State of Affairs

•The World is Massively Asynchronous

• Humans think Sequentially; Programmers are Humans

•The Need to Rethink Distributed Systems 

• Why we need a new Theory of Infrastructure (TOI)

•A Way Forward?

• Re-examine the Axiom of  Time in Computer Science



Failures, Disasters, Attacks: 
may be inevitable ...

But what’s stopping our  
systems from recovering 
quickly?

Part 1: Motivation
January 28, 1986

September 11, 2001



The Computer Industry 2009
• The processor industry: In a Concurrency Crisis

• Gets worse with each generation of processor (the 
number of cores doubles each generation instead of 
the performance of each core)

• No-one has thought about the software (John Hennessy)

• The storage industry: In a Complexity Crisis

• We “have to” scale-out, because “scale-up” systems 
are impossible to make sufficiently reliable

• No-one has thought about the software (Paul Borrill)

Might there be a common cause behind 
these problems?
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Complexity Crisis in IT
Complexity is holding 
our industry back ... a lot 
of what is bought and 
paid for doesn’t get 
implemented because of 
complexity.  Ray Lane, 
ex COO, Oracle

This is the sort of 
industry trauma that 
precedes a major 
paradigm shift.  Pip 
Coburn, UBS Warburg.

IT has lost control over 
systems: the state of the 
art really is reactive 
firefighting. Harrick Vin, 
Professor, Computer 
Science University of 
Texas at Austin.

IT complexity acts as a 
significant tax on IT 
value. Bob Zukis, 
Pricewaterhouse 
Coopers.

Complexity leads to 
brittleness and high 
costs.  Frank 
Modruson, CIO, 
Accenture.

CIOs are standing in the 
path of a fire hose 
spewing complexity, and 
many are getting 
soaked. Galen 
Gruman, CIO

The problem is that we 
keep going through the 
same problems over and 
over and over again. 
Peter Neumann SRI

The IT industry is long 
past denial. IT today is in 
a state that we should 
be ashamed of; its 
embarrassing. Greg 
Papadopoulos, CTO, 
Sun Microsystems.

That’s why they’ve failed 
in the past; they don’t 
look at the lifecycle; all 
of a sudden, they hit the 
[complexity] wall. Rolin 
Ford, CIO,  Wal-Mart

Every IT manager, 
system administrator, 
and developer is fighting 
against the monster of 
computing complexity. 
Mike Shapiro, Sun 
Microsystems

Complexity has arisen 
from evolution, of: 
Operating systems, 
apps, workload types, 
volumes & users. 
Systems must constantly 
adapt to changes. 
Harrick Vin, Prof, CS, 
UTA

Each additional 
technology wasn’t a 
tipping point; it was just 
one more thing. But at 
some point you realize 
you’ve reached a tipping 
point. It’s easy to end up 
with unnecessary 
complexity due to 
technological and 
business-process 
diversity.  Ray Dury, 
CIO, Fifth Third 
Bancorp

Everyone knows a
bout it

,  

why doesn’t s
omeone do 

something about it
?



Henry David Thoreau

“Men have 
become tools of 

their tools”
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The Perfect Storm
All happening at once:

• IT Complexity Exponentiating

• Baby Boomer (Experts) Retiring

• Fewer IT Graduates

• Fewer IT Immigrants

• Economic Downturn C
IO

Co
mp

lex
ity



Radical Simplicity

Complexity Scaling
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Herbert Simon

“What information consumes is 
rather obvious: it consumes 
the attention of its recipients. 

Hence a wealth of information 
creates a poverty of attention, 
and a need to allocate that 
attention efficiently among the 
overabundance of information 
sources that might consume it”



Part II Time & Causality

•Simultaneity is a Myth

•Causality is a Myth

•Time is not Continuous

•Time does not flow

•Time has no direction



 Albert Einstein

“It is utterly beyond our power to measure 
the changes of things by time” Quite the 
contrary, time is an abstraction at which 
we arrive through the changes of things”

Ernst Mach

“A persistently stubborn illusion”

What is Time?



Computer Scientists & Time ?

• A relationship with time is intrinsic to everything 
we do in computing, modifying and moving data

• The understanding of the concept of time among 
computer scientists appears far behind that of 
physicists and philosophers

• If fundamental flaws exist in the time axioms 
underlying the algorithms that govern access to 
and evolution of our data, then our systems will 
fail in unpredictable ways, and any number of 
undesirable characteristics may follow
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Causality is a Myth
“Computer Scientists imagine that causation is one of the 
fundamental axioms or postulates of physics, yet, oddly 
enough, in real scientific disciplines such as special and general 
relativity, and quantum mechanics, the word “cause” never 
occurs.  To me it seems that computer science ought not to 
assume such legislative functions, and that the reason why 
physics has ceased to look for causes is that in fact there are 
no such things.  The law of causality, I believe, like much that 
passes muster among computer scientists, is a relic of a 
bygone age, surviving, like a belief in God, only because it is 
erroneously supposed to do no harm”

~Paul Borrill (with apologies to Bertrand Russell)
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What do I mean by God?
• It has nothing to do with religion:

• GEV=God’s Eye View: the way programmers think.  
c.f. Client-server, Linearizability

• LOV=Local Observer View: the way the world 
really works

Related to the now obsolete context of  “observer and 
system” in Quantum Theory.  Otherwise known as event 
symmetry: we are all mutual observers*

* See:  The internal description of a causal set:  What the universe looks like from the inside. Fotini Markopoulou



Radical Simplicity

Determinism is a Myth
• Distributed systems are fundamentally non-

deterministic

• From the metastability of our logic gates to the 
decoherence of our communication links

• The problem goes deep into physics, and ultimately 
to the question of free will (FWF)*

If we have free will, then so do elementary particles*

* See:  John Conway & Simon Kochen.  The Free Will Theorem.  
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Where do computer scientists 
get their notion of time?

A mathematically seductive idealization of a one dimensional object in ℝ

Alan Turing



Radical Simplicity

Simultaneity is a Myth
Maurice Herlihy and Nir Shavit:

The Art of Multiprocessor Programming [2008]:

"In 1689, Isaac Newton stated ‘absolute, true and 
mathematical time, of itself and from its own nature, 
flows equably without relation to anything external.’ 
We endorse his notion of time"

A notion of time proven incorrect over a hundred years ago ...



Simultaneity is a Myth
• In 1905 Einstein showed us that the concept of “now” 

is meaningless except for events occurring “here”

• In 1978, Leslie Lamport published “Time, Clocks and 
the Ordering of Events”, in which he defined the 
happened before relation

• Unfortunately, happened before is meaningless unless  
intimately associated with happened where. Lamport 
understood this, but many who read his paper don't

• In 2009, most Computer Scientists and programmers 
implicitly base their algorithms on absolute 
(Newtonian) Time, or use Lamport’s timestamps as a 
crutch to sweep their issues with time under the rug 



Breakdown in Simultaneity - 1

Courtesy Kevin Brown
http://www.mathpages.com/rr/s4-08/4-08.htm



Breakdown in Simultaneity - 2

Courtesy Kevin Brown
http://www.mathpages.com/rr/s4-08/4-08.htm



Breakdown in Simultaneity - 3

Courtesy Kevin Brown
http://www.mathpages.com/rr/s4-08/4-08.htm



But wait - can’t we assume an 
“inertial system”?
• Our computers reside:

• On the Surface of a Rotating Sphere

• In a Gravitational Field

• Orbiting a Star

• Our Computers are connected:

• Not with light signals in a vacuum, but with a 
stochastic latency distribution network

• Equivalence of Acceleration and variability of 
transmission delay in the propagation of packets

• Creating coherent time sources is “problematic”



Other difficulties with “time”
•Time is not a continuous background*
• Time is change.  Events are unique in spacetime.  There is no 

such thing as an indivisible instant.

•Time does not flow
• There is no more evidence for the existence of anything 

real between one event and another, than there is for an 
aether to support the propagation of electromagnetic waves 
through empty space

• In Physics, Time has no direction
• Time is intrinsically symmetric. We experience irreversible 

processes that capture “change” like a probability ratchet 
that prevents a wheel going backwards (the 2nd law)

* See:  The Case for Background Independence, Lee Smolin [ArXiv:hep-th/0507235v1 25-Jul 2005]



Leslie Lamport 1978

• Defined “happened before” relation: a partial order

• Defined “logical timestamps” which force an arbitrary 
total order, restricting the available concurrency of a 
system (i.e. the algorithm can proceed no faster than 
it would in a single processor)

• This “concurrency efficiency loss” gets worse as:

• We add more nodes to a distributed system

• These nodes become more spatially separated

• Our processors and networks get faster

• Our processors are comprised of more cores
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Lamport
Fig. 1. 
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event. We are assuming that the events of  a process form 

a sequence, where a occurs before b in this sequence if 

a happens before b. In other words, a single process is 

defined to be a set of  events with an a priori total 

ordering. This seems to be what is generally meant  by a 

process.~ It would be trivial to extend our definition to 

allow a process to split into distinct subprocesses, but we 

will not bother to do so. 

We assume that sending or receiving a message is an 

event in a process. We can then define the "happened 

before" relation, denoted by "---~", as follows. 

Definition. The relation "---->" on the set of  events of  

a system is the smallest relation satisfying the following 

three conditions: (1) I f  a and b are events in the same 

process, and a comes before b, then a ~ b. (2) I f  a is the 

sending of  a message by one process and b is the receipt 

o f  the same message by another process, then a ~ b. (3) 

I f  a ~ b and b ~ c then a ---* c. Two distinct events a 

and b are said to be concurrent if  a ~ b and b -/-* a. 

We assume that a ~ a for any event a. (Systems in 

which an event can happen before itself do not seem to 

be physically meaningful.) This implies that ~ is an 

irreflexive partial ordering on the set of  all events in the 

system. 

It is helpful to view this definition in terms of a 

"space-time diagram" such as Figure 1. The horizontal 

direction represents space, and the vertical direction 

represents t ime-- la ter  times being higher than earlier 

ones. The dots denote events, the vertical lines denote 

processes, and the wavy lines denote messagesfl It is easy 

to see that a ~ b means that one can go from a to b in 

' The choice of what constitutes an event affects the ordering of  

events in a process. For example, the receipt of a message might denote 

the setting of an interrupt bit in a computer, or the execution of  a 

subprogram to handle that interrupt. Since interrupts need not be 

handled in the order that they occur, this choice will affect the order- 
ing of a process' message-receiving events. 

2 Observe that messages may be received out of order. We allow 

the sending of several messages to be a single event, but for convenience 

we will assume that the receipt of a single message does not coincide 
with the sending or receipt of  any other message. 

559 
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the diagram by moving forward in time along process 

and message lines. For example, we have p, --~ r4 in 

Figure 1. 

Another way of  viewing the definition is to say that 

a --) b means that it is possible for event a to causally 

affect event b. Two events are concurrent if neither can 

causally affect the other. For example, events pa and q:~ 

of  Figure 1 are concurrent. Even though we have drawn 

the diagram to imply that q3 occurs at an earlier physical 

time than 1)3, process P cannot know what process Q did 

at qa until it receives the message at p ,  (Before event p4, 

P could at most know what Q was planning to do at q:~.) 
This definition will appear  quite natural to the reader 

familiar with the invariant space-time formulation of  

special relativity, as described for example in [1] or the 

first chapter of  [2]. In relativity, the ordering of  events is 

defined in terms of  messages that could be sent. However, 

we have taken the more pragmatic approach of  only 

considering messages that actually are sent. We should 

be able to determine if a system performed correctly by 

knowing only those events which did occur, without 

knowing which events could have occurred. 

Logical Clocks 

We now introduce clocks into the system. We begin 

with an abstract point of  view in which a clock is just a 

way of  assigning a number  to an event, where the number  

is thought of  as the time at which the event occurred. 

More precisely, we define a clock Ci for each process Pi 

to be a function which assigns a number  Ci(a) to any 

event a in that process. The entire system ofc lbcks  is 

represented by the function C which assigns to any event 

b the number  C(b) ,  where C(b)  = C/(b) i fb  is an event 

in process Pj. For now, we make no assumption about 

the relation of  the numbers Ci(a) to physical time, so we 

can think of  the clocks Ci as logical rather than physical 

clocks. They may be implemented by counters with no 

actual timing mechanism. 
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event. We are assuming that the events of  a process form 

a sequence, where a occurs before b in this sequence if 

a happens before b. In other words, a single process is 

defined to be a set of  events with an a priori total 

ordering. This seems to be what is generally meant  by a 

process.~ It would be trivial to extend our definition to 

allow a process to split into distinct subprocesses, but we 

will not bother to do so. 
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event in a process. We can then define the "happened 

before" relation, denoted by "---~", as follows. 

Definition. The relation "---->" on the set of  events of  

a system is the smallest relation satisfying the following 

three conditions: (1) I f  a and b are events in the same 

process, and a comes before b, then a ~ b. (2) I f  a is the 

sending of  a message by one process and b is the receipt 

o f  the same message by another process, then a ~ b. (3) 

I f  a ~ b and b ~ c then a ---* c. Two distinct events a 

and b are said to be concurrent if  a ~ b and b -/-* a. 

We assume that a ~ a for any event a. (Systems in 

which an event can happen before itself do not seem to 

be physically meaningful.) This implies that ~ is an 

irreflexive partial ordering on the set of  all events in the 

system. 

It is helpful to view this definition in terms of a 

"space-time diagram" such as Figure 1. The horizontal 

direction represents space, and the vertical direction 

represents t ime-- la ter  times being higher than earlier 

ones. The dots denote events, the vertical lines denote 

processes, and the wavy lines denote messagesfl It is easy 

to see that a ~ b means that one can go from a to b in 

' The choice of what constitutes an event affects the ordering of  

events in a process. For example, the receipt of a message might denote 

the setting of an interrupt bit in a computer, or the execution of  a 

subprogram to handle that interrupt. Since interrupts need not be 

handled in the order that they occur, this choice will affect the order- 
ing of a process' message-receiving events. 

2 Observe that messages may be received out of order. We allow 

the sending of several messages to be a single event, but for convenience 

we will assume that the receipt of a single message does not coincide 
with the sending or receipt of  any other message. 
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and message lines. For example, we have p, --~ r4 in 

Figure 1. 

Another way of  viewing the definition is to say that 

a --) b means that it is possible for event a to causally 

affect event b. Two events are concurrent if neither can 

causally affect the other. For example, events pa and q:~ 

of  Figure 1 are concurrent. Even though we have drawn 

the diagram to imply that q3 occurs at an earlier physical 

time than 1)3, process P cannot know what process Q did 

at qa until it receives the message at p ,  (Before event p4, 

P could at most know what Q was planning to do at q:~.) 
This definition will appear  quite natural to the reader 

familiar with the invariant space-time formulation of  

special relativity, as described for example in [1] or the 

first chapter of  [2]. In relativity, the ordering of  events is 

defined in terms of  messages that could be sent. However, 

we have taken the more pragmatic approach of  only 

considering messages that actually are sent. We should 

be able to determine if a system performed correctly by 

knowing only those events which did occur, without 

knowing which events could have occurred. 

Logical Clocks 

We now introduce clocks into the system. We begin 

with an abstract point of  view in which a clock is just a 

way of  assigning a number  to an event, where the number  

is thought of  as the time at which the event occurred. 

More precisely, we define a clock Ci for each process Pi 

to be a function which assigns a number  Ci(a) to any 

event a in that process. The entire system ofc lbcks  is 

represented by the function C which assigns to any event 

b the number  C(b) ,  where C(b)  = C/(b) i fb  is an event 

in process Pj. For now, we make no assumption about 

the relation of  the numbers Ci(a) to physical time, so we 
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clocks. They may be implemented by counters with no 
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We now consider what it means for such a system of 

clocks to be correct. We cannot base our definition of  

correctness on physical time, since that would require 

introducing clocks which keep physical time. Our defi- 

nition must be based on the order in which events occur. 

The strongest reasonable condition is that if an event a 

occurs before another event b, then a should happen at 

an earlier time than b. We state this condition more 

formally as follows. 

Clock Condition. For any events a, b: 

if a---> b then C(a )  < C(b) .  

Note that we cannot expect the converse condition to 

hold as well, since that would imply that any two con- 

current events must occur at the same time. In Figure 1, 

p2 and p.~ are both concurrent with q3, so this would 

mean that they both must occur at the same time as q.~, 

which would contradict the Clock Condition because p2 

-----> /93. 

It is easy to see from our definition of  the relation 

"---~" that the Clock Condition is satisfied if the following 

two conditions hold. 

C 1. I f  a and b are events in process P~, and a comes 

before b, then Ci(a) < Ci(b). 

C2. I f  a is the sending of  a message by process Pi 

and b is the receipt of  that message by process Pi, then 

Ci(a)  < Ci(b). 

Let us consider the clocks in terms of a space-time 

diagram. We imagine that a process' clock "ticks" 

through every number,  with the ticks occurring between 

the process' events. For example, if a and b are consec- 

utive events in process Pi with Ci(a) = 4 and Ci(b) = 7, 

then clock ticks 5, 6, and 7 occur between the two events. 

We draw a dashed "tick line" through all the like- 

numbered ticks of  the different processes. The space- 

time diagram of  Figure 1 might then yield the picture in 

Figure 2. Condition C 1 means that there must be a tick 

line between any two events on a process line, and 

560 

condition C2 means that every message line must cross 

a tick line. From the pictorial meaning of--->, it is easy to 

see why these two conditions imply the Clock Con- 

dition. 

We can consider the tick lines to be the time coordi- 

nate lines of  some Cartesian coordinate system on space- 

time. We can redraw Figure 2 to straighten these coor- 

dinate lines, thus obtaining Figure 3. Figure 3 is a valid 

alternate way of representing the same system of events 

as Figure 2. Without introducing the concept of  physical 

time into the system (which requires introducing physical 

clocks), there is no way to decide which of  these pictures 

is a better representation. 

The reader may find it helpful to visualize a two- 

dimensional spatial network of processes, which yields a 

three-dimensional space-time diagram. Processes and 

messages are still represented by lines, but tick lines 

become two-dimensional surfaces. 

Let us now assume that the processes are algorithms, 

and the events represent certain actions during their 

execution. We will show how to introduce clocks into the 

processes which satisfy the Clock Condition. Process Pi's 

clock is represented by a register Ci, so that C~(a) is the 

value contained by C~ during the event a. The value of  

C~ will change between events, so changing Ci does not 

itself constitute an event. 

To guarantee that the system of clocks satisfies the 

Clock Condition, we will insure that it satisfies conditions 

C 1 and C2. Condition C 1 is simple; the processes need 

only obey the following implementat ion rule: 

IR1. Each process P~ increments Ci between any 

two successive events. 

To meet condition C2, we require that each message 

m contain a timestamp Tm which equals the time at which 

the message was sent. Upon receiving a message time- 

s tamped Tin, a process must advance its clock to be later 

than Tin. More precisely, we have the following rule. 

IR2. (a) I f  event a is the sending of  a message m 

by process P~, then the message m contains a t imestamp 

Tm= Ci(a). (b) Upon  receiving a message m, process 

Pi sets Ci greater than or equal to its present value and 

greater than Tin. 

In IR2(b) we consider the event which represents the 

receipt of  the message m to occur after the setting of  C i. 

(This is just a notational nuisance, and is irrelevant in 

any actual implementation.) Obviously, IR2 insures that 

C2 is satisfied. Hence, the simple implementat ion rules 

IR l and IR2 imply that the Clock Condition is satisfied, 

so they guarantee a correct system of  logical clocks. 

Ordering the Events Totally 

We can use a system of  clocks satisfying the Clock 

Condition to place a total ordering on the set of  all 

system events. We simply order the events by the times 

Communications July 1978 
of Volume 21 
the ACM Number 7 

duct ion to the subject. The  methods  described in the 

l i terature are useful for  est imating the message delays 

ktm and for adjust ing the clock frequencies d C i / d t  (for 

clocks which permit  such an adjustment) .  However ,  the 

requi rement  that  clocks are never  set backwards  seems 

to distinguish our  si tuation f rom ones previously studied, 

and we believe this theorem to be a new result. 

C o n c l u s i o n  

W e  have  seen that  the concept  o f  "happen ing  before"  

defines an invar iant  par t ia l  ordering of  the events in a 

dis t r ibuted mul t iprocess  system. We  described an algo- 

r i thm for  extending that  part ial  ordering to a somewhat  

a rb i t ra ry  total  ordering,  and  showed how this total  or- 

der ing can be used to solve a s imple synchronizat ion 

problem.  A future  pape r  will show how this approach  

can be extended to solve any  synchronizat ion problem.  

The  total  order ing def ined by  the a lgor i thm is some-  

what  arbi t rary.  It  can produce  anomalous  behav io r  if  it 

disagrees with the order ing perceived by the system's  

users. This  can be p reven ted  by  the use of  p roper ly  

synchronized physical  clocks. Our  theorem showed how 

closely the clocks can be synchronized.  

In  a dis t r ibuted system, it is impor tan t  to realize that  

the order  in which events  occur  is only  a part ial  ordering.  

W e  believe that  this idea is useful  in unders tanding  any  

mult iprocess  system. It  should help  one to unders tand  

the basic p rob lems  o f  mult iprocessing independent ly  of  

the mechan i sms  used to solve them. 

A p p e n d i x  

P r o o f  o f  the  T h e o r e m  

For  any  i and  t, let us define C~ t to be a clock which 

is set equal  to C~ at t ime t and  runs at the same rate as 

Ci, but  is never  reset. In  other  words, 

C i t ( t  ')  = Ci(t) + [ d C z ( t ) / d t l d t  (1) 

for all t' >_ t. Note  that  

Ci(t') >_ Cit(t ' )  for all t' >__ t. (2) 

Suppose  process P~ at t ime tl sends a message to 

process Pz which  is received at t ime t2 with an unpre-  

dictable delay _< ~, where  to <- ta _< t2. Then  for  all t ___ t2 

we have: 

C~(t) >_ C~(t2) + (1 - x)(t - t2) [by (1) and  PCI ]  

> Cfftl) +/~m + (1 -- x)(t -- t2) [by IR2 '  (b)] 

= Cl(t l )  + (1 - x ) ( t  - t l )  - [(t2 - tO - ~m] + x ( t 2  - t , )  

>-- Cl(tl) + (1 - x ) ( t  - t l )  - 4. 

Hence,  with these assumptions,  for all t >_ t2 we have: 

C~(t) _> Cl(tl) + (1 - x)(t - / 1 )  - -  4" (3) 

NOW suppose that  for  i = 1, . . . ,  n we have  t, _< t ~, < 

t i+l,  to <-- t~, and that  at t ime t[ process Pi sends a message 

to process Pi+l which is received at t ime ti+l with an 

unpredic table  delay less than  4. Then  repeated  applica-  

t ion o f  the inequal i ty  (3) yields the following result for 

t >_ tn+l .  

Ct~t( t)  --> Cl(tl ' )  + (1 - ~)(t - tl ') - n~. (4) 

F r o m  PC1, I R I '  and  2' we deduce that  

C l ( / l ' )  >" C l ( t l )  + (1 --  K)(tl '  - -  /1). 

Combin ing  this with (4) and using (2), we get 

Cn+a(t) > C~(tl) + (1 - x)(t - t~) - n~ (5) 

for t > tn+l .  

For  any  two processes P and P', we can find a 

sequence of  processes P -- Po, P~ . . . . .  Pn+~ = P',  n _< d, 

with communica t i on  arcs f rom each Pi to Pi+~. By hy- 

pothesis (b) we can find t imes t i ,  t[ with t[ - ti <- T and 

ti+l - t" <_ v, where  v = # + 4. Hence,  an inequal i ty  o f  

the fo rm (5) holds with n <_ d whenever  t >_ t~ + d('r + 

v). Fo r  any  i, j and  any  t, tl with tl > to and  t ___ t~ + d(z 

+ v) we therefore  have: 

Ci(t) _> Cj(ta) + (1 - x ) ( t  - tx) - d~. (6) 

N o w  let m be any  message t imes tamped  Tin, and  

suppose it is sent at t ime t and  received at t ime t'. We  

pre tend  that  m has a clock Cm which runs at a constant  

rate such that  C,~(t) = tm and Cm(t') = tm +/~m. Then  

#0, ___ t' - t implies that  d C m / d t  _< 1. Rule  IR2 '  (b) s imply  

sets Cj(t') to m a x i m u m  (Cj(t' - 0), Cm(t')). Hence,  clocks 

are reset only  by  setting them equal  to other  clocks. 

Fo r  any  t ime tx >-- to + / ~ / ( 1  - ~), let Cx be the clock 

having the largest value at t ime t~. Since all clocks run  

at a rate less than  1 + x, we have  for  all i and  all t >_ tx: 

Ci(t) _< Cx(tx) + (1 + x ) ( t  - tx). (7) 

W e  now consider  the following two cases: (i) Cx is the 

clock Cq o f  process Pq.  (ii) Cx is the clock Cm of  a 

message sent at t ime ta by  process Pq. In  case (i), (7) 

s imply  becomes  

El(t) -< Cq(tx) + (1 + x ) ( t  - tx). (8i) 

In  case (ii), since Cm(tx) = Cq( t l )  and d C m / d t  _ 1, we 

have  

Cx( tx )  <_ Cq(tl) + (tx - tO. 

Hence,  (7) yields 

Ci( t )  <-~ Cq(/1) + (1 + K)(t --  /1). 

Since tx 

C q ( t x  - -  

(8ii) 

>-- to + ~t/(1 -- X), we get 

~/(1 -- K)) <_ Cq(tx) - ~ [by PCI ]  

___ Cm(tx) - / z  [by choice o f  m] 

-< Cm(tx) - (tx - t l ) # m / V m  [tXm <-- r.t, tx - t l  <_ v,,] 

= T m  [by defini t ion o f  Cm] 

= Cq(tl) [by IR2'(a)] .  

Hence,  Cq( tx  - / L / ( 1  - x)) ___ Cq(tl), so tx - t l  < - / x / ( l  - 

~) and  thus ll ~ to. 
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More Lamport

• “We can consider the tick lines to  be the time coordinate 
lines of some Cartesian coordinate system on space-time”

• “Processes and messages are still represented by lines but 
tick lines become two dimensional surfaces”

• This is barely consistent with SR, it is not consistent with 
GR

• More importantly, there is no “Cartesian coordinate 
system” in current physics. if anything, we use relative 
(invariant) coordinate systems in GR

• Everything is relative, even when you think it isn’t



Radical SimplicityPart III Can we Build 
Complex Systems Simply?
• Continuing to build storage systems the way we do is  

no longer a viable strategy

• System requirements are inherently conflicting, diverse 
and are often unknowable

• Large systems are not designed, they are evolved,        
and they fail constantly

• We have no choice but to embrace Commodity Reliability 
And Practices to make the economics work

• We cannot employ a God’s-Eye View, or centralized control, 
if we expect our systems to scale

• We must trade off abundant resources for scarce 
resources; skilled people are the scarce resource



A New Theory of Infrastructure?

• We need a cure; not an endless overlay of band-aids 
that mask failed architectural theories

• The Curse of the God’s Eye View (GEV)
• Time & Causality
• Identity & Individuality
• Persistence & Change

• These problems are not adequately appreciated in 
the computer science literature

• GEV designers don’t relieve us of complexity - they 
cause it!



Radical Simplicity

Approaches

• Decentralize everything: no more master nodes, master 
copies, master programs; to make scalability possible

• Employ adaptive architectures which grow and evolve as the 
organization’s needs and challenges develop

• Build systems out of independent, autonomous units that 
can be cloned, distributed, and replaced at will

• Eliminate diversity: make elements substitutable, standardize 
hardware, software, configurations

• Require systems to manage their own configuration, healing, 
provisioning and migration, don’t make slaves out of humans



A Theory of Exchanged Quantities (EQ)

• Every interaction exchanges specified quantities

• Quantities may be conserved (e.g. locks, money 
transactions, minimum numbers of replicas)

• EQ overcomes many of the problems of time and 
causality, allowing all events to be processed 
between nodes rather than attempt to recreate a 
GEV for time or control

• Conserved quantities can be recovered (e.g. locks, 
lost replicas) and audited (e.g. money transacitons)

• Corresponds with “safe assumptions” regarding 
time from physics and philosophy



Ludwig Wittgenstein

Wittgenstein asked a friend: why 
do people always say it was 
natural for man to assume that 
the Sun went around the Earth 
rather than that the Earth was 
rotating?" His friend replied, 
"Well obviously because it just 
looks as though the Sun is 
going around the Earth!

Wittgenstein replied ... "Well 
what would it have looked like if 
it had looked as though the 
Earth was rotating?"

Richard Dawkins



God’s Eye View

• So what would it look like, if we were not able 
to reach out as designers, and to be unable to 
directly control things as the number, 
connectivity and diversity of things scale?

• Maybe it would look exactly like what we are 
experiencing: the out of control complexity 
robbing us of our productivity, preventing us being 
able to scale our systems, to exploit the available 
concurrency, or recover from perturbations



Bertrand Russell

“The ultimate goal of 
machine production           
– from which, it is true, we 
are as yet far removed –   
is a system in which 
everything uninteresting is 
done by machines and 
human beings are reserved 
for work involving variety 
and initiative”



Thank You
Simplicity is the ultimate sophistication

~ Leonardo da Vinci

paul@replicus.com

radical simplicity


