AUTOMATED DESIGN OF COMPLEX STRUCTURES USING DARWINIAN EVOLUTION AND GENETIC PROGRAMMING

EE 380—FEBRUARY 18, 2009

John R. Koza
Consulting Professor
Department of Electrical Engineering
Stanford University
koza@stanford.edu
http://www.genetic-programming.com/johnkoza.html

OUTLINE

- Introduction
- The Genetic Programming (GP) algorithm
- Developmental GP
- Routine human-competitive results
- Cross-domain observations about GP
- Parallel computing
- Qualitative progression of results (Moore's law)
- The Future
- Sources of additional information

CHARLES DARWIN

"I think it would be a most extraordinary fact if no variation ever had occurred useful to each being's own welfare
"But if variations useful to any organic being do occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance they will tend to produce offspring similarly characterised.
"This principle of preservation, I have called, for the sake of brevity, Natural Selection."

- Charles Darwin, On the Origin of Species by Means of Natural Selection (1859)

TURING'S THREE APPROACHES TO MACHINE INTELLIGENCE

- Turing made the connection between searches and the challenge of getting a computer to solve a problem without explicitly programming it in his 1948 essay "Intelligent Machines"
"Further research into intelligence of machinery will probably be very greatly concerned with 'searches' ..."

TURING

1. LOGIC-BASED SEARCH

One approach that Turing identified is a search through the space of integers representing candidate computer programs.

2. "CULTURAL SEARCH"

Another approach is the "cultural search" which relies on knowledge and expertise acquired over a period of years from others (akin to present-day knowledge-based systems).

3. "GENETICAL OR EVOLUTIONARY SEARCH"

"There is the genetical or evolutionary search by which a combination of genes is looked for, the criterion being the survival value."

TURING

"We cannot expect to find a good child-machine at the first attempt. One must experiment with teaching one such machine and see how well it learns. One can then try another and see if it is better or worse. There is an obvious connection between this process and evolution, by the identifications"
"Structure of the child machine $=$ Hereditary material"
"Changes of the child machine = Mutations"
"Natural selection = Judgment of the experimenter"
— Turing's 1950 paper "Computing Machinery and Intelligence"

REASON FOR GENETIC PROGRAMMING

THE CHALLENGE

"How can computers learn to solve problems without being explicitly programmed? In other words, how can computers be made to do what is needed to be done, without being told exactly how to do it?"
—Attributed to Arthur Samuel (1959)

CRITERION FOR SUCCESS

"The aim [is] ... to get machines to exhibit behavior, which if done by humans, would be assumed to involve the use of intelligence."
—Arthur Samuel (1983)

VARIOUS REPRESENTATIONS USED TO TRY TO ACHIEVE ARTIFICIAL INTELLIGENCE (AI) AND MACHINE LEARNING (ML)

- Decision trees
- If-then production rules (e.g., expert systems)
- Horn clauses
- Neural nets (matrices of numerical weights)
- Bayesian networks
- Frames
- Propositional logic
- Binary decision diagrams
- Formal grammars
- Numerical coefficients for polynomials
- Tables of values (reinforcement learning)
- Conceptual clusters
- Concept sets
- Parallel if-then rules (e.g., learning classifier systems)

REPRESENTATION

- "Our view is that computer programs are the best representation of computer programs."

A COMPUTER PROGRAM

> COMPUTER PROGRAM
> = PARSE TREE = PROGRAM TREE
> = PROGRAM IN LISP = DATA = LIST
(+ 12 (IF (> TIME 10) 3 4))

- Terminal set $T=\{1,2,10,3,4$, TIME $\}$
- Function set $\mathbf{F}=\{+$, IF, >\}

FLOWCHART FOR GENETIC PROGRAMMING (GP)

RANDOM CREATION OF A PROGRAM TREE

RANDOM CREATION OF A PROGRAM TREE

- Terminal set $\mathbf{T}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
- Function set $\mathbf{F}=\{+,-, *$, $\%$, IFLTE $\}$

BEGIN WITH TWO-ARGUMENT +

CONTINUE WITH TWO-ARGUMENT *

FINISH WITH TERMINALS A, B, AND C

- The result is a syntactically valid executable program (provided the set of functions is "closed")

MUTATION OPERATION

- Select parent probabilistically based on fitness
- Pick point from 1 to NUMBER-OF-POINTS
- Delete subtree at the picked point
- Grow new subtree at the mutation point in same way as generated trees for initial random population (generation 0)
- The result is a syntactically valid executable program

ONE PARENTAL PROGRAM

OFFSPRING PRODUCED BY MUTATION

- The result is a syntactically valid executable program

CROSSOVER (SEXUAL RECOMBINATION) OPERATION FOR COMPUTER PROGRAMS

- Select two parents probabilistically based on fitness
- Randomly pick a number from 1 to NUMBER-OF-POINTS
- independently for each of the two parental programs
- Identify the two subtrees rooted at the two picked points

Parent 1:

$$
(+(* 0.234 \mathrm{Z})(-\mathrm{X} 0.789))
$$

Parent 2:

$$
(* \quad(* \quad Z \quad Y) \quad(+Y \quad(* 0.314 \quad Z)))
$$

THE CROSSOVER OPERATION (TWO OFFSPRING VERSION)

Offspring 1:

$$
\left(+\frac{(+Y(* 0.314 \mathrm{Z}))}{(-\mathrm{X} 0.789))}\right.
$$

Offspring 2:
(* (* Z Y) (* 0.234 Z))

- The result is a syntactically valid executable program

FIVE MAJOR PREPARATORY STEPS FOR GP

FIVE MAJOR PREPARATORY STEPS FOR GP

- Determining the set of terminals
- Determining the set of functions
- Determining the fitness measure
- Determining the parameters for the run
- Determining the method for designating a result and the criterion for terminating a run

SYMBOLIC REGRESSION \#1
 (WITH 21 FITNESS CASES)

Independent variable X (Input)	Dependent Variable Y (Output)
-1.0	1.00
-0.9	0.91
-0.8	0.84
-0.7	0.79
-0.6	0.76
-0.5	0.75
-0.4	0.76
-0.3	0.79
-0.2	0.84
-0.1	0.91
0	1.00
0.1	1.11
0.2	1.24
0.3	1.39
0.4	1.56
0.5	1.75
0.6	1.96
0.7	2.19
0.8	2.44
0.9	2.71
1.0	3.00

TABLEAU—SYMBOLIC REGRESSION \#1

	Objective:	Find a computer program with one input (independent variable x), whose output equals the values in the table in range from -1 to +1 .
1	Terminal set:	$\mathrm{T}=\{\mathrm{X}$, constants $\}$
2	Function set:	$F=\{+,-, \quad *, \%\}$ NOTE: The protected division function \% returns a value of 1 when division by 0 is attempted (including 0 divided by 0)
3	Fitness:	The sum of the absolute value of the differences (errors), computed (in some way) over values of the independent variable \boldsymbol{x} from $\mathbf{- 1 . 0}$ to +1.0 , between the program's output and the target quadratic polynomial $x^{2}+x+1$.
4	Parameters:	Population size $M=4$
5	Termination:	An individual emerges whose sum of absolute errors is less than 0.1

SYMBOLIC REGRESSION \#1

INITIAL POPULATION OF FOUR INDIVIDUALS OF GENERATION 0

SYMBOLIC REGRESSION \#1

INITIAL POPULATION OF FOUR INDIVIDUALS OF GENERATION 0

(c)

2
EVALUATE FITNESS

SYMBOLIC REGRESSION \#1

GENERATION 0

GENERATION 1

$x+1$
Copy parent (a)

SYMBOLIC REGRESSION \#1

GENERATION 0

GENERATION 1

(d)

1	
Mutate parent (c)	
Picking "2"" as mutation point	

SYMBOLIC REGRESSION \#1

GENERATION 0

GENERATION 1

SYMBOLIC REGRESSION \#1

GENERATION 0

(a)

0.67
1.00
(c)
(d)

1.70

2.67

GENERATION 1

SYMBOLIC REGRESSION \#1

GENERATION 0

GENERATION 1

$x+1$	1	x	$x^{2}+x+1$
Copy parent (a)	Mutate parent (c)	Crossover of (a) and (b)	Crossover of (a) and (b)
	Picking "2" as mutation point	Picking "+" of parent (a) and left-most " x " of parent (b) as crossover points	Picking "+" of parent (a) and left-most "x" of parent (b) crossover points

SYMBOLIC REGRESSION \#1

OBSERVATIONS

- Genetic programming worked on this simple illustrative problem and produced quadratic polynomial $x^{2}+x+1$
- GP determined the size and shape of the solution
- number of operations needed to solve the problem
- size and shape of the program tree (topology)
- content of the program tree (i.e., sequence of operations)
- The solution $x^{2}+x+1$ resulted from a recombination (crossover) of two "pretty good" elements, namely
- the linear term x
- the quadratic term $x^{2}+1$
- Cross validation is required. The answer is algebraically correct.

DARWINIAN NATURAL SELECTION

- All participants in the mutation, reproduction, and crossover operations are chosen from the current population probabilistically based on fitness

- Anything can happen
- Nothing is guaranteed
- The search is heavily (but not completely) biased toward high-fitness individuals
- The best is not guaranteed to be chosen
- The worst is not necessarily excluded
- Some (but not much) attention is given even to low-fitness individuals

SYMBOLIC REGRESSION \#2
 (WITH 21 FITNESS CASES)

Independent variable (Input)	$X \|$Dependent Variable (Output)	\boldsymbol{Y}
-1.0	0.0000	
-0.9	-0.1629	
-0.8	-0.2624	
-0.7	-0.3129	
-0.6	-0.3264	
-0.5	-0.3125	
-0.4	-0.2784	
-0.3	-0.2289	
-0.2	-0.1664	
-0.1	-0.0909	
0	0.0	
0.1	0.1111	
0.2	0.2496	
0.3	0.4251	
0.4	0.6496	
0.5	0.9375	
0.6	1.3056	
0.7	1.7731	
0.8	2.3616	
0.9	3.0951	
1.0	4.0000	

Parameters:	\bullet Population size, $M=500$
	\bullet Maximum number of generations to be
run, $G=51$	
$\bullet 1 \%$ mutation (i.e., 5 individuals out of	
	500) $\bullet 9 \%$ \bullet parents - reproduction (i.e., 45 individuals)
	An individual program scores 21 hits.
Success Predicate:	

SYMBOLIC REGRESSION \#2

MEDIAN INDIVIDUAL IN GENERATION 0 WITH RAW FITNESS OF 23.67 (AVERGAGE ERROR OF 1.3)

$(\cos (\cos (+(-\quad(* x x)(\% x$
$x)) x)))$

Equivalent to

$$
\operatorname{Cos}\left[\operatorname{Cos}\left(x^{2}+x-1\right)\right]
$$

SYMBOLIC REGRESSION \#2

BEST-OF-GENERATION INDIVIDUAL IN GENERATION 0 WITH RAW FITNESS OF 4.47 (AVERGAGE ERROR OF 0.2)
 (* X (+ (+ (- (\% X X) (\% X X)) (SIN (- X X))) (RLOG (EXP (EXP X))))

Equivalent to
xex

SYMBOLIC REGRESSION \#2

BEST-OF-GENERATION INDIVIDUAL IN GENERATION 2 WITH RAW FITNESS OF 2.57 (AVERGAGE ERROR OF 0.1)

(+ (* (* (+ X (* X (* X (\% (\% X X) (+ XX))))

$$
(+X(* X X))) \quad X) \quad X)
$$

Equivalent to...

$$
x^{4}+1.5 x^{3}+0.5 x^{2}+x
$$

SYMBOLIC REGRESSION OF UNKNOWN FUNCTION \#2

BEST-OF-RUN INDIVIDUAL IN GENERATION 34 WITH RAW FITNESS OF 0.00 (NO ERROR)
 (+ X (* (+ X (* (* (+ X (- (COS
 (- XX)) (- XX))) X) X) (X)

Equivalent to

$$
x^{4}+x^{3}+x^{2}+x
$$

SYMBOLIC REGRESSION OF FUNCTION \#2-OBSERVATIONS

- The result is not how a human programmer would have done it
- $\operatorname{Cos}(X-X)=1$
- Not parsimonious
- The extraneous functions - SIN, EXP, RLOG, and RCOS are absent in the best individual of later generations because they are detrimental
- $\operatorname{Cos}(X-X)=1$ is the exception that proves the rule - GP operates the same whether the solution is linear, polynomial, a rational fraction of polynomials, exponential, trigonometric, etc.

GP TABLEAU - INTERTWINED SPIRALS

Objective:	Find a program to classify a given point in the $x-y$ plane to the red or blue spiral.
Terminal set:	$\mathrm{x}, \mathrm{Y}, \mathfrak{R}$, where \mathfrak{R} is the ephemeral random floating-point constant ranging between $-\mathbf{1 . 0 0 0}$ and $+\mathbf{1 . 0 0 0}$.
Function set:	+, -, *, \%, IFLTE, SIN, COS.
Fitness cases:	194 points in the $x-y$ plane.
Raw fitness:	The number of correctly classified points (0-194)
Standardized fitness:	The maximum raw fitness (i.e., 194) minus the raw fitness.
Hits:	Equals raw fitness.
Wrapper:	Maps any individual program returning a positive value to class +1 (red) and maps all other values to class -1 (blue).
Parameters:	$M=10,000$ (with over-selection). $G=51$.
Success predicate:	An individual program scores 194 hits.

WALL-FOLLOWING PROBLEM

 12 SONAR SENSORS

WALL-FOLLOWING PROBLEM

FITNESS MEASURE

WALL-FOLLOWING PROBLEM BEST PROGRAM OF GENERATION 57

- Scores 56 hits (out of 56)
- 145point program tree

GENETIC PROGRAMMING: ON THE PROGRAMMING OF COMPUTERS BY MEANS OF NATURAL SELECTION (MIT PRESS, 1992)

24 PROBLEMS SHOWN IN GENETIC PROGRAMMING: THE MOVIE
 (1992)

- Symbolic Regression
- Intertwined Spirals
- Artificial Ant
- Truck Backer Upper
- Broom Balancing
- Wall Following
- Box Moving
- Discrete Pursuer-Evader Game
- Differential Pursuer-Evader Game
- Co-Evolution of Game-Playing Strategies
- Inverse Kinematics
- Emergent Collecting
- Central Place Foraging
- Block Stacking
- Randomizer
- 1-D Cellular Automata
- 2-D Cellular Automata
- Task Prioritization
- Programmatic Image Compression
- Finding $3 \sqrt{ } 2$
- Econometric Exchange Equation
- Optimization (Lizard)
- Boolean 11-Multiplexer
- 11-Parity-Automatically Defined Functions

"DEVELOPMENTAL" GENETIC PROGRAMMING

We don't evolve the desired structure, but, instead, a set of instructions (i.e., a computer program) to construct the structure

GENETIC PROGRAMMING III: DARWINIAN INVENTION AND PROBLEM SOLVING (KOZA, BENNETT, ANDRE, AND KEANE, 1999, MORGAN KAUFMANN)

DEVELOPMENTAL GP

AUTOMATIC SYNTHESIS OF ANTENNA

EXAMPLE OF TURTLE FUNCTIONS

1 (PROGN3
2 (TURN-RIGHT 0.125)
3 (LANDMARK
4
(REPEAT 2
(PROGN2
(DRAW 1.O HALF-MM-WIRE)
(DRAW 0.5 NO-WIRE)))
8
(TRANSLATE-RIGHT 0.125 0.75))

BEST-OF-RUN ANTENNA FROM GENERATION 90

- The GP run discovered
(1) the number of reflectors (one),
(2) the number of directors,
(3) the fact that the driven element, the directors, and the reflector are all single straight wires,
(4) the fact that the driven element, the directors, and the reflector are all arranged in parallel,
(5) the fact that the energy source (via the transmission line) is connected only to single straight wire (the driven element) - that is, all the directors and reflectors are parasitically coupled
- Characteristics (3), (4), and (5) are essential characteristics of the Yagi-Uda antenna, namely an antenna with multiple parallel parasitically coupled straight-line directors, a single parallel parasitically coupled straight-line reflector, and a straight-line driven element.

AUTOMATED DESIGN OF OPTICAL LENS SYSTEMS (KOZA, AL-SAKRAN, AND JONES 2005)

TACKABERRY-MULLER LENS SYSTEM

Object
Entry Pupil
Image

"PRESCRIPTION" ("LENS FILE")

Surface	Distance	Radius	Material	Aperture
Object	10^{10}	flat	air	
Entry pupil	$\mathbf{0 . 8 8}$	flat	air	$\mathbf{0 . 1 8}$
$\mathbf{1}$	$\mathbf{0 . 2 1 9 0 0}$	$-\mathbf{3 . 5 2 3 6}$	BK7	$\mathbf{0 . 6 2}$
$\mathbf{2}$	$\mathbf{0 . 0 7 2 8 0}$	$-\mathbf{1 . 0 5 2 7}$	air	$\mathbf{0 . 6 2}$
$\mathbf{3}$	$\mathbf{0 . 2 2 5 0 0}$	$-\mathbf{4 . 4 0 7 2}$	BK7	$\mathbf{0 . 6 2}$
$\mathbf{4}$	$\mathbf{0 . 0 1 3 6 0}$	$-\mathbf{1 . 0 7 0 4}$	air	$\mathbf{0 . 6 2}$
$\mathbf{5}$	$\mathbf{0 . 5 2 1 0 0}$	$\mathbf{1 . 0 2 4 9 1}$	BK7	$\mathbf{0 . 6 2}$
$\mathbf{6}$	$\mathbf{0 . 1 1 8 0 0}$	$-\mathbf{0 . 9 3 4 9}$	SF61	$\mathbf{0 . 6 2}$
7	$\mathbf{0 . 4 7 4 8 5}$	7.94281	air	$\mathbf{0 . 6 2}$
Image		flat		

DEVELOPMENTAL PROCESS

TURTLE STARTS AT POINT g ALONG

 MAIN AXIS b

TURTLE INSERTS SURFACE 2

DEVELOPMENTAL PROCESS CONTINUED

DEVELOPMENTAL PROCESSCONTINUED

DEVELOPMENTAL GP

ANALOG ELECTRICAL CIRCUITS

THE INITIAL CIRCUIT

DEVELOPMENTAL GP

ANALOG ELECTRICAL CIRCUITS

THE INITIAL CIRCUIT

- Initial circuit consists of embryo and test fixture
- Embryo has modifiable wires (e.g., Z0 AND Z1)
- Test fixture has input and output ports and usually has source resistor and load resistor. There are no modifiable wires (or modifiable components) in the test fixture.
- Circuit-constructing program trees consist of
- Component-creating functions
- Topology-modifying functions
- Development-controlling functions
- Circuit-constructing program tree has one resultproducing branch for each modifiable wire in embryo of the initial circuit

DEVELOPMENTAL GP

DEVELOPMENT OF A CIRCUIT FROM A CIRCUIT-CONSTRUCTING PROGRAM TREE AND THE INITIAL CIRCUIT

(LIST (C (- 0.963 (- (- - 0.875
-0.113) 0.880)) (series (flip end) (series (flip end) (L 0.277 end) end) (L (- -0.640 0.749) (L -0.123 end)))) (flip (nope (L -0.657 end)))))

DEVELOPMENTAL GP

RESULT OF THE C (2) FUNCTION

(LIST (C (- 0.963 (- (- -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L 0.277 end) end) (L (- -0.640 0.749 (L -0.123 end)))) (flip (nop (L -0.657 end)))))

DEVELOPMENTAL GP

RESULT OF SERIES (5) FUNCTION

(LIST (C (- 0.963 (- (- -0.875 -0.113) 0.880) (series (flip end) (series (flip end) (L 0.277 end) end) (L (- -0.640 0.749 (L -0.123 end)))) (flip (nop (L -0.657 end)))))

EVALUATION OF FITNESS OF A CIRCUIT

Embryonic Circuit

Fully Designed Circuit (NetGraph)
\downarrow
Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

- Examine circuit's behavior for each of 101 frequency values chosen over five decades of frequency (from 1 Hz to $100,000 \mathrm{~Hz}$) with each decade divided into 20 parts (using a logarithmic scale). The fitness measure
- does not penalize ideal values
- slightly penalizes acceptable deviations
- heavily penalizes unacceptable deviations
- Fitness is $\boldsymbol{F}(\boldsymbol{t})=\sum_{i=0}^{100}\left[W\left(f_{i}\right) d\left(f_{i}\right)\right]$
- $f(i)$ is the frequency of fitness case i
$\bullet d(x)$ is the difference between the target and observed values at frequency of fitness case i
- $W(y, x)$ is the weighting at frequency x

TABLEAU - LOWPASS FILTER

Objective:	Design a lowpass filter composed of inductors and capacitors with a passband below $1,000 \mathrm{~Hz}$, a stopband above $2,000 \mathrm{~Hz}$, a maximum allowable passband deviation of 30 millivolts, and a maximum allowabler stopband deviation of 1 millivolt.
Test fixture and embryo:	One-input, one-output initial circuit with a source resistor, load resistor, and two modifiable wires.
Program architecture:	Two result-producing branches, RPBO and RPB1 (i.e., one RPB per modifiable wire in the embryo).
Initial function set for the resultproducing branches:	For construction-continuing subtrees: Fccs-rpb-initial $=\{C, \quad L, \quad$ SERIES, PARALLELO, FLIP, NOP, TWO_GROUND, TWO_VIAO, TWO_VIA1, TWO_VIA2, TWO_VIA3, TWO_VIA4, TWO_VIA5, TWO_VIA6, TWO_VIA7\}. For arithmetic-performing subtrees: $\mathbf{F}_{\text {aps }}=\{+,-\} .$
Initial terminal set for the resultproducing branches:	For construction-continuing subtrees: $T_{\text {ccs-rpb-initial }}=\{$ END $\}$. For arithmetic-performing subtrees: $\mathbf{T}_{\text {aps }}=\{\leftarrow \text { smaller-reals }\} .$
Fitness cases:	101 frequency values in an interval of five decades of frequency values between 1 Hz and $100,000 \mathrm{~Hz}$.

Raw fitness:	Fitness is the sum, over the 101 sampled frequencies (fitness cases), of the absolute weighted deviation between the actual value of the output voltage that is produced by the circuit at the probe point and the target value for voltage. The weighting penalizes unacceptable output voltages much more heavily than deviating, but acceptable, voltages.
Standardized fitness:	Same as raw fitness. Hits:The number of hits is defined as the number of fitness cases (out of 101) for which the voltage is acceptable or ideal or that lie in the "don't care" band.
None.	
Parameters:	M=1,000 to 320,000. G $=1,001 . \quad Q$ $=1,000 . D=64 . B=2 \% . N_{\text {rpb }}=2 . S_{\text {rpb }}=$ $\mathbf{2 0 0 .}$
Result designation:	Best-so-far pace-setting individual. Success predicate:A program scores the maximum number (101) of hits.

EVOLVED CAMPBELL FILTER (7-RUNG LADDER)

- This genetically evolved circuit infringes on U. S. patent $\mathbf{1 , 2 2 7 , 1 1 3}$ issued to George Campbell of American Telephone and Telegraph in 1917 (claim 2):
"An electric wave filter consisting of a connecting line of negligible attenuation composed of a plurality of sections, each section including a capacity element and an inductance element, one of said elements of each section being in series with the line and the other in shunt across the line, said capacity and inductance elements having precomputed values dependent upon the upper limiting frequency and the lower limiting frequency of a range of frequencies it is desired to transmit without attenuation, the values of said capacity and inductance elements being so proportioned that the structure transmits with practically negligible attenuation sinusoidal currents of all frequencies lying between said two limiting frequencies, while attenuating and approximately extinguishing currents of neighboring frequencies lying outside of said limiting frequencies."

EVOLVED ZOBEL FILTER

- Infringes on U. S. patent 1,538,964 issued in 1925 to Otto Zobel of American Telephone and Telegraph Company for an " M-derived half section" used in conjunction with one or more "constant K " sections.
- One M-derived half section (C2 and L11)
- Cascade of three symmetric T-sections

21 PREVIOUSLY PATENTED INVENTIONS REINVENTED BY GP

	Invention	Date	Inventor	Place	Patent
1	Darlington emitterfollower section	1953	Sidney Darlington	Bell Telephone Laboratories	2,663,806
2	Ladder filter	1917	George Campbell	American Telephone and Telegraph	1,227,113
3	Crossover filter	1925	Otto Julius Zobel	American Telephone and Telegraph	1,538,964
4	"M-derived half section" filter	1925	Otto Julius Zobel	American Telephone and Telegraph	1,538,964
5	Cauer (elliptic) topology for filters	$\begin{aligned} & \hline 1934- \\ & 1936 \end{aligned}$	Wilhelm Cauer	University of Gottingen	$\begin{aligned} & \hline \mathbf{1 , 9 5 8 , 7 4 2 ,} \\ & \mathbf{1 , 9 8 9 , 5 4 5} \end{aligned}$
6	Sorting network	1962	Daniel G. O'Connor and Raymond J. Nelson	General Precision, Inc.	3,029,413
7	Computation al circuits	See text	See text	See text	See text
8	Electronic thermometer	See text	See text	See text	See text
9	Voltage reference circuit	See text	See text	See text	See text
10	60 dB and 96 dB amplifiers	See text	See text	See text	See text
11	Secondderivative controller	1942	Harry Jones	Brown Instrument Company	2,282,726
12	Philbrick circuit	1956	George Philbrick	George A. Philbrick Researches	2,730,679
13	NAND circuit	1971	David H. Chung and Bill H.	Texas Instruments Incorporated	3,560,760

			Terrell		
14	PID (proportional integrative, and derivative) controller	1939	Albert Callender and Allan Stevenson	Imperial Chemical Limited	$\mathbf{2 , 1 7 5 , 9 8 5}$
15	Negative feedback	1937	Harold S. Black	American Telephone and Telegraph	$\mathbf{2 , 1 0 2 , 6 7 0 ,}$ $\mathbf{1 6}$
Low-voltage balun circuit	2001	Sang Gug Lee	Information and Communications University	$\mathbf{6 , 2 6 5 , 9 0 8}$	
$\mathbf{1 7}$	Mixed analog-digital variable capacitor circuit	2000	Turgut Sefket Aytur	Lucent Technologies Inc.	$\mathbf{6 , 0 1 3 , 9 5 8}$
18	High-current load circuit	2001	Timothy Daun- Lindberg and Michael Miller	International Business Machines Corporation	$\mathbf{6 , 2 1 1 , 7 2 6}$
19	Voltage- current conversion circuit	2000	Akira Ikeuchi and Naoshi Tokuda	Mitsumi Electric Co., Ltd.	$\mathbf{6 , 1 6 6 , 5 2 9}$
20	Cubic function generator	2000	Stefano Cipriani and Anthony A. Takeshian	Conexant Systems, Inc.	$\mathbf{6 , 1 6 0 , 4 2 7}$
$\mathbf{2 1}$	Tunable integrated active filter	2001	Robert Irvine and Bernd Kolb	Infineon Technologies AG	$\mathbf{6 , 2 2 5 , 8 5 9}$

POST-2000 PATENTED INVENTIONS
HIGH CURRENT LOAD CIRCUIT BEST-OF-RUN FROM GENERATION 114

POST-2000 PATENTED INVENTIONS

REGISTER-CONTROLLED CAPACITOR CIRCUIT

SMALLEST COMPLIANT FROM GENERATION 98

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE CUBIC SIGNAL GENERATION CIRCUIT BEST-OF-RUN FROM GENERATION 182

POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE BALUN CIRCUIT BEST EVOLVED FROM GENERATION 84

POST-2000 PATENTED INVENTIONS

VOLTAGE-CURRENT-CONVERSION CIRCUIT

 BEST-OF-RUN FROM GENERATION 109

POST-2000 PATENTED INVENTIONS

TUNABLE INTEGRATED ACTIVE FILTER - GENERATION 50

2 PATENTED INVENTIONS CREATED BY GENETIC PROGRAMMING

Keane, Martin A., Koza, John R., and Streeter, Matthew J. 2005. Apparatus for Improved General-Purpose PID and Non-PID Controllers. U. S. Patent 6,847,851. Filed July 12, 2002. Issued January 25, 2005

NOVELTY-DRIVEN EVOLUTION

EXAMPLE OF LOWPASS FILTER

- Two factors in fitness measure
- Circuit's behavior in the frequency domain
- Largest number of nodes and edges (circuit components) of a subgraph of the given circuit that is isomorphic to a subgraph of a template representing the prior art. Graph isomorphism algorithm with the cost function being based on the number of shared nodes and edges (instead of just the number of nodes).

PRIOR ART TEMPLATE

NOVELTY-DRIVEN EVOLUTION CONTINUED

- For circuits not scoring the maximum number (101) of hits, the fitness of a circuit is the product of the two factors.
- For circuits scoring 101 hits (100%-compliant individuals), fitness is the number of shared nodes and edges divided by 10,000 .

FITNESS OF EIGHT 100\%-COMPLIANT CIRCUITS

Solution	Frequency factor	Isomorphism factor	Fitness
1	0.051039	7	0.357273
2	0.117093	7	0.819651
3	0.103064	7	0.721448
4	0.161101	7	1.127707
5	0.044382	13	0.044382
6	0.133877	7	0.937139
7	0.059993	5	0.299965
8	0.062345	11	0.685795

SOLUTION NO. 1

GENETIC PROGRAMMING IV. ROUTINE HUMAN-COMPETITIVE MACHINE INTELLIGENCE (KOZA, KEANE, STREETER, MYDLOWEC, YU, AND LANZA, KLUWER ACADEMIC PUBLISHERS, 2003)
 Genetic Programming IU.

Routine Human-Competitive Machine Intelligence
John R. Koza - Martin A. Keane • Matthew J. Streeter William Mydlowec • Jessen Yu • Guido Lanza

EIGHT CRITERIA FOR HUMANCOMPETITIVENESS

CRITERIA FOR "HUMANCOMPETITIVENESS"

- The result is equal or better than human-designed solution to the same problem
- The result was patented as an invention in the past, is an improvement over a patented invention, or would qualify today as a patentable new invention.
- The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed scientific journal.
- The result is equal to or better than a result that was placed into a database or archive of results maintained by an internationally recognized panel of scientific experts.
- The result is publishable in its own right as a new scientific result independent of the fact that the result was mechanically created.
- The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions.
- The result is equal to or better than a result that was considered an achievement in its field at the time it was first discovered.

CRITERIA FOR "HUMANCOMPETITIVENESS"

- The result solves a problem of indisputable difficulty in its field.
- The result holds its own or wins a regulated competition involving human contestants (in the form of either live human players or human-written computer programs).

HUMAN-COMPETITIVE RESULTS PRODUCED BY GP

	To understand one needs to know what the Smolin gate is and this is given in smolin-gate.jpg $\text { Smolin }=\left[\begin{array}{cccc} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{array}\right]$

Creation of four different algorithms for the transmembrane segment identification problem for proteins	"0-2-4 rule" from section 16.5 of Genetic Programming III
	Residue Increm ent
	$\begin{array}{\|l\|l} \hline \mathrm{A}, \mathrm{~F}, \mathrm{I}, \mathrm{~L}, \mathrm{M}, \\ \text { or V } \end{array}$
Sections 18.8 and 18.10 of Genetic Programming II and sections 16.5 and 17.2 of Genetic Programming III	$\begin{array}{l\|l} \hline C, D, G, H, K, & +2 \\ N, P, Q, R, S, & \\ T, W, \text { or } Y & \\ \hline \end{array}$
	E
Creation of a sorting network for seven items using only 16 steps Sections 21.4.4, 23.6, and 57.8.1 of Genetic Programming III	
Rediscovery of the Campbell ladder topology for lowpass and highpass filters Section 25.15.1 of Genetic Programming III	

| Antenna that |
| :--- | :--- | :--- |
| satisfied NASA |
| specs and that |
| will be |
| launched into |
| space in 2004 |
| Lohn et al. 2003 |

ANNUAL HUMAN-COMPETITIVE AWARDS ("HUMIES")

www.Human-Competitive.org

REVERSE ENGINEERING OF METABOLIC PATHWAYS (4-REACTION NETWORK IN PHOSPHOLIPID CYCLE)

DESIRED

DEFINITION OF "HIGH-RETURN" BASED ON THE "AI RATIO"

The AI ratio (the "artificial-to-intelligence" ratio) of a problem-solving method as the ratio of that which is delivered by the automated operation of the artificial method to the amount of intelligence that is supplied by the human applying the method to a particular problem.

DEFINITION OF "ROUTINE"

A problem-solving method is routine if it is general and relatively little human effort is required to get the method to successfully handle new problems within a particular domain and to successfully handle new problems from a different domain.

GENETICALLY EVOLVED 10 DB AMPLIFIER FROM GENERATION 45

SHOWING THE VOLTAGE GAIN STAGE AND DARLINGTON EMITTER FOLLOWER SECTION

CROSS-DOMAIN OBSERVATIONS ABOUT RUNS OF GENETIC PROGRAMMING USED TO

AUTOMATICALLY CREATE DESIGNS

FOR ANALOG CIRCUITS, OPTICAL
LENS SYSTEMS, CONTROLLERS,
ANTENNAS, MECHANICAL SYSTEMS, AND QUANTUM COMPUTING CIRCUITS

- optical lens systems (Al-Sakran, Koza, and Jones, 2005; Koza, Al-Sakran, and Jones, 2005),
- antennas (Lohn, Hornby, and Linden 2004; Comisky, Yu, and Koza 2000),
- analog electrical circuits (Koza, Bennett, Andre, and Keane 1996; Koza, Bennett, Andre, and Keane 1999),
- controllers (Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003; Keane, Koza, Streeter 2005),
- mechanical systems (Lipson 2004), and
- quantum computing circuits (Spector 2004)

CROSS-DOMAIN FEATURES

- Native representations are sufficient when working with genetic programming
- Genetic programming breeds simulatability
- Genetic programming starts small
- Genetic programming frequently exploits a simulator's built-in assumption of reasonableness
- Genetic programming engineers around existing patents and creates novel designs more frequently than it creates infringing solutions

NATIVE REPRESENTATIONS ARE USUALLY SUFFICIENT WHEN WORKING WITH GENETIC PROGRAMMING

"PRESCRIPTION" ("LENS FILE")

Surface	Distance	Radius	Material	Aperture
Object	$\mathbf{1 0}$	flat	air	
Entry pupil	$\mathbf{0 . 8 8}$	flat	air	$\mathbf{0 . 1 8}$
$\mathbf{1}$	$\mathbf{0 . 2 1 9 0 0}$	$-\mathbf{- 3 . 5 2 3 6}$	BK7	$\mathbf{0 . 6 2}$
$\mathbf{2}$	$\mathbf{0 . 0 7 2 8 0}$	$-\mathbf{1 . 0 5 2 7}$	air	$\mathbf{0 . 6 2}$
$\mathbf{3}$	$\mathbf{0 . 2 2 5 0 0}$	$-\mathbf{4 . 4 0 7 2}$	BK7	$\mathbf{0 . 6 2}$
$\mathbf{4}$	$\mathbf{0 . 0 1 3 6 0}$	$-\mathbf{1 . 0 7 0 4}$	air	$\mathbf{0 . 6 2}$
$\mathbf{5}$	$\mathbf{0 . 5 2 1 0 0}$	$\mathbf{1 . 0 2 4 9 1}$	BK7	$\mathbf{0 . 6 2}$
$\mathbf{6}$	$\mathbf{0 . 1 1 8 0 0}$	$-\mathbf{0 . 9 3 4 9}$	SF61	$\mathbf{0 . 6 2}$
7	$\mathbf{0 . 4 7 4 8 5}$	$\mathbf{7 . 9 4 2 8 1}$	air	$\mathbf{0 . 6 2}$
Image		flat		

GP STARTS SMALL

Best-of-generation 0	Best-of-run
	Optical lens system
Lowpass filter	Lowpass filter
Controller	
 Antenna	Antenna

(

 GENETIC PROGRAMMING BREEDS

 GENETIC PROGRAMMING BREEDS SIMULATABILITY

 SIMULATABILITY}

Unsimulatable individuals

GENETIC PROGRAMMING ENGINEERS
AROUND EXISTING PATENTS AND
CREATES NOVEL DESIGNS MORE FREQUENTLY THAN IT CREATES INFRINGING SOLUTIONS

GENETIC PROGRAMMING FREQUENTLY EXPLOITS A SIMULATOR'S BUILT-IN ASSUMPTION OF REASONABLENESS

AUTOMATICALLY DEFINED FUNCTIONS (ADFs, SUBROUTINES)

8 MAIN POINTS FROM BOOK GENETIC PROGRAMMING II: AUTOMATIC DISCOVERY OF REUSABLE PROGRAMS (KOZA 1994)

AUTOMATICALLY DEFINED FUNCTIONS (ADFs, SUBROUTINES)

- ADFs work.
- ADFs do not solve problems in the style of human programmers.
- ADFs reduce the computational effort required to solve a problem.
- ADFs usually improve the parsimony of the solutions to a problem.
- As the size of a problem is scaled up, the size of solutions increases more slowly with ADFs than without them.
- As the size of a problem is scaled up, the computational effort required to solve a problem increases more slowly with ADFs than without them.
- The advantages in terms of computational effort and parsimony conferred by ADFs increase as the size of the problem is scaled up.

REUSE

MEMORY AND STORAGE

- (A) Settable (named) variables (Genetic Programming, Koza 1992) using setting (writing) functions (SETMO x) and (SETM1 Y) and reading by means of terminals MO and M1.
- (B) Indexed memory similar to linear (vector) computer memory (Teller 1994) using (READ K) and (WRITE X K)
- (C) Matrix memory (Andre 1994)
- (D) Relational memory (Brave 1995, 1996)

LANGDON'S DATA STRUCTURES

- Stacks
- Queues
- Lists
- Rings

REUSE

AUTOMATICALLY DEFINED ITERATIONS (ADIS)

- Overall program consisting of an automatically defined function $A D F O$, an iteration-performing branch IPBO, and a result-producing branch RPBO.
- Iteration is over a known, fixed set
- protein or DNA sequence (of varying length
- time-series data
- two-dimensional array of pixels

REUSE—TRANSMEMBRANE SEGMENT IDENTIFICATION PROBLEM

- Goal is to classify a given protein segment as being a transmembrane domain or non-transmembrane area of the protein
- Generation 20 - Run 3 - Subset-creating version - in-sample correlation of 0.976
- After cross-validation
- out-of-sample correlation of $\mathbf{0 . 9 6 8}$
- out-of-sample error rate 1.6%

REUSE-TRANSMEMBRANE SEGMENT IDENTIFICATION PROBLEM

```
(progn
    (defun ADFO ()
(ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?))) (ORN (ORN
(ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?) (H?))))))
    (defun ADF1 ()
(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?)))
(ORN (ORN (T?) (L?)) (ORN (T?) (W?))))))
    (defun ADF2 ()
(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))
(progn (loop-over-residues
    (SETMO (+ (- (ADF1) (ADF2)) (SETM3 MO))))
    (values (% (% M3 M0) (% (% (% (- L -0.53) (* MO
M0)) (+ (% (% M3 M0) (% (+ M0 M3) (% M1 M2))) M2)) (%
м3 м0))))))
```

- GP created the body of 3 subroutines (ADFs), 1 iterationperforming branch, and 1 result-producing branch (RPB) were created by genetic programming

REUSE

EXAMPLE OF A PROGRAM WITH A FOUR-BRANCH AUTOMATICALLY DEFINED LOOP (ADL0) AND A RESULTPRODUCING BRANCH

REUSE

AUTOMATICALLY DEFINED
 RECURSION (ADRO) AND A RESULTPRODUCING BRANCH

- a recursion condition branch, RCB
- a recursion body branch, RBB
- a recursion update branch, RUB
- a recursion ground branch, RGB

ARCHITECTURE-ALTERING OPERATIONS

PROGRAM WITH 1 TWO-ARGUMENT AUTOMATICALLY DEFINED FUNCTION (ADF0) AND 1 RESULT-PRODUCING BRANCH - ARGUMENT MAP OF $\{\mathbf{2}\}$

ARCHITECTURE-ALTERING OPERATIONS

PROGRAM WITH ARGUMENT MAP OF $\{2,2\}$ CREATED USING THE OPERATION OF BRANCH DUPLICATION

ARCHITECTURE-ALTERING OPERATIONS

PROGRAM WITH ARGUMENT MAP OF \{3\} CREATED USING THE OPERATION OF ARGUMENT DUPLICATION

ARCHITECTURE-ALTERING OPERATIONS

SPECIALIZATION - REFINEMENT CASE SPLITTING

- Branch duplication
- Argument duplication
- Branch creation
- Argument creation

GENERALIZATION

- Branch deletion
- Argument deletion

EMERGENCE OF A PARAMETERIZED ARGUMENT IN A CIRCUIT SUBSTRUCTURE

HIERARCHY OF BRANCHES FOR THE BEST-OF-RUN CIRCUIT- FROM GENERATION 158

PASSING A PARAMETER TO A SUBSTRUCTURE

BEST-OF-RUN CIRCUIT FROM

THREE-PORTED AUTOMATICALLY DEFINED FUNCTION ADF3 OF THE BEST-OF-RUN CIRCUIT FROM GENERATION 158

ADF3 CONTAINS CAPACITOR C39 PARAMETERIZED BY DUMMY VARIABLE ARGO

THE FIRST RESULT-PRODUCING BRANCH, RPB0, CALLING ADF3

(PARALLELO (L (+ (- 1.883196E-01 (- -9.095883E-02 5.724576E01) (-9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+ (+ -6.668774E-01-8.770285E-01) 4.587758E-02) (NOP END)) (SERIES END END (PARALLELI END END END END)) (FLIP (SAFE_CUT)) (PAIR_CONNECT_O END END END) (PAIR_CONNECT_0 (L (+ -7-220122E-01 4-896697E-01) END) (L (- -7.195599E-01 3.651142E-02) (SERIES (C (+ -5.111248E-01 (- (- -6.137950E-01 -5.111248E-01) (- 1.883196E-01 (- -9.095883E-02 5.724576E01))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END))) (NOP END))

AUTOMATICALLY DEFINED FUNCTION
 ADF3

(C) $\mathbf{C l}_{+}(+\quad(+\quad(+5.630820 \mathrm{E}-01$ ($-9.737455 \mathrm{E}-01$-9.452780E-01)) (+ ARG0 6.953752E-02)) (- ($-5.627716 \mathrm{E}-02(+2.273517 \mathrm{E}-01$ (+ 1.883196E-01 (+9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02)))) ((+ (- 2.710414E-02-2.807583E-01) (+ $6.137950 \mathrm{E}-01-8.554120 \mathrm{E}-01)$) (--8.770285E-01 (-4.049602E-01 $-2.192044 \mathrm{E}-02))$)) (+ (+1.883196E-01 (+ (+ (+ + + $+346950 \mathrm{E}-02$
 $02-2.340137 \mathrm{E}-01$) $3.226026 \mathrm{E}-01$) (+ -7.220122E-01 (-
9.131658E-01 6.595502E-01))) (3.660116E-01)) 9.496355E-01)
(THREE GROUND_0 (C ($+(-\quad(+\quad(+\quad(+5.630820 \mathrm{E}-01 \quad(-9.737455 \mathrm{E}-01$ $-9.452780 \mathrm{E}-01)$) (+ ($-(-\quad-7.195599 \mathrm{E}-01$ 3.651142E-02) -9.761651E-01) ($-\quad(+\quad(-\quad(-\quad-7.195599 \mathrm{E}-013.651142 \mathrm{E}-02) \quad-$ 9.761651E-01) 6.953752E-02) 3.651142E-02)) (- (-5.627716E-02 (- 1.883196E-01 (- -9.095883E-02 5.724576E-01))) (- (+ ($2.710414 \mathrm{E}-02-2.807583 \mathrm{E}-01)(+-6.137950 \mathrm{E}-01$ (+ARG0 6.953752E-02)) ($-\quad-8.770285 \mathrm{E}-01$ (- -4.049602E-01 -2.192044E02)))) (+ (+ 1.883196E-01-7.195599E-01) 3.660116E-01)) 9.496355E-01) (NOP (FLIP (PAIR_CONNECT_0 END END END))) (FLIP (SERIES (FLIP (FLIP (FLIP END))) (C (- ${ }^{-}(+6.238477 E-01$ 6.196514E-01) (+ (+ ($-\quad(-4.037348 \mathrm{E}-0144.343444 \mathrm{E}-01) \quad(+\quad-$ 7.788187E-01 (+ (+ (- -8.786904E-01 1.397491E-02) (- -6.137950E-01 ($-\quad(+\quad(-2.710414 E-02-2.807583 E-01) \quad(+\quad-$ 6.137950E-01-8.554120E-01)) (- -8.770285E-01 (- -4.049602E-01 $-2.192044 \mathrm{E}-02))$)) (+ (+7.215142E-031.883196E-01) (+ $7.733750 \mathrm{E}-014.343444 \mathrm{E}-01)$))) (- (- -9.389297E-01 5.630820E01) (+ - 5. $840433 \mathrm{E}-023.568947 \mathrm{E}-01)$)) -8.554120E-01)) (NOP END) (END) (FLIP (adf2 9.737455E-01))))

VALUE-SETTING SUBTREES-3 WAYS

ARITHMETIC-PERFORMING SUBTREE

SINGLE PERTURBABLE CONSTANT

FREE VARIABLE

PARAMETERIZED TOPOLOGY FOR "GENERALIZED" LOWPASS FILTER

VARIABLE CUTOFF LOWPASS FILTER

-Want lowpass filter whose passband ends at frequencies $f=$ $1,000,1,780,3,160,5,620,10,000,17,800,31,600,56,200$, $100,000 \mathrm{~Hz}$

$$
L 2=\frac{1.3406 \times 10^{-8}\left(4.7387 \times 10^{12}+f\right)\left(1.3331 \times 10^{16}+9.3714 \times 10^{5} f+f^{2}\right)}{f\left(3.4636 \times 10^{12}+f\right)}+\ln f \approx \frac{2.4451 \times 10^{8}}{f}+\ln f
$$

PARAMETERIZED TOPOLOGY USING CONDITIONAL DEVELOPMENTAL OPERATORS (GENETIC SWITCH)

VARIABLE-CUTOFF LOWPASS/HIGHPASS FILTER CIRCUIT

- Best-of-run circuit from generation 93 when inputs call for a highpass filter (i.e., F1 > F2).

- Best-of-run circuit from generation 93 when inputs call for a lowpass filter.

PARALLELIZATION

PARALLELIZATION BY SUBPOPULATIONS ("ISLAND" OR "DEME" MODEL OR "DISTRIBUTED GENETIC ALGORITHM")

- Like Hormel, Get Everything Out of the Pig, Including the Oink
- Keep on Trucking
- It Takes a Licking and Keeps on Ticking
- The Whole is Greater than the Sum of the Parts

PETA-OPS

- Human brain operates at 1012 neurons operating at 103 per second $=1015 \mathrm{ops}$ per second
- $1015 \mathrm{ops}=1$ peta-op $=1 \mathrm{bs}$ (brain second)

GENETIC PROGRAMMING OVER 15YEAR PERIOD 1987-2002

System	Period of usage	Petacycles (10^{15} cycles) per day for entire system	Speed-up over previous system	Speed-up over first system in this table	Humancompetitive results
Serial Texas Instruments LISP machine	$\begin{array}{r} 1987- \\ 1994 \end{array}$	0.00216	1 (base)	1 (base)	0
64-node Transtech transputer parallel machine	$\begin{array}{r} 1994- \\ 1997 \end{array}$	0.02	9	9	2
64-node Parsytec parallel machine	$\begin{array}{r} 1995- \\ 2000 \end{array}$	0.44	22	204	12
70-node Alpha parallel machine	$\begin{array}{r} 1999- \\ 2001 \end{array}$	3.2	7.3	1,481	2
1,000-node Pentium II parallel machine	$\begin{array}{r} 2000- \\ 2008 \end{array}$	30.0	9.4	13,900	12

PROGRESSION OF RESULTS

System	Period	Speedup	Qualitative nature of the results produced by genetic programming
Serial LISP machine	$\begin{array}{r} 1987- \\ 1994 \end{array}$	1 (base)	- Toy problems of the 1980s and early 1990s from the fields of artificial intelligence and machine learning
64-node Transtech 8-biy transputer	$\begin{array}{r} 1994- \\ 1997 \end{array}$	9	-Two human-competitive results involving one-dimensional discrete data (not patentrelated)
64-node Parsytec parallel machine	$\begin{array}{r} 1995- \\ 2000 \end{array}$	22	- One human-competitive result involving two-dimensional discrete data - Numerous human-competitive results involving continuous signals analyzed in the frequency domain - Numerous human-competitive results involving $20^{\text {th }}$-century patented inventions
70-node Alpha parallel machine	$\begin{array}{r} 1999 \\ 2001 \end{array}$	7.3	- One human-competitive result involving continuous signals analyzed in the time domain - Circuit synthesis extended from topology and sizing to include routing and placement (layout)
1,000-node Pentium II parallel machine	$\begin{array}{r} 2000- \\ 2002 \end{array}$	9.4	- Numerous human-competitive results involving continuous signals analyzed in the time domain - Numerous general solutions to problems in the form of parameterized topologies - Six human-competitive results duplicating the functionality of $21^{\text {st }}$ century patented inventions
Long (4week) runs of 1,000 node Pentium II parallel machine	2002	9.3	- Generation of two patentable new inventions

PROGRESSION OF QUALITATIVELY MORE SUBSTANTIAL RESULTS PRODUCED BY GENETIC PROGRAMMING IN RELATION TO FIVE ORDER-OF-MAGNITUDE INCREASES IN COMPUTATIONAL POWER

- toy problems
- human-competitive results not related to patented inventions
- $20^{\text {th }}$-century patented inventions
- $21^{\text {st }}$-century patented inventions
- patentable new inventions

THE FUTURE

PROMISING GP APPLICATION AREAS

- Problem areas involving many variables that are interrelated in highly non-linear ways
- Inter-relationship of variables is not well understood
- A good approximate solution is satisfactory
- design
- control
- classification and pattern recognition
- data mining
- system identification and forecasting
- Discovery of the size and shape of the solution (the "topology") is a major part of the problem
- Areas where humans find it difficult to write programs
- parallel computers
- cellular automata
- multi-agent strategies / distributed AI
- FPGAs
- reconfigurable analog arrays
- reconfigurable antenna
- "black art" problems
- synthesis of topology and sizing of analog circuits
- synthesis of topology and tuning of controllers
- quantum computing circuits
- synthesis of designs for antennas
- Areas where you simply have no idea how to program a solution, but where the objective (fitness measure) is clear

CHARACTERISTICS SUGGESTING THE USE OF GENETIC PROGRAMMING

- Problem areas where large computerized databases are accumulating and computerized techniques are needed to analyze the data
- problems where substructures are important
- reusing substructures,
- discovering the number of substructures,
- discovering the nature of the hierarchical references among substructures,
- passing parameters to a substructure,
- discovering the type of substructures (e.g., subroutines, iterations, loops, recursions, or storage),
- discovering the number of arguments possessed by a substructure,
- discovering a general solution in the form of a parameterized topology containing free variables
- maintaining syntactic validity and locality by means of a developmental process

AUTHORED BOOKS ON GP

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998. Genetic Programming - An Introduction. San Francisco, CA: Morgan Kaufman Publishers and Heidelberg, Germany: dpunkt.verlag.
Babovic, Vladan. 1996. Emergence, Evolution, Intelligence: Hydroinformatics. Rotterdam, The Netherlands: Balkema Publishers.
Blickle, Tobias. 1997. Theory of Evolutionary Algorithms and Application to System Synthesis. TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul Verlag AG and der ETH Zurich. ISBN 3-7281-2433-8.
Jacob, Christian. 1997. Principia Evolvica: Simulierte Evolution mit Mathematica. Heidelberg, Germany: dpunkt.verlag. In German. English translation forthcoming in 2000 from Morgan Kaufman Publishers.
Jacob, Christian. 2001. Illustrating Evolutionary Computation with Mathematica. San Francisco: Morgan Kaufmann.
Iba, Hitoshi. 1996. Genetic Programming. Tokyo: Tokyo Denki University Press. In Japanese.
Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: The MIT Press.
Koza, John R. 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: The MIT Press
Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999. Genetic Programming III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann Publishers.
Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen, and Lanza, Guido. 2003. Genetic Programming IV. Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! Amsterdam: Kluwer Academic Publishers.
Langdon, William B. and Poli, Riccardo. 2002. Foundations of Genetic Programming. Berlin: Springer-Verlag.
Nordin, Peter. 1997. Evolutionary Program Induction of Binary Machine Code and its Application. Munster, Germany: Krehl Verlag.
O'Neill, Michael and Ryan, Conor. 2003. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Boston: Kluwer Academic Publishers.
Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic Programming. Amsterdam: Kluwer Academic Publishers.
Spector, Lee. 2004. Automatic Quantum Computer Programming: A Genetic Programming Approach. Boston: Kluwer Academic Publishers.
Wong, Man Leung and Leung, Kwong Sak. 2000. Data Mining Using Grammar Based Genetic Programming and Applications. Amsterdam: Kluwer Academic Publishers.

MAIN POINTS OF GP-1,2,3,4 BOOKS

Book	Main Points
1992	\bullet Virtually all problems in artificial intelligence, machine learning, adaptive systems, and automated learning can be recast as a search for a computer program. \bullet Genetic programming provides a way to successfully conduct the search for a computer program in the space of computer programs.
1994	• Scalability is essential for solving non-trivial problems in artificial intelligence, machine learning, adaptive systems, and automated learning. \bullet Scalability can be achieved by reuse. \bullet Genetic programming provides a way to automatically discover and reuse subprograms in the course of automatically creating computer programs to solve problems.
1999	\bullet Genetic programming possesses the attributes that can reasonably be expected of a system for automatically creating computer programs.
2003	\bullet Genetic programming now routinely delivers high-return human-competitive machine intelligence. \bullet Genetic programming is an automated invention machine. \bullet Genetic programming can automatically create a general solution to a problem in the form of a parameterized topology. \bullet Genetic programming has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time.

VARIOUS CONFERENCES

ASPGP
Asian-Pacific Workshop on Genetic Programming www.aspgp.org

GECCO (includes annual Genetic Programming conference) Genetic and Evolutionary Computation Conference www.SigEvo.org

EURO-GP

European Conference on Genetic Programming evostar.na.icar.cnr.it/EuroGP/EuroGP.html

GPTP
Genetic Programming Theory and Practice www.cscs.umich.edu/events/gptp2009/

3 EDITED ADVANCES IN GENETIC PROGRAMMING BOOKS

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic Programming 2. Cambridge, MA: The MIT Press.
Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA: The MIT Press.
Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter (editors). 1999. Advances in Genetic Programming 3. Cambridge, MA: The MIT Press.

4 VIDEOTAPES ON GP

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie. Cambridge, MA: The MIT Press.
Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation.
Cambridge, MA: The MIT Press.
Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and Brave, Scott. 1999. Genetic Programming III Videotape: Human-
Competitive Machine Intelligence. San Francisco, CA: Morgan Kaufmann Publishers.
Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, Lanza, Guido, and Fletcher, David. 2003. Genetic
Programming IV Video: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

WILLIAM LANGDON'S BIBLIOGRAPHY ON GENETIC PROGRAMMING

This bibliography is the most extensive in the field and contains over $\mathbf{5 , 0 0 0}$ papers (as of January 2003) by over 1,000 authors.

Visit
http://www.cs.bham.ac.uk/~wbl/biblio/
or
http://liinwww.ira.uka.de/bibliography/Ai/g enetic.programming.html

GENETIC PROGRAMMING AND EVOLVABLE MACHINES JOURNAL

 www.springer.com/computer/artificial/journal/10710GENETIC PROGRAMMING BOOK SERIES http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata/series.html

GP MAILING LIST

To subscribe to the Genetic Programming e-mail list, - send e-mail message to: genetic programming-subscribe@yahoogroups.com

- visit the web page http://groups.yahoo.com/group/genetic_programming/

FOR ADDITIONAL INFORMATION

Visit
http://www.genetic-programming.org
and
http://www.genetic-programming.com/coursemainpage.html
for

- links computer code in various programming languages (including C, C++, Java, Mathematica, LISP)
- partial list of people active in genetic programming
- list of known completed PhD theses on GP
- list of students known to be working on PhD theses on GP
- information for instructors of university courses on genetic algorithms and genetic programming

GENETIC PROGRAMMING

