Dynamic Languages
Strike Back

Steve Yegge
Stanford EE Dept Computer Systems Colloquium
May 7, 2008



What is this talk about?

@ Popular opinion of dynamic languages:
@ Unfixably slow
@ Not possible to create IDE-quality tools
@ Maintenance traps at millions of LOC

@ Is the popular opinion accurate?

@ We'll look at the technology and see...



What do I mean by
"dynamic language”?

@ Eval, late-binding, runtime loading, mutable
types, flexible dynamic dispatch, ...

@ Intentionally blurring dynamic typing and
dynamic features for this talk!

@ Hence: Perl, Python, Ruby, JavaScript, Lisp,
Scheme, SmallTalk, Lua, Tcl...



But dynamism != type
tags (or lack thereof)!

@ Its true: statically typed languages usually
have some dynamic features

@ Underlying problem is cultural: people think
dynamic == dynamic typing == slow, bad tools

® Observation: tfechniques for creating tools
for dynamic languages are similar to those
for improving performance



So... why do we have
dynamic languages?

@ Stanford PhD candidate: "I dont know why
we have other langs. You only need C/C++.”

@ Well-known advantages fto dynamic languages
@ Productivity, expressiveness, flexibility, ...

@ Perceived downsides: speed, tools, and the
ever-elusive “maintainability”



Why are dynamic
languages “slow?

@ Hard to compile with traditional techniques
@ Object & variable types can change
@ Methods can be added/removed
@ Target machine feature mismatches

@ Lack of effort: “scripting languages” are 1/0
bound and havent needed blinding speed



How can you speed up a
dynamic language?

@ Language-level improvements:

@ Native threads, optional type system, ..
@ Virtual machine improvements:

@ generational GC, special async 1/0 ops, ..

@ Smarter compilers!



Historical successes

@ Common Lisp: native compilers, C-like speed
@ StrongTalk: static types for SmallTalk
@ Scheme: cross-compile intfo C & use GCC

@ Self: type-feedback adaptive compilers

@ Problem: they all sucked at marketing



Languages are no longer
changing every 10 years

@ Barrier to entry has gone up since 1994
@ Marketing obstacles (vs. Sun, Microsoft)
@ Bar has gone up for tools & infrastructure
@ Open source Vielded lots of useful code

@ Implication: we'e stuck with what we've got



Pigs’ attempts to fly

@ Perl, Python: vanilla bytecode interpreters
@ Ruby: interprets AST directly! (very slow)
@ All: no usable concurrency options

@ All: reference-count or mark-and-sweep GC

@ Java proved pigs can reach interstellar space!



Intermission/Recap

@ Yesterday's dynamic languages had great
performance and great fools

@ Today's dynamic languages: not so much
@ Why arent (more) people working to fix it?
@ Ignorance, FUD and despair: “not fixable!”

@ CS education failure: compilers courses!



ifoYoYoYoYoYoYoYoYoYoYo o1 £

@ Modern IDE expectations: autocomplete,
jump-to-declaration, browsing, refactoring

@ IntelliJ IDEA/JavaScript: autocomplete,
jump-to-declaration, browse, refactoring, ...

@ What's missing? Not much!
@ Java IDEs showed the way

@ dynamic languages now playing catch-up



Tools: Syntax

A languages syntax yields many static clues
exploitable by IDEs. Consider:

// what 1s the type of foo?
function foo(a, b) { return a + b; }

var bar = 17.6; // what 1s bar’s type?

var X'= {a: “hi g = BHere == /7% typesof X?



Tools: Domain knowledge

IDEs need to look for common idioms:

function foo() {...}
var foo = function() {...}
foo ='{a: function() {§. %t BFuRCcttan() 1...}}

foo.prototype.x = function() {...}
with (foo) { x = function() {...} }

Lots of work, but no more than doing Java
name and type resolution



Tools: Inference

var foo = new Object();
var x = foo;

X .bar

function() {...};

Alias inference is similar to flow-analysis
In general: undecidable. In practice: 95+%
Java IDEs also miss the ~5% reflection cases



Tools: Simulation/Emulation

@ Common Java user complaint: dynamic IDEs
need to run your program to be accurate

@ "Not feasible to load all the code!”

@ But Java runtime systems have monitoring,
health checks, logging, dashboards, profiling...

@ Notion that IDE "must be” separate from
runtime is inaccurate in real-world scenarios



Dynamic tools: Summary

® Not harder to build than tools for static
languages -- just different.

@ Fundamental observation: most “"dynamic”
code isnt all that dynamic

@ static analysis often possible

@ bridge gap by running/simulating the code



Performance!

@ Programmers bad at tedious automation
@ but still prefer to hand-optimize code!

@ Compilers/VMs continue to get smarter
@ perf “tricks” keep getting obsoleted

@ Cultural problem: micro-optimization
requires less thought than actual design



Micro- vs. Global-

@ Walter Bright: D slower than C++, but D
programs faster than C++ programs

@ Java: slower than C++ in benchmarks, often
faster overall (esp. with multicore)

@ Ruby on Rails: 20% faster than Struts, even
though Ruby is way slower than Java

Global optimizations always trump benchmarks!



Then are dynamic
languages “fast enough”?

@ Depends who you ask, and how you measure

@ Many big systems in dynamic languages:
Amazon.com, Yahoo, Orbitz, NYSE, ...

@ Theres still value in improving performance:
@ browser client apps increasingly complex

@ server farms benefit from tiny perf gains



Case Study: JavaScript

@ At a glance:
@ Java-like syntax, prototype-based OOP
@ lexical scoping, 1st-class functions, closures
@ EcmaScript Edition 4: optional types

@ Ajax caused surprise popularity surge

® Sudden focus on improving performance



JIT compilation (1 of 5)

@ Trick #1: classic static type inference
@ var x = 0; for (i=0; i<10; i++) X += i;

@ sometimes possible to infer primitive ops
and generate efficient machine code

@ Problem: overflow changes type to Double
(in JavaScript)



JIT compilation (2 of 5)

@ Trick #2: Polymorphic Inline Caches (PICs)
@ Developed at Stanford (Urs Hoelzle)
@ permits inlining of polymorphic functions
@ count receiver types at call sites
@ make predictions from runtime counts

@ 50% to 100% speedup of real-world code



JIT compilation (3 of 5)

@ Trick #3: double-dispatch type inference
@ “"box” constants with virtual interfaces

@ invoke operations like a+b in both
directions (1st time): b.add(a), a.add(b)

® now You know exact types for variables

@ Inside loops, operands usually same type



JIT compilation (4 of 5)

@ Trick #4: Trace trees
@ targeted at loops, not methods!
@ build up tree of runtime-compiled paths
@ 1 path per operand type from same source
@ result: massive basic block fall-through
@ 20x speedups, and can be done in O(n) time!

@ reports of 750x less time spent compiling



JIT compilation (5 of 5)

@ Last trick for today: Escape analysis

@ statically determine whether loop values
"escape” the loop (used before or after)

@ if not, can optimize away object
allocations (including trace boxes)

® can save thousands of allocations in a
single loop



JIT compilation: Recap

@ How many of these tricks are there? Many!
@ Underlying themes:

@ Most CPU consumed in loop execution

@ Runtime analysis yields smarter decisions
@ Theoretical performance exceeds C++/static

@ Its just a lot of work that few people do



Is JavaScript “fast” yet?

® Hard to measure; benchmarks controversial

@ pure-JavaScript apps beginning to compete
with the desktop

@ HotRuby: Ruby VM in JS - 2x-5x faster!?
@ Still tons of low-hanging fruit

® Trace trees, more JIT research, ES4, ...



Beyond perf & tools

@ If we solve perf and tools, whats left?
@ Cranky programmers, ignorance, FUD
@ "maintainability” - the ultimate FUD tool
@ only solution: marketing, and lots of it

@ Still several years of work left on perf/tools

@ Static langs here for forseeable future!



What have we learned?

@ We'e stuck with today’s popular languages

@ Micro-optimization best done by software

@ Recent dynamic language compilation revival
@ Tools/performance very possible, lots of work

@ Nothing matters without marketing!






