
Dynamic Languages
Strike Back

Steve Yegge
Stanford EE Dept Computer Systems Colloquium

May 7, 2008

What is this talk about?

Popular opinion of dynamic languages:

Unfixably slow

Not possible to create IDE-quality tools

Maintenance traps at millions of LOC

Is the popular opinion accurate?

We’ll look at the technology and see...

What do I mean by
“dynamic language”?

Eval, late-binding, runtime loading, mutable
types, flexible dynamic dispatch, ...

Intentionally blurring dynamic typing and
dynamic features for this talk!

Hence: Perl, Python, Ruby, JavaScript, Lisp,
Scheme, SmallTalk, Lua, Tcl...

But dynamism != type
tags (or lack thereof)!
It’s true: statically typed languages usually
have some dynamic features

Underlying problem is cultural: people think
dynamic == dynamic typing == slow, bad tools

Observation: techniques for creating tools
for dynamic languages are similar to those
for improving performance

So... why do we have
dynamic languages?

Stanford PhD candidate: “I don’t know why
we have other langs. You only need C/C++.”

Well-known advantages to dynamic languages

Productivity, expressiveness, flexibility, ...

Perceived downsides: speed, tools, and the
ever-elusive “maintainability”

Why are dynamic
languages “slow”?

Hard to compile with traditional techniques

Object & variable types can change

Methods can be added/removed

Target machine feature mismatches

Lack of effort: “scripting languages” are I/O
bound and haven’t needed blinding speed

How can you speed up a
dynamic language?

Language-level improvements:

Native threads, optional type system, ...

Virtual machine improvements:

generational GC, special async I/O ops, ...

Smarter compilers!

Historical successes

Common Lisp: native compilers, C-like speed

StrongTalk: static types for SmallTalk

Scheme: cross-compile into C & use GCC

Self: type-feedback adaptive compilers

Problem: they all sucked at marketing

Languages are no longer
changing every 10 years

Barrier to entry has gone up since 1994

Marketing obstacles (vs. Sun, Microsoft)

Bar has gone up for tools & infrastructure

Open source yielded lots of useful code

Implication: we’re stuck with what we’ve got

Pigs’ attempts to fly

Perl, Python: vanilla bytecode interpreters

Ruby: interprets AST directly! (very slow)

All: no usable concurrency options

All: reference-count or mark-and-sweep GC

Java proved pigs can reach interstellar space!

Intermission/Recap

Yesterday’s dynamic languages had great
performance and great tools

Today’s dynamic languages: not so much

Why aren’t (more) people working to fix it?

Ignorance, FUD and despair: “not fixable!”

CS education failure: compilers courses!

Tooooooooooools

Modern IDE expectations: autocomplete,
jump-to-declaration, browsing, refactoring

IntelliJ IDEA/JavaScript: autocomplete,
jump-to-declaration, browse, refactoring, ...

What’s missing? Not much!

Java IDEs showed the way

dynamic languages now playing catch-up

Tools: Syntax
A language’s syntax yields many static clues

exploitable by IDEs. Consider:

// what is the type of foo?
function foo(a, b) { return a + b; }

var bar = 17.6; // what is bar’s type?

var x = {a: “hi”, b: “there”}; // type of x?

Tools: Domain knowledge
IDEs need to look for common idioms:

function foo() {...}
var foo = function() {...}
foo = {a: function() {...}, b: function() {...}}
foo.prototype.x = function() {...}
with (foo) { x = function() {...} }

Lots of work, but no more than doing Java
name and type resolution

Tools: Inference

var foo = new Object();
var x = foo;
// how to determine that x.bar is foo.bar?
x.bar = function() {...};

Alias inference is similar to flow-analysis
In general: undecidable. In practice: 95+%
Java IDEs also miss the ~5% reflection cases

Tools: Simulation/Emulation

Common Java user complaint: dynamic IDEs
need to run your program to be accurate

“Not feasible to load all the code!”

But Java runtime systems have monitoring,
health checks, logging, dashboards, profiling...

Notion that IDE “must be” separate from
runtime is inaccurate in real-world scenarios

Dynamic tools: Summary

Not harder to build than tools for static
languages -- just different.

Fundamental observation: most “dynamic”
code isn’t all that dynamic

static analysis often possible

bridge gap by running/simulating the code

Performance!

Programmers bad at tedious automation

but still prefer to hand-optimize code!

Compilers/VMs continue to get smarter

perf “tricks” keep getting obsoleted

Cultural problem: micro-optimization
requires less thought than actual design

Micro- vs. Global-
Walter Bright: D slower than C++, but D
programs faster than C++ programs

Java: slower than C++ in benchmarks, often
faster overall (esp. with multicore)

Ruby on Rails: 20% faster than Struts, even
though Ruby is way slower than Java

Global optimizations always trump benchmarks!

Then are dynamic
languages “fast enough”?

Depends who you ask, and how you measure

Many big systems in dynamic languages:
Amazon.com, Yahoo, Orbitz, NYSE, ...

There’s still value in improving performance:

browser client apps increasingly complex

server farms benefit from tiny perf gains

Case Study: JavaScript

At a glance:

Java-like syntax, prototype-based OOP

lexical scoping, 1st-class functions, closures

EcmaScript Edition 4: optional types

Ajax caused surprise popularity surge

Sudden focus on improving performance

JIT compilation (1 of 5)

Trick #1: classic static type inference

var x = 0; for (i=0; i<10; i++) x += i;

sometimes possible to infer primitive ops
and generate efficient machine code

Problem: overflow changes type to Double
(in JavaScript)

JIT compilation (2 of 5)

Trick #2: Polymorphic Inline Caches (PICs)

Developed at Stanford (Urs Hoelzle)

permits inlining of polymorphic functions

count receiver types at call sites

make predictions from runtime counts

50% to 100% speedup of real-world code

JIT compilation (3 of 5)

Trick #3: double-dispatch type inference

“box” constants with virtual interfaces

invoke operations like a+b in both
directions (1st time): b.add(a), a.add(b)

now you know exact types for variables

inside loops, operands usually same type

JIT compilation (4 of 5)
Trick #4: Trace trees

targeted at loops, not methods!

build up tree of runtime-compiled paths

1 path per operand type from same source

result: massive basic block fall-through

20x speedups, and can be done in O(n) time!

reports of 750x less time spent compiling

JIT compilation (5 of 5)

Last trick for today: Escape analysis

statically determine whether loop values
“escape” the loop (used before or after)

if not, can optimize away object
allocations (including trace boxes)

can save thousands of allocations in a
single loop

JIT compilation: Recap

How many of these tricks are there? Many!

Underlying themes:

Most CPU consumed in loop execution

Runtime analysis yields smarter decisions

Theoretical performance exceeds C++/static

It’s just a lot of work that few people do

Is JavaScript “fast” yet?

Hard to measure; benchmarks controversial

pure-JavaScript apps beginning to compete
with the desktop

HotRuby: Ruby VM in JS - 2x-5x faster!?

Still tons of low-hanging fruit

Trace trees, more JIT research, ES4, ...

Beyond perf & tools

If we solve perf and tools, what’s left?

Cranky programmers, ignorance, FUD

“maintainability” - the ultimate FUD tool

only solution: marketing, and lots of it

Still several years of work left on perf/tools

Static langs here for forseeable future!

What have we learned?

We’re stuck with today’s popular languages

Micro-optimization best done by software

Recent dynamic language compilation revival

Tools/performance very possible, lots of work

Nothing matters without marketing!

Q&A

