NG

DEPARTMENT OF COMPUTER SCIENCES —\

Structured Concurrent Programming

Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: m sra@s. ut exas. edu
web: htt p: //wwv. cs. ut exas. edu/ user s/ psp

Collaborators: William Cook, David Kitchin

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example: Airline |

e Contact two airlines simultaneously for price quotes.

e Buy ticket from either airline if its quote is at most $300.
e Buy the cheapest ticket if both quotes are above $300.
e Buy any ticket if the other airline does not provide a timely quote.

e Notify client if neither airline provides a timely quote.

.)

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Wide-area Computing |

Acquire data from remote services.

Calculate with these data.

Invoke yet other remote services with the results.

Additionally

Invoke alternate services for failure tolerance.

Repeatedly poll a service.

Ask a service to notify the user when it acquires the appropriate data.
Download an application and invoke it locally.

Have a service call another service on behalf of the user.

- J

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ The Nature of Distributed Applications |

Three major components in distributed applications:

Persistent storage management
databases by the airline and the hotels.
Specification of sequential computational logic
does ticket price exceed $3007?
Methods for orchestrating the computations

We look at only the third problem.

- J

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Overview of Orc I

e Orchestration language.

— Invoke services by calling sites
— Manage time-outs, priorities, and failures

e A Program execution

— calls sites,
— publishes values.

e Simple

— Language has only 3 combinators.
— Semantics described by labeled transition system and traces.
— Combinators are (monotonic and) continuous.

.)

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Structure of Orc Expression |

e Simple: just a site call, CNN(d)

Publishes the value returned by the site.

e composition of two Orc expressions:

do f and g in parallel flg Symmetric composition
forall x from fdo g f >x>g Piping
forsome x from gdo f f wherexz:€ ¢ Asymmetric composition

- J

DEPARTMENT OF COMPUTER SCIENCES ﬂ

Symmetric composition: f | g

CNN | BBC': calls both CNN and BBC simultaneously.

Publishes values returned by both sites. (0, 1 or 2 values)

e Evaluate f and g independently.
e Publish all values from both.

e No direct communication or interaction between f and g.
They may communicate only through sites.

- J

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Pipe: f x> g |

For all values published by f do g¢. Publish only the values from g.

e CNN >z> Email(address,x)
Call CNN. Bind result (if any) to x. Call Email(address,x).

Publish the value, if any, returned by Emaszl.

e (CNN | BBC) >z> Email(address,x)

May call Email twice. Publishes up to two values from Email.

N Y

‘ Notation I

Write f s> g for f >z> g if x unusedin g.

Precedence: f >x>g |h >y> u
(f >z>g) | (h >y> u)

NG

DEPARTMENT OF COMPUTER SCIENCES —\

UNIVERSITY OF TEXAS AT AUSTIN

NG

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Schematic of piping |

g0 gl @2

Figure 1. Schematic of f >z> ¢

DEPARTMENT OF COMPUTER SCIENCES ﬂ

Asymmetric parallel composition: (f where x:€ g)

For some value published by ¢ do f. Publish only the values from f.
Email(address,) where z:€ (CNN | BBC)
Binds =z to the first value from CNN | BBC.

e Evaluate f and ¢ in parallel.
Site calls that need x are suspended; other site calls proceed.
(M | N(x)) where z:€ g

e When g returns a value, assign itto z and terminate g.
Resume suspended calls.

e Values published by f are the values of (f where z:€ g).

. __

‘ Some Fundamental Sites I

0: never responds.
let(x,y,---): returns a tuple of its argument values.

if (b): boolean b,
returns a signal if b is true; remains silent if b is false.

Signal returns a signal immediately. Same as if (true).

N

Rtimer(t): integer ¢, t > 0, returns a signal ¢ time units later.

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

11

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Centralized Execution Model I

e An expression is evaluated on a single machine (client).
e Client communicates with sites by messages.

e All fundamental sites are local to the client.
All except Rtimer respond immediately.

e Concurrent and distributed executions are derived from an expression.

. __

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Expression Definition |

MailOnce(a) A
Email(a,m) where m:€ (CNN | BBC)

MailLoop(a,t) A
MailOnce(a) > Rtimer(t) > MailLoop(a,t)

e EXxpression is called like a procedure.
May publish many values. MailLoop does not publish a value.

e Site calls are strict; expression calls non-strict.

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Metronome I

Publish a signal at every time unit.

Metronome A Signal | (Rtimer(1) > Metronome)

R
S R
Publish n signals.

0
Signal | (Rtimer(1) > BM(n — 1))

> >

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example of Expression call |

e Site Query returns a value (different ones at different times).

o Site Accept(x) returns z if x is acceptable;
It is silent otherwise.

e Produce all acceptable values by calling Query at unit intervals
forever.

Metronome > Query >x> Accept(x)

N\ _

UN|VERS|TY OF TEXAS AT AUST|N ___|] 15

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Time-out I

Publish M'’s response if it arrives before ¢, and 0 otherwise.

let(z)
where
z:c
M
| Rtimer(t) > let(0)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Fork-join parallelism |

Call M and N In parallel.

Return their values as a tuple after both respond.

let(u,v)
where wu:c M
vie N

This stands for:

(let(u,v)
where w:c M)
where v:e N

N R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 17

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Recursive definition with time-out I

Call a list of sites.

Count the number of responses received within 10 time units.

tally([]) A let(0)
tally(M : MS) A
u—+v
where

we (M > let(1l)) | (Rtimer(10) > let(0))
v:e tally(MS)

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Barrier Synchronizationin = M s f | N sg |

f and ¢ start only after both M and N complete.

(let(u,v)
where u:€ M
v:e N)
> (f19)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Arbitration I

In CCS/ Pi-Calculus: o.P + 5.QQ

In Orc:

if (b) > P |if(=b) > Q
where
b:c (Alpha > let(true)) | (Beta > let(false))

Orc does not permit non-deterministic internal choice.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Priority |

e Publish N's response asap, but no earlier than 1 unit from now.
Delay A (Rtimer(1l) > let(u)) where u:€ N

e Call M, N together.
If M responds within one unit, take its response.

Else, pick the first response.

let(z) where z:€ (M | Delay)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Interrupt f |

Evaluation of f can not be directly interrupted.

Introduce two sites:

e Interrupt.set: to interrupt f

o Interrupt.get: responds after Interrupt.set has been called.

Instead of f, evaluate

let(z) where z:€ (f | Interrupt.get)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Parallel or I

Sites M and N return booleans. Compute their parallel or.

ift(b) A if (b) > let(true): returns true if b is true; silent otherwise.

ift(z) | ift(y) | or(z,y)
where
x:e M, ye N

To return just one value:

let(z)
where
z:€ ift(z) | ift(y) | or(z,y)
x.e M
y:e N

N R/

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Airline quotes: Application of Parallel or |

Contact airlines A and B.

Return any quote if it is below ¢ as soon as it is available,
otherwise return the minimum quote.

threshold(x) returns x if x < c; silent otherwise.
Min(x,y) returns the minimum of x and y.

let(z)
where
z:€ threshold(x) | threshold(y) | Min(x,y)
rc A
y:e B

. __

NG

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Sequential Computing |

(S;T) 1s (8 >T)
if b then S else T
IS
if (b) > S | if(=b) > T
while B(z) do xz:= S(x)
loop(z) A
B(z) >b> (if (b) > S(z) >y> loop(y) | if(—b) > let(x))
_

UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Angelic vs. Demonic non-determinism |

e forall x from f do g: implements angelic non-determinism.

All paths of computation are explored.

e forsome x from f do g: implements demonic non-determinism.

Some selected path of computation is explored.

N\ _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Backtracking: Eight queens |

Figure 2: Backtrack Search for Eight queens

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Eight queens; contd. |

e configuration: placement of queens in the last : rows. Represented
by a list of ¢ values from 0..7

e Valid configuration: no queen captures another.

valid(z) returns z if configuration z is valid; silent otherwise.
e Produce all valid extensions of z by placing n additional queens:

ertend(z,1) A valid(0:z) | valid(1:z) | --- | valid(7:2)
ertend(z,n) A extend(z,1) >y> extend(y,n — 1)

e Solve the original problem by calling extend(|],8).

N\ _

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Processes I

e Processes typically communicate via channels.
e For channel ¢, treat c.put and c.get as site calls.
e In our examples, c.get is blocking and c.put is non-blocking.

e Other kinds of channels can be programmed as sites.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Typical lterative Process I

Forever: Read =z from channel ¢, compute with =z, output result on e:

P(c,e) A cget >z> Compute(x) >y> eput(y) > P(c,e)

Process (network) to read from both ¢ and d and write on e:

Net(c,d,e) A P(c,e) | P(d,e)

NG

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Interaction I

Run a dialog with a child.

Forever: child inputs an integer on channel p

Process outputs true on channel ¢ iff the number is prime.
Sites: c.get and c.put, for channel c.

Prime?(z) returns true iff = is prime.

Dialog(p,q) A

p.get >T>
Prime?(x) >b>
g-put(b) >

Dialog(p, q)

N R/

-

DEPARTMENT OF COMPUTER SCIENCES ﬂ

‘ Laws of Kleene Algebra |

(Zeroand |)

(Commutativity of |)
(Associativity of |)
(Idempotence of |)
(Associativity of)

(Left zero of)

(Right zero of)

(Left unit of)

(Right unit of)

(Left Distributivity of > over |)
(Right Distributivity of > over |)

flo=Ff

fla=glf
(flg)lh="Ff|(g]|h)
flr=f
(f>9)>h=f>(g>h)
0>f=

f>0=

Signal > f = f

f >z let(x) =

f>(glh) = U»@IW»M
(flg) >h=(f>h|g>h)

UNIVERSITY OF TEXAS AT AUSTIN

32

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Laws which do not hold I

(Idempotence of |) flf=f
(Right zero of) f>0=0
(Left Distributivity of > over |) f>(g|h)=(f >9) |(f >h)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Additional Laws I

(Distributivity over =) if gis x-free
(f > g wherex:€ h) = (f wherex:€ h) > ¢

(Distributivity over |) if gis z-free
(f | g where z:€ h) = (f wherex:€ h) | g¢

(Distributivity over where) if gis y-free
((f where z:€ g) where y:€ h)
= ((f where y:€ h) where x:€ g)

(Elimination of where) if f is xz-free, for site M
(f wherez:e M) = f | M >0

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Rules for Site Call I

k fresh

Moo} (SITECALL)

Mv) 57 7%
% Y let(v) (SITERET)
let(v) % 0 (LET)

N R/

NG

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Symmetric Composition |

f_j A (Syml)
flg = f'lg
g_j g (Sym2)
flg = fld
____/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Sequencing |

FS et

- (SEQLIN)
f>>9 = f > g

;s
fszsg = (ff >z g) | [v/z]g

(SEQL1V)

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Asymmetric Composition I

f = r (ASYM1N)
f where z:€ ¢ = f’ wherez:€ g
g 34
= (AsYmM1V)
f wherez:€ g — [v/x].f
a g !
J J a7ty (AsYmM2)

f where z:€ ¢ = f where z:€ ¢’

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Expression Call |

[E(x) A flleD
E(p) = [p/z].f

(DEF)

N R/

k fresh

M(v) M o

‘ Rules |

DEPARTMENT OF COMPUTER SCIENCES —\

f= f’ a# v
fszsg = [>eg
fEp
fezg = (f >z 9) | [v/z]g
f=f
f where z:€ ¢ = f' wherez:€ g
g %4

f where z:€ g = [v/z].f

g = g a # v

f where z:€ ¢ = f where z:€ ¢/

UNIVERSITY OF TEXAS AT AUSTIN

40

R/

NG

‘ Example |

(M(z) |let(z)) >y> R(y)) wherez:€ (N | S5)

ﬂ“>{Ca|| S: 5 % [N|Sﬂ“>N|?k}

(M (z) | let(z)) >y> R(y)) where z:€ (N | 7k)

Mrcal N)

(M (z) | let(z)) >y> R(y)) where z:€ (7l | 7k)

20 B8 let(5): 70| %k D let(5) | 7k

(M (z) | let(z)) >y> R(y)) where z:€ (let(5) | 7k)

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

41

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example; contd. |

(M (z) | let(z)) >y> R(y)) where z:€ (let(5) | 7k)

L let(5) 2 0; let(5) |7k = 0| 7k}

(M(5) | let(5)) >y> R(y)
S let(5) 3 0; M(5) |let(5) 3 M(5) |0;
f 2 fimplies f sysg = (f sy>9) | [v/yl.g)

((M(5) |0) >y> R(y)) | R(5)
Ri({%all R with argument (5)}
((M(5) [0) >y> R(y)) | ™n

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Example; contd. |

(M) |0) >y> R(y)) | ™n

n?7

W M let(7))

(M(5) | 0) >y> R(y)) | let(7)
BLF let(ry 5 f |0}

((M(5) [0) >y> R(y)) |0

The sequence of events: Sk Ny 175 7 7 Ry(b) n?7 17
The sequence minus 7 events: S, N; (75 R,(5) n?7 7

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Executions and Traces I

fS Sy
[

Define f=1

e Given f = f/, sisan execution of f.
e A trace IS an execution minus 7 events.

e The set of executions of f (and traces) are prefix-closed.

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Laws, using strong bisimulation |

f10 ~ f

flg ~ glf

fllglh) ~ (Flg)lh

f>x> (9 >y h) ~ (f >z>g9) >y> h, if his x-free.
0 >z>f ~ 0

(flg) >z>h ~ f>z>hl|g >x>h

(f | g) wherez:e h ~ (f wherexz:€ h) | g, if ¢gis z-free.
(f >y> g) wherex:e h ~ (f wherex:€ h) >y> g,If gis z-free.
(

f where x:€ g) wherey:€ h ~ (f where y:€ h) where z:€ g,
if gis y-free,
h is z-free.

R/

UN|VERS|TY OF TEXAS AT AUST|N ___|] 45

‘Relation ~ IS an equality I

Given f ~ g, show

2. f>x>h ~ g >z>h
h>x>f ~ h>x>g

3. f wherexz:e h ~ g wherex:€ h
h where z:€ f ~ h wherex:€ g

NG

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

46

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Treatment of Free Variables I

Closed expression: No free variable.
Open expression: Has free variable.

e Law f ~ ¢ holdsonlyif both f and ¢ are closed.
Otherwise: let(z) ~ 0
But let(1) x> 0 # let(l) >x> let(x)

e Then we can’'t show let(x) |let(y) ~ let(y) | let(x)

- __/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Substitution Event I

Y el f (SUBST)

o Now, let(z) "L jet(1).

So, let(z) # 0

e Earlier rules apply to base events only.

From f /) lv/x|.f, we can not conclude:

flg ™S w/alflg

N R/

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Traces as Denotations I

Define Orc combinators over trace sets, S and 7. Define:

S|T, S >x>T, S wherex:€T.

Notation: (f) is the set of traces of f.

Theorem
(f19) = (f) [{9)
(f >z g) = (f) >z (9)

(f where z:€ g) (f) where z:€ (g)

N R/

‘ Expressions are equal If their trace sets are equal |

Define: f = gif (f) = (g).

Theorem (Combinators preserve =)

Given f = g and any combinator x: fxh = gxh, hxf = hxg
Specifically, given f = g

1. flh=g|h
hlf=hlg

2. f>x>h = g >xz>h
h sx> f = h >z> g

3. f wherex:€c h = g wherez:€ h
h where x:€ f = h where x:€ g

N

DEPARTMENT OF COMPUTER SCIENCES —\

DEPARTMENT OF COMPUTER SCIENCES —\

NG

‘ Monotonicity, Continuity |

e Define: f C gif (f) C (g).
Theorem (Monotonicity) Given f C g and any combinator x

fxh ©E gxh, hxf C hxg

e Chain f: fo C fi,---fi E fig1,---.
Theorem: U(f; x h)
Theorem: U(h * f;)

UNIVERSITY OF TEXAS AT AUSTIN

NG

M

My

| %

MZ+1

‘ Least Fixed Point I

S|R>M

= 0
= S|R>M;, i>0

M is the least upper bound of the chain My, C M; C --.

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES —\

52

DEPARTMENT OF COMPUTER SCIENCES —\

‘ Weak Bisimulation I

signal > f
f >x> let(x)

112112
-

N R/

