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CHARLES DARWIN

“I think it would be a most extraordinary fact if no variation
ever had occurred useful to each being's own welfare ... .

“But if variations useful to any organic being do occur,
assuredly individuals thus characterised will have the best
chance of being preserved in the struggle for life; and from
the strong principle of inheritance they will tend to produce
offspring similarly characterised.

“This principle of preservation, I have called, for the sake of
brevity, Natural Selection.”

— Charles Darwin, On the Origin of Species by Means of
Natural Selection (1859)



TURING'S THREE APPROACHES TO
MACHINE INTELLIGENCE

e Turing made the connection between searches and the
challenge of getting a computer to solve a problem without
explicitly programming it in his 1948 essay “Intelligent
Machines”

“Further research into intelligence of machinery will
probably be very greatly concerned with 'searches’
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TURING

1. LOGIC-BASED SEARCH

One approach that Turing identified is a search through the
space of integers representing candidate computer
programs.

2. “CULTURAL SEARCH”

Another approach is the "cultural search" which relies on
knowledge and expertise acquired over a period of years
from others (akin to present-day knowledge-based systems).

3. “GENETICAL OR EVOLUTIONARY
SEARCH”

"There is the genetical or evolutionary search by
which a combination of genes is looked for, the
criterion being the survival value."



TURING

"We cannot expect to find a good child-machine at
the first attempt. One must experiment with
teaching one such machine and see how well it learns.
One can then try another and see if it is better or
worse. There is an obvious connection between this
process and evolution, by the identifications"

"Structure of the child machine = Hereditary
material"

"Changes of the child machine = Mutations"
"Natural selection = Judgment of the experimenter"

— Turing’s 1950 paper “Computing Machinery and
Intelligence”



REASON FOR GENETIC
PROGRAMMING

THE CHALLENGE

"How can computers learn to solve problems without
being explicitly programmed? In other words, how
can computers be made to do what is needed to be
done, without being told exactly how to do it?"

— Attributed to Arthur Samuel (1959)



CRITERION FOR SUCCESS

"The aim [is] ... to get machines to exhibit behavior,
which if done by humans, would be assumed to
involve the use of intelligence."

— Arthur Samuel (1983)



VARIOUS REPRESENTATIONS USED TO
TRY TO ACHIEVE ARTIFICIAL
INTELLIGENCE (AI) AND MACHINE
LEARNING (ML)

¢ Decision trees

e If-then production rules (e.g., expert systems)
e Horn clauses

e Neural nets (matrices of numerical weights)

e Bayesian networks

e Frames

e Propositional logic

¢ Binary decision diagrams

¢ Formal grammars

e Numerical coefficients for polynomials

e Tables of values (reinforcement learning)

e Conceptual clusters

e Concept sets

e Parallel if-then rules (e.g., learning classifier systems)
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REPRESENTATION

e “Our view is that computer programs are
the best representation of computer
programs.”



11

A COMPUTER PROGRAM

Input Program Output

Potential Potential Potential fl’ottentlzlll
Subroutines Loops Recursions nterna
Storage
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COMPUTER PROGRAM
= PARSE TREE = PROGRAM TREE
= PROGRAM IN LISP =DATA = LIST

(+ 1 2 (IF (> TIME 10) 3 4))

e Terminalset T={1, 2, 10, 3, 4, TIME}
e Function set F = {+, IF, >}
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FLOWCHART FOR GENETIC
PROGRAMMING (GP)

Y

Run :=0 |>

Gen:=0 |P

End
% A Yes
Create Initial Random CRun =N? Run :=Run + 1
Population for Run A

Termination Criterion Yes. Designate
Satisfied for Run?> Result for Run|
v— i:=0 No

Apply Fitness Measure to Individual in the Population

v

No oM e i=ir1
1:=0 Yes
Yes — l —
Gen :=Gen + 1 4—(1:M?>4— i=i+1 [
I
No
CSelect Genetic Operatio@
P, | Select One Individual - Copy into New | —p»
> Based on Fitness [P erform Reproduction Population
2 [Select Two Individuals Perform Insert Offspring T
> i =i+1
Based on Fitness Crossover into New g B
Population
F, | Select One Individual Perform Mutati I '
tat nsert Mutant into
——>  Based on Fitness | Terform Mutation [ New Population >
Select an Architecture Altering Operation
—>

Based on its Specified Probability

Select One Individual
Based on Fitness

-

Perform the
Architecture Altering]
Operation

Insert Offspring into >

New Population
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RANDOM CREATION OF A PROGRAM
TREE




15

RANDOM CREATION OF A PROGRAM
TREE

e Terminal set T = {A, B, C}
e Function set F = {+, -, *, %, IFLTE}

BEGIN WITH TWO-ARGUMENT +

A

CONTINUE WITH TWO-ARGUMENT *

1

FINISH WITH TERMINALS 2, B, AND C
)

() ©
OO

e The result is a syntactically valid executable program
(provided the set of functions is “closed”)
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MUTATION OPERATION

e Select parent probabilistically based on fitness
¢ Pick point from 1 to NUMBER-OF-POINTS
e Delete subtree at the picked point

e Grow new subtree at the mutation point in same way as
generated trees for initial random population (generation 0)
e The result is a syntactically valid executable program

ONE PARENTAL PROGRAM
1 (or)

: @ @
() () () (v
4 5 6 7

OFFSPRING PRODUCED BY MUTATION
D

e The result is a syntactically valid executable program
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CROSSOVER (SEXUAL
RECOMBINATION) OPERATION FOR
COMPUTER PROGRAMS

e Select two parents probabilistically based on fitness

e Randomly pick a number from 1 to NUMBER-OF -POINTS
— independently for each of the two parental programs

e Identify the two subtrees rooted at the two picked points

0.234Z + X - 0.789 ZY(Y +0.3142)

Parent 1:

(+ (* 0.234 Z) (- X 0.789))

Parent 2:

(* (* 2Y) (+Y (¥ 0.314 Z)))
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THE CROSSOVER OPERATION
(TWO OFFSPRING VERSION)

(%)
() ()
@ O ezd D

Y +0.314Z + X — 0.789 0.2347%Y

Offspring 1:
(+ (+ Y (* 0.314 7))
(- X 0.789))

Offspring 2:
(* (* 2 Y) (* 0.234 7))

e The result is a syntactically valid executable program
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FIVE MAJOR PREPARATORY STEPS
FOR GP
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FIVE MAJOR PREPARATORY STEPS
FOR GP

¢ Determining the set of terminals
e Determining the set of functions
e Determining the fitness measure
e Determining the parameters for the run

e Determining the method for designating a
result and the criterion for terminating a run

Terminal Set ——»
Function Set —#»
Fitness Measure - GP _>A Computer
Parameters ——» Program

Termination g
Criterion




SYMBOLIC REGRESSION #1
(WITH 21 FITNESS CASES)
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Independent variable X Dependent Variable Y
(Input) (Output)

-1.0 1.00
-0.9 0.91
-0.8 0.84
-0.7 0.79
-0.6 0.76
-0.5 0.75
-0.4 0.76
-0.3 0.79
-0.2 0.84
-0.1 0.91

0 1.00
0.1 1.11
0.2 1.24
0.3 1.39
0.4 1.56
0.5 1.75
0.6 1.96
0.7 2.19
0.8 2.44
0.9 2.71
1.0 3.00
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TABLEAU—SYMBOLIC REGRESSION #1

Objective:

Find a computer program with one
input (independent variable X),
whose output equals the values in
the table in range from -1 to +1.

1 Terminal set:

T = {X, constants}

2 Function set:

F = {+I i/ *, %}

NOTE: The protected division
function % returns a value of 1 when
division by 0 is attempted (including
0 divided by 0)

3 Fitness:

The sum of the absolute value of the
differences (errors), computed (in
some way) over values of the
independent variable X from —1.0 to
+1.0, between the program’s output
and the target quadratic polynomial
X2+ X + 1.

4 Parameters:

Population size M = 4

5 Termination:

An individual emerges whose sum
of absolute errors is less than 0.1
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SYMBOLIC REGRESSION #1

INITIAL POPULATION OF FOUR
INDIVIDUALS OF GENERATION 0

(@) (b) ©) (d)

(2 O, (
w© O @0 ® Q
0 ® & ® B @

2

X+1 X2+ 1
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SYMBOLIC REGRESSION #1

INITIAL POPULATION OF FOUR
INDIVIDUALS OF GENERATION 0

(@) (b) ©) (d)

O, (+) Q,
O O &6 © 00 ®
® © ONO @D @
2 X

X+1 X2 +1

EVALUATE FITNESS
® © @

(a)
| |
-1 _2J 1 N 1A N 1 Wj 1
0.67 1.00 1.70 2.67
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SYMBOLIC REGRESSION #1

GENERATION 0
@ (b) (c) (d)

Fo SR R,

.67 1.00 2.67

GENERATION 1
(b) (c)

@) (d)
Fo> £ TP OB,

OO
00

X+1

Copy parent

(a)
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SYMBOLIC REGRESSION #1

GENERATION 0
(@) (b) (C) (d)
Fo>
OO D @
0.67 1.00 2.67

GENERATION 1
(b) (c)

@) (d)
.’5‘ °R,

OO
00

Mutate
parent (¢)

Picking  “2”
as mutation
point
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SYMBOLIC REGRESSION #1

GENERATION 0
@ (b) (c) (d)

Fo SR R,

0.67 1.00 2.67

GENERATION 1
(b) (c)

@) (d)
Fo> £ TP OB,
OO

0

X

Crossover of
(a) and (b)

Picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points
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SYMBOLIC REGRESSION #1

(@)

GENERATION 0

(b)

(C)

(d)

Fo SR R,

0.67

(a)

1.00

GENERATION 1

(b)

(C)

2.67

(d)
09
OO

0

X2+ Xx+1

Crossover of
(a) and (b)

Picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points
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SYMBOLIC REGRESSION #1

(@)

GENERATION 0

(b)

(C)

(d)

Fo SR R,

0.67

(a)

1.00

GENERATION 1

(b)

(C)

2.67

(d)
09
OO

0

X+1

X

X2+Xx+1

Copy parent
(2)

Mutate
parent (¢)

Crossover of
(a) and (b)

Crossover of
(a) and (b)

Picking  “2”
as mutation
point

Picking *“+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points

Picking “+”
of parent (a)
and left-most
“x” of parent
(b) as
crossover
points
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SYMBOLIC REGRESSION #1

OBSERVATIONS

e Genetic programming worked on this
simple illustrative problem and produced
quadratic polynomial x* + X + 1

e GP determined the size and shape of the

solution
e number of operations needed to solve the problem
e size and shape of the program tree (topology)
e content of the program tree (i.e., sequence of operations)

e The solution x> + x + 1 resulted from a
recombination (crossover) of two ‘pretty

00d” elements, namely
e the linear term X
e the quadratic term x> + 1

e Cross validation is required. The answer is
algebraically correct.
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DARWINIAN NATURAL SELECTION

e All participants in the mutation,
reproduction, and crossover operations are
chosen from the current population
probabilistically based on fitness

e Anything can happen
e Nothing is guaranteed

e The search is heavily (but not completely)
biased toward high-fitness individuals

e The best is not guaranteed to be chosen

e The worst is not necessarily excluded

e Some (but not much) attention is given
even to low-fitness individuals
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SYMBOLIC REGRESSION #2
(WITH 21 FITNESS CASES)

Independent Dependent

variable X|Variable Y

(Input) (Output)
-1.0 0.0000
-0.9 -0.1629
-0.8 -0.2624
-0.7 -0.3129
-0.6 -0.3264
-0.5 -0.3125
-0.4 -0.2784
-0.3 -0.2289
-0.2 -0.1664
-0.1 -0.0909

0 0.0

0.1 0.1111
0.2 0.2496
0.3 0.4251
0.4 0.6496
0.5 0.9375
0.6 1.3056
0.7 1.7731
0.8 2.3616
0.9 3.0951
1.0 4.0000
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TABLEAU—SYMBOLIC REGRESSION #2

Objective: Find a function of one independent
variable, in symbolic form, that fits a
given sample of 21 (X, i) data points

Terminal set: x (the independent variable).

Function set: +, -, *, %, SIN, COS, EXP,
RLOG

Fitness cases: The given sample of 21 data points (X,
Vi) where the X; are in interval [-1, +1].

Raw fitness: The sum, taken over the 21 fitness cases,

of the absolute value of difference
between value of the dependent variable
produced by the individual program and
the target value y;j of the dependent

variable.
Standardized Equals raw fitness.
fitness:
Hits: Number of fitness cases (0—21) for which

the value of the dependent variable
produced by the individual program
comes within 0.01 of the target value y;
of the dependent variable.

Wrapper: None.
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Parameters:

e Population size, M = 500

e Maximum number of generations to be
run, G =51

e 1% mutation (i.e., 5 individuals out of
500)

® 9% reproduction (i.e., 45 individuals)

e 90% crossover (i.e., 225 pairs of
parents — yielding 450 offspring)

Success
Predicate:

An individual program scores 21 hits.
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SYMBOLIC REGRESSION #2

MEDIAN INDIVIDUAL IN GENERATION
0 WITH RAW FITNESS OF 23.67
(AVERGAGE ERROR OF 1.3)

(COs (Ccos (+ (- (* X X) (% X
X)) X)))

Equivalent to

Cos [Cos (x: + x = 1)]

3 - X4+ X + X2+ X

T

2 Cos [Cos (x*+ x -1)]
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SYMBOLIC REGRESSION #2

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 0 WITH RAW FITNESS OF
4.47 (AVERGAGE ERROR OF 0.2)

(* X (+ (+ (- (% X X) (% X X))
(SIN (- X X))) (RLOG (EXP (EXP
X)))))

Equivalent to

Xex

4—
] X4+ X3+ X2+ X

37 \
] xeX
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SYMBOLIC REGRESSION #2

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 2 WITH RAW FITNESS OF
2.57 (AVERGAGE ERROR OF 0.1)

(+ (* (* (+ X (* X (* X (% (% X
X) (+ X X)))))
(+ X (* X X))) X) X)

Equivalent to...

x4 + 1.5x3 + O.5x2 + x
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SYMBOLIC REGRESSION
OF UNKNOWN FUNCTION #2

BEST-OF-RUN INDIVIDUAL IN
GENERATION 34 WITH RAW FITNESS
OF 0.00 (NO ERROR)

(+ X (* (+ X (* (* (+ X (- (cos

(- X X)) (- X X))) X) X)) X))

Equivalent to
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SYMBOLIC REGRESSION OF
FUNCTION #2—OBSERVATIONS

e The result is N0t how a human programmer

would have done it
e Cos(X-X)=1
e Not parsimonious

e The extraneous functions — SIN, EXP,
RLOG, and RCOS are absent in the best
individual of later generations because they

are detrimental
e Cos (X - X) =1 is the exception that proves the rule

e GP operates the same whether the solution
is linear, polynomial, a rational fraction of
polynomials, exponential, trigonometric, etc.
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CLASSIFICATION PROBLEM
INTER-TWINED SPIRALS
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GP TABLEAU — INTERTWINED SPIRALS

Objective:

Find a program to classify a given point
in the X-y plane to the red or blue spiral.

Terminal set:

X, Y, R, where R is the ephemeral
random floating-point constant ranging
between —1.000 and +1.000.

Function set:

%, IFLTE, SIN, COS.

Fitness cases:

+, -, * r Oy
194 points in the X-y plane.

Raw fitness:

The number of correctly classified points
(0-194)

Standardized The maximum raw fitness (i.e., 194)

fitness: minus the raw fitness.

Hits: Equals raw fitness.

Wrapper: Maps any individual program returning
a positive value to class +1 (red) and
maps all other values to class —1 (blue).

Parameters: M = 10,000 (with over-selection). G = 51.

Success An individual program scores 194 hits.

predicate:
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WALL-FOLLOWING PROBLEM

12 SONAR SENSORS

S01=16.4 S02=12.0 S03=12.0 S04 =16.4

S00=12.4

S11=124
S06 = 16.2

S10=17.0 S08 = 16.6 S07 =221
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WALL-FOLLOWING PROBLEM

FITNESS MEASURE
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WALL-FOLLOWING PROBLEM
BEST PROGRAM OF GENERATION 57

e Scores 56 hits (out of 56)
¢ 145point program tree

]
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GENETIC PROGRAMMING: ON THE
PROGRAMMING OF COMPUTERS BY
MEANS OF NATURAL SELECTION (MIT
PRESS, 1992)

EBIIINET I C

Figt i bweEi=ELC

& ’iJ'.:-?.'
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24 PROBLEMS SHOWN IN
GENETIC PROGRAMMING: THE MOVIE
(1992)

e Symbolic Regression

e Intertwined Spirals

e Artificial Ant

e Truck Backer Upper

¢ Broom Balancing

e Wall Following

e Box Moving

¢ Discrete Pursuer-Evader Game

¢ Differential Pursuer-Evader Game
e Co-Evolution of Game-Playing Strategies
¢ Inverse Kinematics

e Emergent Collecting

e Central Place Foraging

¢ Block Stacking

e Randomizer

e 1-D Cellular Automata

e 2-D Cellular Automata

e Task Prioritization

e Programmatic Image Compression
e Finding 32

e Econometric Exchange Equation

e Optimization (Lizard)

¢ Boolean 11-Multiplexer

¢ 11-Parity—Automatically Defined Functions
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“DEVELOPMENTAL” GENETIC
PROGRAMMING

e We don’t evolve the desired
structure, but, instead, a set of
instructions (i.e., a computer program)
to construct the structure
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GENETIC PROGRAMMING III:
DARWINIAN INVENTION AND PROBLEM
SOLVING
(KOZA, BENNETT, ANDRE, AND KEANE,
1999, MORGAN KAUFMANN)

Genetic
Program rmrjg III

L] % ‘ N -
¥ , J{BR. Koza
Forrest H Bennett 111

David Andre
Martin A. Keane
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DEVELOPMENTAL GP

AUTOMATIC SYNTHESIS OF ANTENNA

EXAMPLE OF TURTLE FUNCTIONS

1 (PROGNS3

2 (TURN-RIGHT 0.125)

3 (LANDMARK

4 (REPEAT 2

5 (PROGN2

6 (DRAW 1.0 HALF-MM-WIRE)
7 (DRAW 0.5 NO-WIRE)))

8 (TRANSLATE-RIGHT 0.125 0.75))

<

P Y
A Y O S

(a) (b) (© (d) (e) ) 9
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BEST-OF-RUN ANTENNA FROM
GENERATION 90

‘ \ \ \ \
0.5 1 15 2

x(m)

y(m)

0.2 ‘
O
0.2 ‘

\
0

e The GP run discovered

(1) the number of reflectors (one),

(2) the number of directors,

(3) the fact that the driven element, the directors, and the
reflector are all single straight wires,

(4) the fact that the driven element, the directors, and the
reflector are all arranged in parallel,

(5) the fact that the energy source (via the transmission
line) is connected only to single straight wire (the
driven element) — that is, all the directors and
reflectors are parasitically coupled

e Characteristics (3), (4), and (5) are essential characteristics
of the Yagi-Uda antenna, namely an antenna with multiple
parallel parasitically coupled straight-line directors, a single
parallel parasitically coupled straight-line reflector, and a
straight-line driven element.
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AUTOMATED DESIGN OF OPTICAL
LENS SYSTEMS
(KOZA, AL-SAKRAN, AND JONES 20035)

TACKABERRY-MULLER LENS SYSTEM

—

f

Object Entry Pupil

\/!

Image

“PRESCRIPTION” (“LENS FILE”)

Surface Distance Radius Material Aperture
Object 10" flat air

Entry 0.88 flat air 0.18
pupil

1 0.21900 -3.5236 | BK7 0.62
2 0.07280 —1.0527 | air 0.62
3 0.22500 —4.4072 | BK7 0.62
4 0.01360 —1.0704 | air 0.62
5 0.52100 1.02491 | BK7 0.62
6 0.11800 —0.9349 | SF61 0.62
7 0.47485 7.94281 air 0.62
Image flat
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DEVELOPMENTAL PROCESS

TURTLE STARTS AT POINT g ALONG
MAIN AXIS b

Object Entry Pupil Image

TURTLE INSERTS SURFACE 1

Object Entry Pupil Image

TURTLE INSERTS SURFACE 2

b gh- f
e ST RR
1V

Object Entry Pupil Image
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DEVELOPMENTAL PROCESS—
CONTINUED

b hi e f
e BK7] |IBK7
L/ 3/

Object Entry Pupil Image

b j\hl j f
e BK7] IBK7JAIR
1

Object Entry Pupil Image
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DEVELOPMENTAL PROCESS—
CONTINUED

hli

ik

Object Entry Pupil

BK7

BK7

BK7

Image

Object Entry Pupil

e BK7] |BK7 BK7 SF4
1 5\ 6
b h] jvk I;m f

Image

Object Entry Pupil

e BK7| [BK7{ BK7 AR
SF4
1 5\ 6 7

Image
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DEVELOPMENTAL GP
ANALOG ELECTRICAL CIRCUITS

THE INITIAL CIRCUIT

14 HLDAD§
Epf?nu RCE
s

ZGHD

D
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DEVELOPMENTAL GP

ANALOG ELECTRICAL CIRCUITS

THE INITIAL CIRCUIT

e Initial circuit consists of embryo and test fixture
e Embryo has modifiable wires (e.g., Z0O AND Z1)
e Test fixture has input and output ports and usually has
source resistor and load resistor. There are no modifiable
wires (or modifiable components) in the test fixture.
e Circuit-constructing program trees consist of

e Component-creating functions

e Topology-modifying functions

e Development-controlling functions
e C(Circuit-constructing program tree has one result-
producing branch for each modifiable wire in embryo of the
initial circuit
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DEVELOPMENTAL GP

DEVELOPMENT OF A CIRCUIT FROM A
CIRCUIT-CONSTRUCTING PROGRAM
TREE AND THE INITIAL CIRCUIT

(LIST (C (- 0.963 (- (- -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (- -0.640
0.749) (L -0.123 end)))) (flip

(nop (L -0.657 end)))))

2 3
13 14 15 16 17 18 19 20 21
O E@D @D COEDCD (LD @) @D
22
@D AD @D EDEDTEDOTD@DED)
23 24 25 26 27 28 29 30 31
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DEVELOPMENTAL GP

RESULT OF THE C (2) FUNCTION
+ Ci) — 3 2

Z0UT

vOUT

14 403rF T RLOADS

+ WSOURCE

e

0 ZGND
L 4 -4

(LIST (C (- 0.963 (- (- -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (- -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

NOTE: Interpretation of arithmetic value




59

DEVELOPMENTAL GP

RESULT OF SERIES (5) FUNCTION

(LIST

-0.113) O.
(series

end)

2

0

14+

&

@ +

)

§ RSOURCE
403n

+ MSOURCE

ZGND

B
K
*

Z0UT

vouTt

W

RLOAD

(C

(- 0.963

880) )

0.277 end) end)

0.749)

(nop

(series

(- (- -0.875

(L

(flip end)

(flip
(L -

(- -0.640

(L -0.123 end))))
(L -0.657 end)))))

(flip
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EVALUATION OF FITNESS OF A
CIRCUIT

n IN——2—touT

Program Tree l

Fully Designed Circuit (NetGraph)

Y

Circuit Netlist (ascii)

Y

Circuit Simulator (SPICE)

Y

Circuit Behavior (Output)

Y

Fithess

Embryonic Circuit
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BEHAVIOR OF A LOWPASS FILTER
VIEWED IN THE FREQUENCY DOMAIN

1.0 e ST o — - a
1

1
.50
|
1
l
! .
| 2000Hz
| i
1 |
1 I
1
T T . 1
1.8Hz 18Hz 186Hz 1.8KHz 18KHz 180KHz

o U{RLOAD =1}
Frequency

e Examine circuit's behavior for each of 101 frequency
values chosen over five decades of frequency (from 1 Hz to
100,000 Hz) with each decade divided into 20 parts (using a
logarithmic scale). The fitness measure

¢ does not penalize ideal values

o slightly penalizes acceptable deviations

¢ heavily penalizes unacceptable deviations

e Fitness is F(t) = 1§Z [W(F)d(f,)]

o f(i) is the frequency of fitness case i

od(X) is the difference between the target and observed
values at frequency of fitness case |

e \W(y,X) is the weighting at frequency X
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TABLEAU — LOWPASS FILTER

Objective:

Design a lowpass filter composed of
inductors and capacitors with a
passband below 1,000 Hz, a stopband
above 2,000 Hz, a maximum allowable
passband deviation of 30 millivolts, and
a maximum  allowable stopband
deviation of 1 millivolt.

Test fixture and
embryo:

One-input, one-output initial circuit with
a source resistor, load resistor, and two
modifiable wires.

Program Two result-producing branches, RPBO
architecture: and RPB1 (i.e., one RPB per modifiable
wire in the embryo).
Initial function|For construction-continuing subtrees:
set for the result-|Fees-rpb-initial = {C, L, SERIES,
producing PARALLELO, FLIP, NOP, TWO GROUND,
branches: TWO VIAO0, TWO VIAl, TWO VIAZ,
TWO VIA3, TWO VIA4, TWO VIAS,
TWO VIA6, TWO VIAT7}.
For arithmetic-performing subtrees:
Faps = {+, -}.
Initial terminal|For construction-continuing subtrees:
set for the result-| Tecs-rpb-initial = {END}.
producing For arithmetic-performing subtrees:
branches:

Taps = {<—smaller-reals}-

Fitness cases:

101 frequency values in an interval of
five decades of frequency values between
1 Hz and 100,000 Hz.




63

Raw fitness:

Fitness is the sum, over the 101 sampled
frequencies (fitness cases), of the
absolute weighted deviation between the
actual value of the output voltage that is
produced by the circuit at the probe
point and the target value for voltage.
The weighting penalizes unacceptable
output voltages much more heavily than
deviating, but acceptable, voltages.

Standardized Same as raw fitness.

fitness:

Hits: The number of hits is defined as the
number of fitness cases (out of 101) for
which the voltage is acceptable or ideal
or that lie in the "don't care' band.

Wrapper: None.

Parameters: M = 1,000 to 320,000. G = 1,001. Q
=1,000. D = 64. B = 2%. Nypp = 2. Sypb =
200.

Result Best-so-far pace-setting individual.

designation:

Success A program scores the maximum number

predicate:

(101) of hits.
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EVOLVED CAMPBELL FILTER
(7-RUNG LADDER)

ﬁﬁﬁﬁ T e e S L Tt P 3
LI'D L31 25 L13 20Ut
1K EI'BEUH 182000uH MUH MUH Z205000uH( Z05000uH | 152000uH

vouTt

TAOOURCE 015 co4 €33 - €27 = €15 L oo
BEInFT znznr znzan 202an 202an znzan 86.1nF o §

o .
L zgnp 4 1

e This genetically evolved circuit infringes on U. S. patent
1,227,113 issued to George Campbell of American Telephone
and Telegraph in 1917 (claim 2):

“An electric wave filter consisting of a connecting line of
negligible attenuation composed of a plurality of sections,
each section including a capacity element and an inductance
element, one of said elements of each section being in series
with the line and the other in shunt across the line, said
capacity and inductance elements having precomputed
values dependent upon the upper limiting frequency and
the lower limiting frequency of a range of frequencies it is
desired to transmit without attenuation, the values of said
capacity and inductance elements being so proportioned
that the structure transmits with practically negligible
attenuation sinusoidal currents of all frequencies lying
between said two limiting frequencies, while attenuating
and approximately extinguishing currents of neighboring
frequencies lying outside of said limiting frequencies.”
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EVOLVED ZOBEL FILTER

e Infringes on U. S. patent 1,538,964 issued in 1925 to Otto
Zobel of American Telephone and Telegraph Company for
an “M-derived half section” used in conjunction with one or
more “constant K” sections.

e One M-derived half section (C2 and L11)

e Cascade of three symmetric T-sections

LS L16 LT3 L10O
« 85400uH | 198000uH| 198000uH| 198000uH

C3
RSOURCE 117nF
C18 C15 C12

194nF 194nF 194nF L1
52200uH
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21 PREVIOUSLY PATENTED

INVENTIONS REINVENTED BY GP

Invention Date Inventor Place Patent
1 Darlington 1953 Sidney Bell Telephone 2,663,806
emitter- Darlington Laboratories
follower
section
2 Ladder filter | 1917 George American 1,227,113
Campbell Telephone and
Telegraph
3 Crossover 1925 Otto Julius American 1,538,964
filter Zobel Telephone and
Telegraph
4 “M-derived 1925 Otto Julius American 1,538,964
half section” Zobel Telephone and
filter Telegraph
5 Cauer 1934— | Wilhelm University of 1,958,742,
(elliptic) 1936 Cauer Gottingen 1,989,545
topology for
filters
6 Sorting 1962 Daniel G. General Precision, | 3,029,413
network O’Connor Inc.
and
Raymond J.
Nelson
7 Computation | See See text See text See text
al circuits text
8 Electronic See See text See text See text
thermometer | text
9 Voltage See See text See text See text
reference text
circuit
10 | 60 dB and 96 | See See text See text See text
dB amplifiers [ text
11 | Second- 1942 Harry Jones | Brown Instrument | 2,282,726
derivative Company
controller
12 | Philbrick 1956 George George A. 2,730,679
circuit Philbrick Philbrick
Researches
13 | NAND circuit | 1971 David H. Texas Instruments | 3,560,760
Chung and Incorporated

Bill H.
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Terrell
14 | PID 1939 Albert Imperial Chemical | 2,175,985
(proportional Callender Limited
, integrative, and Allan
and Stevenson
derivative)
controller
15 | Negative 1937 Harold S. American 2,102,670,
feedback Black Telephone and 2,102,671
Telegraph
16 | Low-voltage 2001 Sang Gug Information and 6,265,908
balun circuit Lee Communications
University
17 | Mixed 2000 Turgut Lucent 6,013,958
analog-digital Sefket Aytur | Technologies Inc.
variable
capacitor
circuit
18 | High-current | 2001 Timothy International 6,211,726
load circuit Daun- Business Machines
Lindberg Corporation
and Michael
Miller
19 | Voltage- 2000 AKkira Mitsumi Electric 6,166,529
current Ikeuchi and Co., Ltd.
conversion Naoshi
circuit Tokuda
20 | Cubic 2000 Stefano Conexant Systems, | 6,160,427
function Cipriani and | Inc.
generator Anthony A.
Takeshian
21 | Tunable 2001 Robert Infineon 6,225,859
integrated Irvine and Technologies AG
active filter Bernd Kolb
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POST-2000 PATENTED INVENTIONS

HIGH CURRENT LOAD CIRCUIT
BEST-OF-RUN FROM GENERATION 114

4 k

T e
%%L %% t‘ﬁi L% %ﬁi t‘ﬁi Lﬁi L% :ﬁ WG

Jg%ﬁj%

LTI,

‘W—"—’W%

. E‘T;
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J
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POST-2000 PATENTED INVENTIONS

REGISTER-CONTROLLED CAPACITOR
CIRCUIT

SMALLEST COMPLIANT FROM

~ GENERATION 98
@ Ib T .0/@ VINO
E,: }7 21.1n]
::38.5n 1 E':
>
\@) OUTO | VEINAL
o VTARGET @ @ ?J @%

I
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POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE CUBIC SIGNAL
GENERATION CIRCUIT
BEST-OF-RUN FROM GENERATION 182

VINO

2V O =
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POST-2000 PATENTED INVENTIONS

LOW-VOLTAGE BALUN CIRCUIT
BEST EVOLVED FROM GENERATION 84

A
VOUT NG
vouto
VDIFF
‘ [
+
R306 RLOAD1 RLOADO viSRpageg
11.0k 150 150 T
a —e
| I
0302 0301 RSRC
<207 R305= 21.5u et
16 10.4K i
Q308 e < JIND ;)
Q30K 0303
t 1
1Qang
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POST-2000 PATENTED INVENTIONS

VOLTAGE-CURRENT-CONVERSION
CIRCUIT
BEST-OF-RUN FROM GENERATION 109

X
W) 418k  3.99k )
VINO O
‘ —15V
e 1.78k P
1.54k 502
e 2.45k

= 1 = |louTO.

] o . <7
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POST-2000 PATENTED INVENTIONS

TUNABLE INTEGRATED ACTIVE
FILTER — GENERATION 50

RSRCT
50k

Q11
/ N

VINSRC

] ’

C11 Cf;f

86n <= RSRC2
=+ Tu VOUT
VIN “;)

conrou(Q) AT M
i N
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2 PATENTED INVENTIONS CREATED
BY GENETIC PROGRAMMING

Keane, Martin A., Koza, John R., and Streeter, Matthew J.
2005. Apparatus for Improved General-Purpose PID and
Non-PID Controllers. U. S. Patent 6,847,851. Filed July
12, 2002. Issued January 25, 2005

PATENT OFFICE
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NOVELTY-DRIVEN EVOLUTION

EXAMPLE OF LOWPASS FILTER

e Two factors in fitness measure

e Circuit’s behavior in the frequency domain

e Largest number of nodes and edges (circuit components)
of a subgraph of the given circuit that is isomorphic to a
subgraph of a template representing the prior art. Graph
isomorphism algorithm with the cost function being based
on the number of shared nodes and edges (instead of just
the number of nodes).

PRIOR ART TEMPLATE
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NOVELTY-DRIVEN EVOLUTION —
CONTINUED

e For circuits not scoring the maximum number (101) of
hits, the fitness of a circuit is the product of the two factors.
e For circuits scoring 101 hits (100%-compliant individuals),

fitness is the number of shared nodes and edges divided by
10,000.

FITNESS OF EIGHT 100%-COMPLIANT

CIRCUITS
Solution | Frequency Isomorphism Fitness
factor factor
1 0.051039 / 0.357273
2 0.117093 [ 0.819651
3 0.103064 I 0.721448
4 0.161101 / 1.127707
9) 0.044382 13 0.044382
6 0.133877 I 0.937139
/ 0.059993 S 0.299965
38 0.062345 11 0.685795




C5  2.57nF
2 I
CWH5,15nF €2 6.27nF C3 12.5nF  C4 77.7nF 3
[l 11 [l |
L1 L2 L3 L4 5
RSource 87600uH 193000uH 192000uH 192000uH 85800uH
Tk c16 C14 C15 c17
1 202nF ﬂ: 209nF T 202nF i: 202nF jf
VSOURCE fy
0 c18 r B
0.582n7 0.587uH
4 4
SOLUTION NO. 1
C1 60.7nF C2 6.2/nF C3 12.5nF C4 6.27/nF
| | | | | | |
I I I
L1 L2 L3 L4
P Vo Vo Ve NN W o Vo Vo Ve NI
2 102000uH 192000uH|  192000uH|  102000uH
CS C6 c7
202nF L 202nF = 202nF=
RSOURCE
Tk
1
VSOURCE C; L5
0.278uH
0

SOLUTION NO. 5

RLOAD

RLOAD
1k
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GENETIC PROGRAMMING IV. ROUTINE
HUMAN-COMPETITIVE MACHINE
INTELLIGENCE
(KOZA, KEANE, STREETER,
MYDLOWEC, YU, AND LANZA,
KLUWER ACADEMIC PUBLISHERS,
2003)

benetic Programming IV

Routine Human-Competitive Machine Intelligence

John R. Koza = Martin A. Keane = Matthew .J. Streater
William dlowec * Jassen Yu * Guido Lanza

=
= 4

~ Kiuwer Academic Publishers
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EIGHT CRITERIA FOR HUMAN-
COMPETITIVENESS
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CRITERIA FOR “HUMAN-
COMPETITIVENESS”

® The result is equal or better than human-designed solution
to the same problem

e The result was patented as an invention in the past, is an
improvement over a patented invention, or would qualify
today as a patentable new invention.

e The result is equal to or better than a result that was
accepted as a new scientific result at the time when it was
published in a peer-reviewed scientific journal.

e The result is equal to or better than a result that was
placed into a database or archive of results maintained by an
internationally recognized panel of scientific experts.

e The result is publishable in its own right as a new scientific
result /independent of the fact that the result was
mechanically created.

® The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.

e The result is equal to or better than a result that was
considered an achievement in its field at the time it was first
discovered.
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CRITERIA FOR “HUMAN-
COMPETITIVENESS”

® The result solves a problem of indisputable difficulty in its
field.

e The result holds its own or wins a regulated competition
involving human contestants (in the form of either live
human players or human-written computer programs).
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HUMAN-COMPETITIVE RESULTS

PRODUCED BY GP

Claimed
instance

Picture

Creation of a
better-than-
classical
quantum
algorithm for
the Deutsch-
Jozsa “early
promise”
problem

Spector,
Barnum, and
Bernstein 1998

D —

U4

u(l)

out
Oracle

in

in

in

NAND

n

out

U4)

U(2)

in2/out

CNOT

inl

— OUul

Creation of a
better-than-
classical
quantum
algorithm for
Grover’s
database search
problem

Spector,
Barnum, and
Bernstein 1999

H

high

D

Us5n/4

Un/a

low

high

C

low
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Creation of a
quantum
algorithm for
the depth-two
AND/OR query
problem that is
better than any
previously
published
result

Spector,
Barnum,
Bernstein, and
Swamy 1999;
Barnum,
Bernstein, and
Spector 2000

AIINRRERE lllllll1

U(0.07491)

Illl EENERENRNEENNR
LU LTI

—

U(5.4205)

‘;

Creation of a
quantum
algorithm for
the depth-one
OR query
problem that is
better than any
previously
published
result

Barnum,
Bernstein, and
Spector 2000

uoOH A~

T

o
AN
N

c

=

o

0=5.96143477
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Creation of a
protocol for
communicating
information
through a
quantum gate
that was
previously
thought not to
permit such
communication

Spector and
Bernstein 2003

o+ ~>o0U(;

Alice

>

Z—-rro=sw

Bob

HUCS )

To understand one needs to know what the Smolin
gate is and this is given in smolin-gate.jpg

Smolin =

1
N2
0
0
1
7

2

o o = O

o O

O [u—
S

1
V2

0
0




Creation of a

vt of | Entangle — Bob
coding 0 ( ) [l /_F\ ‘
Spector.and
Bernstein 2003 0 . U(jm;ﬁl_)l /_,t\
S
0 - H () Cphase(m L] =
0 A l
\_E Alice

To understand one needs to know what the
BS gate is and this is given to bs-gate.jpg

(cos(@) O O sin@®) |
0 0 1 0
0 1 0 0
sin@) O O -—cos(O)

BS(6) =




Creation of a
soccer-playing
program that
won its first
two games in
the Robo Cup
1997
competition

Luke 1998

play_on 2688

(referee
{referee
treferee
(referee
(referee

play_on?
kick_in_r}
play_on?
goal_kick_r)
play_on}

Recv
Recw
Recy
Recy
Recy

t1_3¢
t1_5¢
t1 6
tl 7
t1_8¢

{turn
tkick
{turn
{turn
{turn

-3
100 0
-181
=252
=19}

Creation of a
soccer-playing
program that
ranked in the
middle of the
field of 34
human-written
programs in the
Robo Cup 1998
competition

Andre and
Teller 1999

play_on 2688

(referee
(referee
treferes
(referee
(referee

play_on?
kick_in_rd
play_on?
goal_kick_r)
play_on}

Recv
Recw
Recy
Recv
Recw

t1_3¢
t1_5¢
t1_6:
t1_7:
t1_8;

{turn
tkick
{turn
{turn
{turn

-3
100 0
-181
=25
-19»
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Creation of
four different
algorithms for
the
transmembrane
segment
identification
problem for
proteins

Sections 18.8
and 18.10 of
Genetic
Programming 11
and sections
16.5 and 17.2 of
Genetic
Programming
11

""0-2-4 rule" from section 16.5 of Genetic Programming 111

Residue

ent

Increm

0

|12

Creation of a
sorting network
for seven items
using only 16
steps

Sections 21.4.4,
23.6, and 57.8.1
of Genetic
Programming
11

k. N W s

e T T S

! |
! 1
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1
- S R —
I e
I
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SR e - -
! 1
I
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! 1
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A
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1
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Rediscovery of
the Campbell
ladder topology
for lowpass and
highpass filters

Section 25.15.1
of Genetic
Programming
1l

LS
1K 9.68uH
RSOURCE

+ L VSOURCE

182000uH

L10 L22

209000uH

C24 C30

209000uH

C3

209000

C3

uH | 209000uH

182000uH

3 Cc27 C15

ZGND

12 RLOAD
86.1nF 202nF 202nF 202nF 202nF 202nF 86.1nF o
0
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Rediscovery of
the Zobel “M-
derived half
section” and
“constant K”
filter sections

Section 25.15.2
of Genetic
Programming
1

L5 L16
1K 85400uH | 198000uH

RSOURCE

C18
194nF

L13
198000uH

L10
198000uH
C3
117nF
C15
194nF

C12

194nF 111

52200uH

Rediscovery of

the Cauer S1800uH
(elliptic) CSOURCE 43 sooun
topology for s 127 L40 L31 L45 147 RLOAD
filters 51800uH 51800uH 51800uH 51800uH 51800uH Tk

" L34 L50 L43 153 L14
Section 27.3.7 51800uH 51800uH 51800uH 51800uH 51800uH
of Genetic @SOURCE cls c12 c21 c3 c15
Programming . 136nF 136nF 136nF 136nF 136nF
1l :

ZGND

)
Automatic
decomposition 3
of the problem ) OO L3 L70
of synthesizing 770uH 903uH
a crossover VOUT]
(woofer-
tweeter) filter CH1 C78 C5

17400nF [ 17000nF | 9670nF RLOAD1
Section 32.3 of RSOURCE 0.00794k
Genetic 0.00794K
Programming | | ¢
1
J; C38

+ 10300nF

@ L15 L29 L23 RLOAD2

_Tvsource 244uH 244 uH 655uH ~ 0.00794k

VOouT2
C4 C17 c27
5190nF 4080nF 4910nF
0 . e

1 6
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Rediscovery of
a recognizable
voltage gain
stage and a
Darlington
emitter-
follower section
of an amplifier
and other
circuits

q2n2222 Vee
5 Q83 R17 §a97¢
I_ﬁ?_‘ R58 Q89 R85
q2n2222 5.3K 0.123K
030 R62  7.04K
0.696K
R59

* | VSOURCE

&

Tk

R39

RSOURCE

4.97K |
mq2n2222

Q71
q2n2222

Q21
q2n2222

Section 42.3 of T;ZK as6 Darlington
- . Emitter—
Genetic ) 0 Voltage Gain Stage ‘ 1 Follower =
Programming L = Stage
1
Synthesis of 60
and 96 decibel RFEEDBACK POS15
amplifiers 100000K 20Ut 5
ADFO Q67
Section 45.3 of B A o
Genetic 2 71 a1
Programming POS15
1 Q51
a5 RLOAD
S 0.1K
NEG15
' Q21
POS15
NEG15 Qzs 1
0.63K POS15 Q23
Q49 pos1s  R39
c2o | Q26 Q38
N 7y 2:33nF POS15 | POS1S
RSOURCE Q@ 1
0.1K .
Q18 Q36
L
POS15
NEG15 C46
-~ 2.33nF
14 POS15
Q44
+ | VSOURCE 043 o
& (A
a Q55
Q34 RBSRC RBFDBK
0.1K 100000K
ZGND 1 L
4 =
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Synthesis of
analog
computational
circuits for
squaring,
cubing, square
root, cube root,
logarithm, and
Gaussian
functions

Section 47.5.3
of Genetic
Programming
11

Gaussian computational circuit using MOSFET transistors

2-

RSOURCE
0.001K

N

M14
VSOURCE

M13

0 MZ20
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Synthesis of a ? 3 9
real-time °
analolg circuit /0UT1
for time- Q25 NEG15 Q65 Vv
optimal control VOUT
of a robot I
. ‘ Q63
Section 48.3 of 30
Genetic
Programming
o L | 051 .
RSOURCE 1 . Q68
01K R52
Te 0.105K RLOADT
+ |VSOURCE1 NEG15 Tk
R53=0.105K K210
6 0.105K

RSOURCE?2

0.1K
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Synthesis of an
electronic
thermometer

Section 49.3 of
Genetic
Programming
11
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Synthesis of a
voltage
reference
circuit

Section 50.3 of
Genetic
Programming
11

* LVSOURCE

RSOURCE
1K

Q250

ZGND

Z0UT

VOUT

RLOAD
1K
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Creation of a
cellular
automata rule
for the majority
classification
problem that is
better than the
Gacs-
Kurdyumov-
Levin (GKL)
rule and all
other known
rules written by
humans

Andre, Bennett,
and Koza 1996
and section 58.4
of Genetic
Programming
11

Rule State Transition Rule Accuracy

Gacs-Kurdyumov-Levin gggggggg gigﬂiﬂ 81.6%

(GKL) 1978 human- 00000000 01011111

written 00000000 01011111
00000000 01011111
11111111 01011111
00000000 01011111
11111111 01011111

Davis 1995 human- 00000000 00L01111 §1.§00%.

written 00000000 00011111
11001111 00011111
00000000 00101111
11111100 01011111
00000000 00011111
11111111 00011111

Das (1995) human- 00000111 00000000 | 82.178%

written 00000111 11111111
00001111 00000000
00001111 11111111
00001111 00000000
00000111 11111111
00001111 00110001
00001111 11111111

Best rule evolved by gggggigi gggggggg 82.326%

genetic programming 00000101 00000000

(1999) 01010101 00000101
01010101 11111111
01010101 11111111
01010101 11111111
01010101 11111111

Creation of
motifs that
detect the D-E—
A-D box family
of proteins and
the manganese
superoxide
dismutase
family

Section 59.8 of
Genetic
Programming
11

[IV]-[1im]-D-E-[AI]-D-[rnek]-[lim]-[1im]-[1imeqdnrsk]
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Synthesis of
topology for a
PID-D2
(proportional,
integrative,
derivative, and
second
derivative)
controller

Section 3.7 of
Genetic
Programming
v

o, O o/ 1+005155 | 1+0.0837s

Synthesis of an
analog circuit
equivalent to
Philbrick
circuit

Section 4.3 of
Genetic
Programming
v

C1
| °
I
©.95nF Cob l
2440nF v
RSRC
Tk R2 1.65Meg
Cc2
a—
6.95nF

R3 = 1.01Meg

537k

409k

ROUT
100Meg
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Synthesis of a
NAND circuit

Section 4.4 of
Genetic
Programming
v

RSOURCEO RSOURCE
1 1

VSOURCED VSOURCE

vouT

Simultaneous
synthesis of 20 [29

36 l
RSRC L38 RLOAD
7,54 1,5.4 5,5.4
topology, VR (16.54) 2(53000L 3(1 90003; 2€(38000)u (11,5.4) (17.554)
sizing, 1K . " X 96100uH 1K

placement, and N

routing of c18 ca7 C34
g c12 4.1) 21.2) (81.4)

analog (-10,0.5) P 256nF 256nF

electrical 155nF S l N
circuits o]

Synthesis of In(K, ) 1+T,s|
topology for a
PID

(proportional, —»| In(K,) I—v| 1+T,s H In(K, ) I

integrative, and | ;e
Signal

derivative) o 50) 50
controller :

Control
Variable
—0

Plant
Output

Chapter 5 of
Genetic
Programming
v
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Rediscovery of
negative
feedback

Chapter 14 of
Genetic
Programming
1\

RSRC

R2

Synthesis of a
low-voltage
balun circuit

Section 15.4.1
of Genetic
Programming
v

)
VOUT NG
vouto
VDIFF
‘ [
+
R306 RLOADT RLOADO viprﬁgBE
11 .0k 150 150 T
' e
|
0301 RSRC
ke 419y /o
10 |
Q308 UG 7&)




Synthesis of a
mixed analog-
digital variable
capacitor
circuit

Section 15.4.2
of Genetic
Programming
v

RSRCO

T

i

Tu (V) VINO
/5 .
J Q105
C102 T
27.1n
Q102 Q103
RSRC2 —
= ;
VREGO VREGT |4
C103—
9.55n

VTARGET —

Lé‘ .

+

VREGZ

VFINAL

RLOAD

Synthesis of a
high-current
load circuit

Section 15.4.3
of Genetic
Programming
[\

RTRACED

T
1

T
i

Ligis [ o1
[l iF

arg
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Synthesis of a
voltage-current
conversion
circuit

Section 15.4.4
of Genetic
Programming
v

Synthesis of a
cubic function
generator

Section 15.4.5
of Genetic
Programming
v

VINO

2V 0

100u

RSRC
Tu

R14

Q10

Q12

Q15
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Q11

[ ]
RSRC? <C{;f

Tu VOUT

contROL(L) (GIRT RESLP
d N

of

Synthesis of a
tunable

integrated ;L 14 14
active filter

Section 15.4.6
of Genetic

Programming
v
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Creation of PID
tuning rules
that
outperform the
Ziegler-Nichols
and Astrom-
Hagglund
tuning rules

Chapter 12 of
Genetic
Programming
v

Reference

i 210 230
signal 204 _ + 22 ,
2000 Equation 1 . Equation 2

Plant
Feedback 206

2020

Control
Variable

)0 234

260 +

"y + PN232
s 0

250
Equation 3

2089—

270 280 290

Equation 4 s

The topology (above) was not evolved, but was
the standard PID topology. Evolved equations for
Kp-finals Ki-finals Kd-final, and Dinar

-16 1.2
——+

Kp-ﬁnal = 072%K,*e" o’ - 0012340*T, -6.1173*10°

-16 1.2
Bl el

K 2
0.72%K, *e 1 Ku
-13 038

.
2
0.59%T, *e ! Ku

Ki—final —

068525*&
' T,

u

16 12 -14 056 -
— M N u
Kd..ﬁngl = 0.108*K,*T,*e" ' xe"" K" _0,0026640(e" )"’9(1'6342 )

056 -0.12
2 K

bﬁngl = o257 K R

e u
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Creation of
three non-PID
controllers that
outperform a
PID controller
that uses the
Ziegler-Nichols
or Astrom-
Higglund
tuning rules

Chapter 13 of
Genetic
Programming
v

Reference
Signal
700

o L
Plant

Output

706

Astrom-
Hagglund 3
Controller

Control
750 760 variable

+ +w 790
1+[Eq.331*s 9 Eg. 34 —t( Ho—>
4

+4748 M788

740

1+[Eq.32]*s

The above topology and equations 31, 32, 33, and
34 were evolved:

log (|LI")
T, +1

[31]

log|T, -T, +log

[34]

NLM (IoglLl-(abs(L)L)zTus (T, +1)T,e" -2TueL)

logT, +1]
132]
[33]

NLM (Iog|L|-2Tue" (2|<u (10g]K,e"|-logIL)T, + Kue"))
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Antenna that
satisfied NASA
specs and that
will be
launched into
space in 2004

Lohn et al. 2003
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ANNUAL HUMAN-COMPETITIVE
AWARDS (“HUMIES”)

www.Human-Competitive.org
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REVERSE ENGINEERING OF
METABOLIC PATHWAYS (4-REACTION
NETWORK IN PHOSPHOLIPID CYCLE)

BEST-OF-GENERATION 66
Fatty Acid Glycerol

EC3.1.1.23 S

11, Glycerol ATP N
K=1.88 (1 95) |Acylglycerol C00116 C00002
lipase

EC3.1.3.21 | Glycerol-1- EC2.7.1.30 | Glycerol
C00162 Int> K =1.20 (1.19) |phosphatase |K =1.65(1.69) kinase
Faity
Acid Ny /

EC3.1.1.3 Triacylglycerol
K = 1.46 (1.45) Yigly —
lipase
OUTPUT
00165 (MEASURED)
Diacyl-glycerol Cell Membrane

DESIRED
C00162 | Fatty Acid Glycerol
----------- ST eV oo e

; lipase
EC3.1.3.21 | Glycerol-1- EC2.7.1.30 | Glycerol
C00162 %—18@ K=1.19 phosphatase K=1.69 kinase
Fatty Monoacyl-
Acid glycerol B
\ cooo@
EC3.1.1.3

Triacylglycerol —
K=1.45 yigy sn-glycerol- ADP

lipase

3
phosphate
OUTPUT
C00165 (MEASURED) C00009

Diacyl-glycerol Orthophosphate Cell Membrane
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DEFINITION OF “HIGH-RETURN”
BASED ON THE “Al RATIO”

The Al ratio (the “artificial-to-intelligence”
ratio) of a problem-solving method as the
ratio of that which is delivered by the
automated operation of the artificial method
to the amount of intelligence that is supplied
by the human applying the method to a
particular problem.
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DEFINITION OF “ROUTINE”

A problem-solving method is routine if it is
general and relatively little human effort is
required to get the method to successfully
handle new problems within a particular
domain and to successfully handle new
problems from a different domain.
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GENETICALLY EVOLVED 10 DB
AMPLIFIER FROM GENERATION 45

SHOWING THE VOLTAGE GAIN STAGE
AND DARLINGTON EMITTER
FOLLOWER SECTION

q2‘ﬂ2222 Yee Yee
R17 1) az7k

on

ARy
Q89 R85 q2nZ222
q2n2222 § 5.3 §u.123l< Q21

qZn2222

I'\',-IE T K 0. 696K
A ——

[= 1w

EHCE J_H:m
1k 4 97K 202222 .
| [
{; A KN ase Dar_llngto a4 0AD
8
(1]

T

RSOURCE RZ4 Emitter-
18.8K Follower
Stage

|Vo|tage Gain Stdge




109

CROSS-DOMAIN OBSERVATIONS
ABOUT RUNS OF GENETIC
PROGRAMMING USED TO

AUTOMATICALLY CREATE DESIGNS
FOR ANALOG CIRCUITS, OPTICAL
LENS SYSTEMS, CONTROLLERS,
ANTENNAS, MECHANICAL SYSTEMS,
AND QUANTUM COMPUTING CIRCUITS

e optical lens systems (Al-Sakran, Koza, and Jones, 2005;
Koza, Al-Sakran, and Jones, 2005),

e antennas (Lohn, Hornby, and Linden 2004; Comisky, Yu,
and Koza 2000),

e analog electrical circuits (Koza, Bennett, Andre, and
Keane 1996; Koza, Bennett, Andre, and Keane 1999),

e controllers (Koza, Keane, Streeter, Mydlowec, Yu, and
Lanza 2003; Keane, Koza, Streeter 2005),

e mechanical systems (Lipson 2004), and

e quantum computing circuits (Spector 2004)
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CROSS-DOMAIN FEATURES

e Native representations are sufficient when working with
genetic programming

e Genetic programming breeds simulatability
e Genetic programming starts small

e Genetic programming frequently exploits a simulator’s
built-in assumption of reasonableness

e Genetic programming engineers around existing patents
and creates novel designs more frequently than it creates
infringing solutions
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NATIVE REPRESENTATIONS ARE
USUALLY SUFFICIENT WHEN
WORKING WITH GENETIC
PROGRAMMING

Object Entry Pupil

\/!

“PRESCRIPTION”
(“LENS FILE”)

Surface Distance Radius Material Aperture
Object 10" flat air
Entry 0.88 flat air 0.18
pupil
1 0.21900 -3.5236 | BK7 0.62
2 0.07280 —1.0527 | air 0.62
3 0.22500 —4.4072 | BK7 0.62
4 0.01360 —1.0704 | air 0.62
5 0.52100 1.02491 | BK7 0.62
6 0.11800 —0.9349 | SF61 0.62
7 0.47485 7.94281 air 0.62
Image flat




GP STARTS SMALL
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Best-of-generation 0

Best-of-run

. 1

o

Object Entry Pupil

Optical lens system

Image Object  Entry Pupil

C
! 1

2 )l

Optical lens system

Image

********

RSO

T RLOAD
3333333

URCE

Lowpass filter

RE 1

Y-
—P| 62.8637

" 10700 "
Controller Controller
RaEEE
| il
Antenna Antenna
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GENETIC PROGRAMMING BREEDS
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Unsimulatable individuals
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GENETIC PROGRAMMING ENGINEERS
AROUND EXISTING PATENTS AND
CREATES NOVEL DESIGNS MORE
FREQUENTLY THAN IT CREATES

INFRINGING SOLUTIONS
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GENETIC PROGRAMMING
FREQUENTLY EXPLOITS A
SIMULATOR’S BUILT-IN ASSUMPTION
OF REASONABLENESS
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AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

8§ MAIN POINTS FROM BOOK
GENETIC PROGRAMMING II:
AUTOMATIC DISCOVERY OF REUSABLE
PROGRAMS (KOZA 1994)
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AUTOMATICALLY DEFINED
FUNCTIONS (ADFS, SUBROUTINES)

e ADFs work.

e ADFs do not solve problems in the style of human
programmers.

e ADFs reduce the computational effort required to solve a
problem.

e ADFs usually improve the parsimony of the solutions to a
problem.

e As the size of a problem is scaled up, the size of solutions
increases more slowly with ADFs than without them.

e As the size of a problem is scaled up, the computational
effort required to solve a problem increases more slowly
with ADFs than without them.

e The advantages in terms of computational effort and
parsimony conferred by ADFs increase as the size of the
problem is scaled up.
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REUSE

MEMORY AND STORAGE

; @
. Yo 0
mwo[ ] X O O (2]
" e @ Yo
20 @ @ @
(A) (B) (©) (D)

e (A) Settable (named) variables (Genetic Programming,
Koza 1992) using setting (writing) functions (SETMO X)
and (SETM1 Y) and reading by means of terminals MO and
M1.

e (B) Indexed memory similar to linear (vector) computer
memory (Teller 1994) using (READ K) and (WRITE X K)
e (C) Matrix memory (Andre 1994)

¢ (D) Relational memory (Brave 1995, 1996)

LANGDON'S DATA STRUCTURES
e Stacks
e Queues
e Lists
¢ Rings
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REUSE

AUTOMATICALLY DEFINED
ITERATIONS (ADISs)

e Overall program consisting of an automatically defined
function ADFO0, an iteration-performing branch IPBO, and a
result-producing branch RPBO.

e [teration is over a known, fixed set
e protein or DNA sequence (of varying length
e time-series data
¢ two-dimensional array of pixels
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REUSE—TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

e Goal is to classify a given protein segment as being a
transmembrane domain or non-transmembrane area of the
protein

e Generation 20 — Run 3 — Subset-creating version
¢ in-sample correlation of 0.976

e After cross-validation
e out-of-sample correlation of (0.968
e out-of-sample error rate 1.6%
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REUSE—TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

(progn

(defun ADFO0 ()
(ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?))) (ORN (ORN
(ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?) (H?))))))

(defun ADF1l ()
(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?2)))
(ORN (ORN (T?) (L?)) (ORN (T?) (W?))))))

(defun ADF2 ()
(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))

(progn (loop-over-residues
(SETMO (+ (- (ADFl) (ADF2)) (SETM3 MO0))))

(values (% (% M3 MO) (% (% (% (- L -0.53) (* MO
MO)) (+ (% (% M3 MO) (% (+ MO M3) (% M1 M2))) M2)) (%
M3 MO0))))))

e GP created the body of 3 subroutines (ADFs), 1 iteration-
performing branch, and 1 result-producing branch (RPB)
were created by genetic programming
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REUSE

EXAMPLE OF A PROGRAM WITH A
FOUR-BRANCH AUTOMATICALLY
DEFINED LOOP (aDL0) AND A RESULT-
PRODUCING BRANCH

(GorogD.400
defloop > 410 G 410

GO (s GETMD CFLTED 415 Galey  (SETMD Cprogn> 450
411 412 413 416 420
© AEOWDD@DEW 5 @D (%)

414 460

() o @O @ @&

@  GeADD
QD
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REUSE

AUTOMATICALLY DEFINED
RECURSION (ADRO) AND A RESULT-
PRODUCING BRANCH

e a recursion condition branch, RCB
e a recursion body branch, RBB

e a recursion update branch, RUB

e a recursion ground branch, RGB

Crogn> 600
610 values) 670

@DLD TS Talues> 620 Ge 60 (Deso (EGTZ660 (ADRD) 680

611 612

661

@@ EHECPREAIOJOICDICNONO)

621 631 635 640 651 652 663 664 681

632

@D OO OEOOE D@ @D

622 623 624 636| 638 639 |[641 643 644 662

@reD (1) @RED  GRGD

633 634 637 642
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ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH 1 TWO-ARGUMENT
AUTOMATICALLY DEFINED FUNCTION
(ADF0) AND 1 RESULT-PRODUCING
BRANCH - ARGUMENT MAP OF {2}

490 491
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ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH ARGUMENT MAP OF
{2, 2} CREATED USING THE
OPERATION OF BRANCH
DUPLICATION

@ 500

(defu) 510

519

! @RED GRED
@ 520

541
Qo> (LisD (@l GADFD

(i) 540

542

@RGD CARGD

OSD @ 549

550

543

544 @

Qalued 570
(anD)

581

@DFD  (QNAND)
® @ (D0) (ADFY) 587

@ o
& @

(ARSD (an)

@ @

582 583

CACD

588

589

590 591
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ARCHITECTURE-ALTERING
OPERATIONS

PROGRAM WITH ARGUMENT MAP OF
{3} CREATED USING THE OPERATION
OF ARGUMENT DUPLICATION

690 691 696 697
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ARCHITECTURE-ALTERING
OPERATIONS

SPECIALIZATION — REFINEMENT -
CASE SPLITTING

e Branch duplication

e Argument duplication
¢ Branch creation

e Argument creation

GENERALIZATION

¢ Branch deletion
e Argument deletion



EMERGENCE OF A PARAMETERIZED

128

ARGUMENT IN A CIRCUIT
SUBSTRUCTURE

HIERARCHY OF BRANCHES FOR THE
BEST-OF-RUN CIRCUIT- FROM

GENERATION 158

RPBO

RPB1

RPB2

N

ADF3 {1}

ADF3 {1}

ADF4 {1}| [ADF2{1}

ADF2 {1}

ADF2 {1}

ADF2 {1}
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PASSING A PARAMETER TO A
SUBSTRUCTURE

BEST-OF-RUN CIRCUIT FROM

AN T TR TEFITER A rmMI T 72" AT o A

2 ; 3
1T 9
L3 Z0UT1
0%23542w 590uH
' L34 VOUT!
0.175uH
L57 i
878uH B B A RiOADT
RSOURCE ADF3 A ADF3 0.00794k
| 0.00784K cig L& C4
L
0 36snFL 15800nF i
L15 1
| 0.586uH B Lo
+ A ADF2 | 0.14uH
@ RLOAD2
_ [vsource ADF4 0.00794k
A B VOUT2
ADF4 B 1 .
0e 1 [70UT2
= 6
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THREE-PORTED AUTOMATICALLY
DEFINED FUNCTION ADF3 OF THE
BEST-OF-RUN CIRCUIT FROM
GENERATION 158

ADF3 CONTAINS CAPACITOR C39
PARAMETERIZED BY DUMMY
VARIABLE ARGO

A O | | O B
C112 C39
5130nF F(ARGO)NF

ADF2

\”—QUJ p=
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THE FIRST RESULT-PRODUCING
BRANCH, RPB0, CALLING ADF3

(PARALLELO (L (+ (- 1.883196E-01 (- -9.095883E-02 5.724576E-
01)) (- 9.737455E-01 -9.452780E-01)) (FLIP END)) (SERIES (C (+
(+ -6.668774E-01 -8.770285E-01) 4.587758E-02) (NOP END))
(SERIES END END (PARALLEL1 END END END END)) (FLIP

(SAFE _CUT))) (PAIR CONNECT 0 END END END) (PAIR CONNECT 0 (L
(+ -7.220122E-01 4.896697E-01) END) (L (- -7.195599E-01
3.651142E-02) (SERIES (C (+ -5.111248E-01 (- (- -6.137950E-01
-5.111248E-01) (- 1.883196E-01 (- -9.095883E-02 5.724576E-
01)))) END) (SERIES END END (adf3 6.196514E-01)) (NOP END)))
(NOP END)))

AUTOMATICALLY DEFINED FUNCTION
ADF3

(C (+ (- (+ (+ (+ 5.630820E-01 (- 9.737455E-01 -9.452780E-01))
(+ ARGO 6.953752E-02)) (- (- 5.627716E-02 (+ 2.273517E-01 (+
1.883196E-01 (+ 9.346950E-02 (+ -7.220122E-01 (+ 2.710414E-02
1.397491E-02)))))) (- (+ (- 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (- -8.770285E-01 (- -4.049602E-01
~2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+ 9.346950E-02
(+ -7.220122E-01 (+ 2.710414E-02 1.397491E-02))) (- 4.587758E-
02 -2.340137E-01)) 3.226026E-01) (+ -7.220122E-01 (- -
9.131658E-01 6.595502E-01)))) 3.660116E-01)) 9.496355E-01)
(THREE_GROUND 0 (C (+ (- (+ (+ (+ 5.630820E-01 (- 9.737455E-01
-9.452780E-01)) (+ (- (- -7.195599E-01 3.651142E-02) -
9.761651E-01) (- (+ (- (- -7.195599E-01 3.651142E-02) -
9.761651E-01) 6.953752E-02) 3.651142E-02))) (- (- 5.627716E-02
(- 1.883196E-01 (- -9.095883E-02 5.724576E-01))) (- (+ (-
2.710414E-02 -2.807583E-01) (+ -6.137950E-01 (+ ARGO
6.953752E-02))) (- -8.770285E-01 (- -4.049602E-01 -2.192044E-
02))))) (+ (+ 1.883196E-01 -7.195599E-01) 3.660116E-01))
9.496355E-01) (NOP (FLIP (PAIR CONNECT 0 END END END)))) (FLIP
(SERIES (FLIP (FLIP (FLIP END))) (C (- (+ 6.238477E-01
6.196514E-01) (+ (+ (= (- 4.037348E-01 4.343444E-01) (+ -
7.788187E-01 (+ (+ (- -8.786904E-01 1.397491E-02) (- -
6.137950E-01 (- (+ (- 2.710414E-02 -2.807583E-01) (+ -
6.137950E-01 -8.554120E-01)) (- -8.770285E-01 (- -4.049602E-01
-2.192044E-02))))) (+ (+ 7.215142E-03 1.883196E-01) (+
7.733750E-01 4.343444E-01))))) (- (- -9.389297E-01 5.630820E-
01) (+ -5.840433E-02 3.568947E-01))) -8.554120E-01)) (NOP
END)) END)) (FLIP (adf2 9.737455E-01))))
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VALUE-SETTING SUBTREES—3 WAYS

ARITHMETIC-PERFORMING SUBTREE
(e

SINGLE PERTURBABLE CONSTANT
O

<>
FREE VARIABLE
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PARAMETERIZED TOPOLOGY FOR
"GENERALIZED" LOWPASS FILTER

VARIABLE CUTOFF LOWPASS FILTER

eWant lowpass filter whose passband ends at frequencies f =
1,000, 1,780, 3,160, 5,620, 10,000, 17,800, 31,600, 56,200,

100,000 Hz
|- 1:3406x10°°(4.7387x10" +£)1.3331x10'° +9.3714x10°F +£7) | . 2.4451x10° .
f(3.4636x10% +f)
6 5 7 1
p
0198x10’ 8
11 80198x10 L2 |3.20262x10°
f f
Tk 3.7297x10’ c3 - 1:3552x10°
RSOUCE ka= f f
5
C5:1.105i‘>x1o
5 ,  —
RLOAD
VSOURCE 1.6786x10° 1.6786x10° _ 6.4484x10°
C1==220 C2=227 Ca=
7 L 7 f 1k
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PARAMETERIZED TOPOLOGY USING
CONDITIONAL DEVELOPMENTAL
OPERATORS (GENETIC SWITCH)

VARIABLE-CUTOFF
LOWPASS/HIGHPASS FILTER CIRCUIT

e Best-of-run circuit from generation 93 when inputs call for
a highpass filter (i.e., F1 > F2).

1 _57. _499(F _ _ 49 _49.
s Q=g CET C3=—F1 A= C5=—F] = 1

Tk
RSOUCE

= F1 1 = =1 =
| VSOURCE RLOAD

1O

e Best-of-run circuit from generation 93 when inputs call for
a lowpass filter.

218H 218H 218H
L2= F1 Ls= F1 La= F1 1
m,_mw,
91.7(F
C4=""F1
183(F 219LF 219(F
T F1 1 c2= F1 =)

_ 58.9H RLOAD
TR 1k
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PARALLELIZATION
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PARALLELIZATION BY
SUBPOPULATIONS ("ISLAND" OR
"DEME" MODEL OR "DISTRIBUTED
GENETIC ALGORITHM")

CONTROL
PARAMETER
FILE

(T Sy D

HOST

< p| DEBUGGER R § ¥
(Pentium PC) T

(optional)

¢ Like Hormel, Get Everything Out of the Pig, Including the
Oink

e Keep on Trucking

e It Takes a Licking and Keeps on Ticking

e The Whole is Greater than the Sum of the Parts

PETA-OPS

e Human brain operates at 1012 neurons operating at 103
per second = 1013 ops per second
e 1015 ops = 1 peta-op = 1 bs (brain second)
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GENETIC PROGRAMMING OVER 15-
YEAR PERIOD 1987-2002

System Period | Petacycles | Speed-up | Speed-up Human-
of | (10"cycles) over | over first | competitive
usage | per day for previous | system in results
entire system | this table
system
Serial 1987- 0.00216 1 (base) | 1 (base) 0
Texas 1994
Instruments
LISP
machine
64-node 1994 0.02 9 9 2
Transtech 1997
transputer
parallel
machine
64-node 1995- 0.44 22 204 12
Parsytec 2000
parallel
machine
70-node 1999 3.2 7.3 1,481 2
Alpha 2001
parallel
machine
1,000-node | 2000- 30.0 9.4 13,900 12
Pentium I1 2008
parallel
machine
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PROGRESSION OF RESULTS

System Period | Speed- | Qualitative nature of the results produced
up | by genetic programming

Serial LISP | 1987—| 1 (base) | e Toy problems of the 1980s and early

machine 1994 1990s from the fields of artificial
intelligence and machine learning

64-node 1994 9 | #Two human-competitive results involving

Transtech 1997 one-dimensional discrete data (not patent-

8-biy related)

transputer

64-node 1995- 22 | ¢ One human-competitive result involving

Parsytec 2000 two-dimensional discrete data

parallel e Numerous human-competitive results

machine involving continuous signals analyzed in
the frequency domain
¢ Numerous human-competitive results
involving 20™-century patented inventions

70-node 1999— 7.3 | « One human-competitive result involving

Alpha 2001 continuous signals analyzed in the time

parallel domain

machine e Circuit synthesis extended from topology
and sizing to include routing and
placement (layout)

1,000-node | 2000- 9.4 | ¢ Numerous human-competitive results

Pentium II 2002 involving continuous signals analyzed in

parallel the time domain

machine e Numerous general solutions to problems
in the form of parameterized topologies
¢ Six human-competitive results
duplicating the functionality of 21°*-
century patented inventions

Long (4- 2002 9.3 | e Generation of two patentable new

week) runs inventions

of 1,000-

node

Pentium II

parallel

machine
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PROGRESSION OF QUALITATIVELY
MORE SUBSTANTIAL RESULTS
PRODUCED BY GENETIC
PROGRAMMING IN RELATION TO FIVE
ORDER-OF-MAGNITUDE INCREASES IN
COMPUTATIONAL POWER

e toy problems

¢ human-competitive results not related to
patented inventions

e 20™-century patented inventions
e 21*-century patented inventions

e patentable new inventions



THE FUTURE
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PROMISING GP APPLICATION AREAS

Problem areas involving many variables that are

interrelated in highly non-linear ways
¢ Inter-relationship of variables is not well understood
e A good approximate solution is satisfactory

e design

e control

e classification and pattern recognition

e data mining

e system identification and forecasting

Discovery of the size and shape of the solution (the

“topology”) is a major part of the problem
e Areas where humans find it difficult to write programs

e parallel computers

e cellular automata

e multi-agent strategies / distributed Al
e FPGAs

¢ reconfigurable analog arrays

e reconfigurable antenna

e "black art" problems

¢ synthesis of topology and sizing of analog circuits
e synthesis of topology and tuning of controllers

e quantum computing circuits

e synthesis of designs for antennas

e Areas where you simply have no idea how to program a
solution, but where the objective (fitness measure) is clear
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CHARACTERISTICS SUGGESTING THE
USE OF GENETIC PROGRAMMING

e Problem areas where large computerized databases are
accumulating and computerized techniques are needed to
analyze the data

e problems where substructures are important
¢ reusing substructures,
e discovering the number of substructures,
e discovering the nature of the hierarchical references
among substructures,
e passing parameters to a substructure,
e discovering the type of substructures (e.g., subroutines,
iterations, loops, recursions, or storage),
e discovering the number of arguments possessed by a
substructure,
e discovering a general solution in the form of a
parameterized topology containing free variables
e maintaining syntactic validity and locality by means of a
developmental process
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MAIN POINTS OF GP-1,2,3,4 BOOKS

Book

Main Points

1992

¢ Virtually all problems in artificial intelligence, machine
learning, adaptive systems, and automated learning can be
recast as a search for a computer program.

e Genetic programming provides a way to successfully conduct
the search for a computer program in the space of computer
programs.

1994

¢ Scalability is essential for solving non-trivial problems in
artificial intelligence, machine learning, adaptive systems, and
automated learning.

e Scalability can be achieved by reuse.

¢ Genetic programming provides a way to automatically
discover and reuse subprograms in the course of automatically
creating computer programs to solve problems.

1999

¢ Genetic programming possesses the attributes that can
reasonably be expected of a system for automatically creating
computer programs.

2003

¢ Genetic programming now routinely delivers high-return
human-competitive machine intelligence.

¢ Genetic programming is an automated invention machine.

¢ Genetic programming can automatically create a general
solution to a problem in the form of a parameterized topology.
¢ Genetic programming has delivered a progression of
qualitatively more substantial results in synchrony with five
approximately order-of-magnitude increases in the expenditure
of computer time.
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VARIOUS CONFERENCES

ASPGP
Asian-Pacific Workshop on Genetic Programming
WWW.aspgp.org

GECCO (includes annual Genetic Programming conference)
Genetic and Evolutionary Computation Conference
www.SigEvo.org

EURO-GP
European Conference on Genetic Programming
evostar.na.icar.cnr.it/ EuroGP/EuroGP.html

GPTP
Genetic Programming Theory and Practice
www.cscs.umich.edu/events/gptp2009/
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3 EDITED ADVANCES IN GENETIC
PROGRAMMING BOOKS

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in
Genetic Programming 2. Cambridge, MA: The MIT Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming.
Cambridge, MA: The MIT Press.

Spector, Lee, Langdon, William B., O'Reilly, Una-May, and Angeline, Peter
(editors). 1999. Advances in Genetic Programming 3. Cambridge, MA:
The MIT Press.

4 VIDEOTAPES ON GP

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie.
Cambridge, MA: The MIT Press.

Koza, John R. 1994b. Genetic Programming Il Videotape: The Next Generation.
Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and
Brave, Scott. 1999. Genetic Programming 11 Videotape: Human-
Competitive Machine Intelligence. San Francisco, CA: Morgan Kaufmann
Publishers.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, Lanza, Guido, and Fletcher, David. 2003. Genetic
Programming 1V Video: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.
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WILLIAM LANGDON’S BIBLIOGRAPHY

ON GENETIC PROGRAMMING

This bibliography is the most extensive in the field and
contains over 5,000 papers (as of January 2003) by over
1,000 authors.

Visit
http://www.cs.bham.ac.uk/~wbl/bibli1o/

or
http://11inwww. ira.uka.de/bibliography/Ai/g
enetic.programming.html

GENETIC PROGRAMMING AND
EVOLVABLE MACHINES JOURNAL

www.springer.com/computer/artificial/journal/10710

GENETIC PROGRAMMING BOOK SERIES
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata/series.html
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GP MAILING LIST

To subscribe to the Genetic Programming e-mail list,

¢ send e-mail message to:
genetic programming-subscribe@yahoogroups.com

e visit the web page
http://groups.yahoo.com/group/genetic_programming/
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FOR ADDITIONAL INFORMATION

Visit
http://www.genetic-programming.org

and

http://www.genetic-programming.com/coursemainpage.html

for

e links computer code in various programming languages
(including C, C++, Java, Mathematica, LISP)

e partial list of people active in genetic programming

e list of known completed PhD theses on GP

e list of students known to be working on PhD theses on GP

¢ information for instructors of university courses on genetic
algorithms and genetic programming



152

GENETIC PROGRAMMING




