
DEPARTMENT OF COMPUTER SCIENCES

Structured Concurrent Programming

Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: misra@cs.utexas.edu
web: http://www.cs.utexas.edu/users/psp

Collaborators: William Cook, David Kitchin

UNIVERSITY OF TEXAS AT AUSTIN 0

DEPARTMENT OF COMPUTER SCIENCES

Example: Airline

� Contact two airlines simultaneously for price quotes.� Buy ticket from either airline if its quote is at most $300.� Buy the cheapest ticket if both quotes are above $300.� Buy any ticket if the other airline does not provide a timely quote.� Notify client if neither airline provides a timely quote.

UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES

Wide-area Computing

Acquire data from remote services.

Calculate with these data.

Invoke yet other remote services with the results.

Additionally

Invoke alternate services for failure tolerance.

Repeatedly poll a service.

Ask a service to notify the user when it acquires the appropriate data.

Download an application and invoke it locally.

Have a service call another service on behalf of the user.

UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES

The Nature of Distributed Applications

Three major components in distributed applications:

Persistent storage management

databases by the airline and the hotels.

Specification of sequential computational logic

does ticket price exceed $300?

Methods for orchestrating the computations

We look at only the third problem.

UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES

Overview of Orc

� Orchestration language.

– Invoke services by calling sites
– Manage time-outs, priorities, and failures� A Program execution

– calls sites,
– publishes values.� Simple

– Language has only 3 combinators.
– Semantics described by labeled transition system and traces.
– Combinators are (monotonic and) continuous.

UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES

Structure of Orc Expression

� Simple: just a site call, CNN (d)
Publishes the value returned by the site.� composition of two Orc expressions:

do f and g in parallel f j g Symmetric composition
for all x from f do g f >x> g Piping
for some x from g do f f where x:2 g Asymmetric composition

UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

Symmetric composition: f j g

CNN j BBC : calls both CNN and BBC simultaneously.

Publishes values returned by both sites. (0 , 1 or 2 values)� Evaluate f and g independently.� Publish all values from both.� No direct communication or interaction between f and g .
They may communicate only through sites.

UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES

Pipe: f >x> g
For all values published by f do g . Publish only the values from g .� CNN >x> Email(address; x)

Call CNN . Bind result (if any) to x . Call Email(address; x) .

Publish the value, if any, returned by Email .� (CNN j BBC) >x> Email(address; x)
May call Email twice. Publishes up to two values from Email .

UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES

Notation

Write f � g for f >x> g if x unused in g .

Precedence: f >x> g j h >y> u(f >x> g) j (h >y> u)

UNIVERSITY OF TEXAS AT AUSTIN 8

DEPARTMENT OF COMPUTER SCIENCES

Schematic of piping

f

g1g0 g2

Figure 1: Schematic of f >x> g

UNIVERSITY OF TEXAS AT AUSTIN 9

DEPARTMENT OF COMPUTER SCIENCES

Asymmetric parallel composition: (f where x:2 g)
For some value published by g do f . Publish only the values from f .Email(address; x) where x:2 (CNN j BBC)
Binds x to the first value from CNN j BBC .� Evaluate f and g in parallel.

Site calls that need x are suspended; other site calls proceed.(M j N(x)) where x:2 g� When g returns a value, assign it to x and terminate g .
Resume suspended calls.� Values published by f are the values of (f where x:2 g) .

UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES

Some Fundamental Sites

0 : never responds.let(x; y; � � �) : returns a tuple of its argument values.if (b) : boolean b ,
returns a signal if b is true; remains silent if b is false.Signal returns a signal immediately. Same as if (true) .Rtimer(t) : integer t , t � 0 , returns a signal t time units later.

UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES

Centralized Execution Model

� An expression is evaluated on a single machine (client).� Client communicates with sites by messages.� All fundamental sites are local to the client.
All except Rtimer respond immediately.� Concurrent and distributed executions are derived from an expression.

UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES

Expression Definition

MailOne(a) �Email(a;m) wherem:2 (CNN j BBC)MailLoop(a; t) �MailOne(a) � Rtimer(t) � MailLoop(a; t)� Expression is called like a procedure.
May publish many values. MailLoop does not publish a value.� Site calls are strict; expression calls non-strict.

UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES

Metronome

Publish a signal at every time unit.Metronome � Signal j (Rtimer(1) �Metronome)
S R

S R

Publish n signals.BM (0) � 0BM (n) � Signal j (Rtimer(1) � BM (n� 1))

UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES

Example of Expression call

� Site Query returns a value (different ones at different times).� Site Aept(x) returns x if x is acceptable;
it is silent otherwise.� Produce all acceptable values by calling Query at unit intervals
forever.Metronome � Query >x> Aept(x)

UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES

Time-out

Publish M ’s response if it arrives before t , and 0 otherwise.

let(z)

wherez:2 Mj Rtimer(t) � let(0)
UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Fork-join parallelism

Call M and N in parallel.

Return their values as a tuple after both respond.let(u; v)

where u:2Mv:2 N
This stands for:(let(u; v)

where u:2M)
where v:2 N

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES

Recursive definition with time-out

Call a list of sites.

Count the number of responses received within 10 time units.tally([℄) � let(0)tally(M : MS) � u+ v
whereu:2 (M � let(1)) j (Rtimer(10) � let(0))v:2 tally(MS)

UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES

Barrier Synchronization in M � f j N � g

f and g start only after both M and N complete.

(let(u; v)

where u:2Mv:2 N)� (f j g)
UNIVERSITY OF TEXAS AT AUSTIN 19

DEPARTMENT OF COMPUTER SCIENCES

Arbitration

In CCS/ Pi-Calculus: �:P + �:Q

In Orc:if (b) � P j if (:b) � Q
whereb:2 (Alpha � let(true)) j (Beta � let(false))

Orc does not permit non-deterministic internal choice.

UNIVERSITY OF TEXAS AT AUSTIN 20

DEPARTMENT OF COMPUTER SCIENCES

Priority

� Publish N ’s response asap, but no earlier than 1 unit from now.Delay � (Rtimer(1) � let(u)) where u:2 N� Call M , N together.

If M responds within one unit, take its response.

Else, pick the first response.let(x) where x:2 (M j Delay)

UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES

Interrupt f
Evaluation of f can not be directly interrupted.

Introduce two sites:� Interrupt :set : to interrupt f� Interrupt :get : responds after Interrupt :set has been called.

Instead of f , evaluatelet(z) where z:2 (f j Interrupt :get)

UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES

Parallel or

Sites M and N return booleans. Compute their parallel or.ift(b) � if (b) � let(true) : returns true if b is true ; silent otherwise.ift(x) j ift(y) j or(x; y)

wherex:2M; y:2 N
To return just one value:let(z)

wherez:2 ift(x) j ift(y) j or(x; y)x:2My:2 N
UNIVERSITY OF TEXAS AT AUSTIN 23

DEPARTMENT OF COMPUTER SCIENCES

Airline quotes: Application of Parallel or

Contact airlines A and B .

Return any quote if it is below as soon as it is available,
otherwise return the minimum quote.threshold(x) returns x if x < ; silent otherwise.Min(x; y) returns the minimum of x and y .let(z)

wherez:2 threshold(x) j threshold(y) j Min(x; y)x:2 Ay:2 B
UNIVERSITY OF TEXAS AT AUSTIN 24

DEPARTMENT OF COMPUTER SCIENCES

Sequential Computing

� (S; T) is (S � T)� if b then S else T

is if (b) � S j if (:b) � T� while B(x) do x:= S(x)loop(x) �B(x) > b> (if (b) � S(x) >y> loop(y) j if (:b) � let(x))

UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES

Angelic vs. Demonic non-determinism

� for all x from f do g : implements angelic non-determinism.

All paths of computation are explored.� for some x from f do g : implements demonic non-determinism.

Some selected path of computation is explored.

UNIVERSITY OF TEXAS AT AUSTIN 26

DEPARTMENT OF COMPUTER SCIENCES

Backtracking: Eight queens

... ...
Row 1

Row 2

Row 3
x

0 ...

x x

1

x

0 0 0

1

1 7 7

7

7

x
...

...
x x

10

1 7

Figure 2: Backtrack Search for Eight queens

UNIVERSITY OF TEXAS AT AUSTIN 27

DEPARTMENT OF COMPUTER SCIENCES

Eight queens; contd.

� configuration: placement of queens in the last i rows. Represented
by a list of i values from 0::7� Valid configuration: no queen captures another.valid(z) returns z if configuration z is valid; silent otherwise.� Produce all valid extensions of z by placing n additional queens:extend(z; 1) � valid(0:z) j valid(1:z) j � � � j valid(7:z)extend(z; n) � extend(z; 1) >y> extend(y; n� 1)� Solve the original problem by calling extend([℄; 8) .

UNIVERSITY OF TEXAS AT AUSTIN 28

DEPARTMENT OF COMPUTER SCIENCES

Processes

� Processes typically communicate via channels.� For channel , treat :put and :get as site calls.� In our examples, :get is blocking and :put is non-blocking.� Other kinds of channels can be programmed as sites.

UNIVERSITY OF TEXAS AT AUSTIN 29

DEPARTMENT OF COMPUTER SCIENCES

Typical Iterative Process

Forever: Read x from channel , compute with x , output result on e :P (; e) � :get >x> Compute(x) >y> e:put(y) � P (; e)

Process (network) to read from both and d and write on e :Net(; d; e) � P (; e) j P (d; e)

UNIVERSITY OF TEXAS AT AUSTIN 30

DEPARTMENT OF COMPUTER SCIENCES

Interaction

Run a dialog with a child.

Forever: child inputs an integer on channel p
Process outputs true on channel q iff the number is prime.

Sites: :get and :put , for channel .Prime?(x) returns true iff x is prime.Dialog(p; q) �p:get >x>Prime?(x) > b>q:put(b) �Dialog(p; q)
UNIVERSITY OF TEXAS AT AUSTIN 31

DEPARTMENT OF COMPUTER SCIENCES

Laws of Kleene Algebra

(Zero and j) f j 0 = f
(Commutativity of j) f j g = g j f
(Associativity of j) (f j g) jh = f j (g jh)
(Idempotence of j) f j f = f
(Associativity of �) (f � g) �h = f � (g �h)

(Left zero of �) 0 � f = 0
(Right zero of �) f � 0 = 0
(Left unit of �) Signal � f = f

(Right unit of �) f >x> let(x) = f

(Left Distributivity of � over j) f � (g jh) = (f � g) j (f � h)

(Right Distributivity of � over j) (f j g) � h = (f � h j g �h)

UNIVERSITY OF TEXAS AT AUSTIN 32

DEPARTMENT OF COMPUTER SCIENCES

Laws which do not hold

(Idempotence of j) f j f = f
(Right zero of �) f � 0 = 0
(Left Distributivity of � over j) f � (g jh) = (f � g) j (f �h)

UNIVERSITY OF TEXAS AT AUSTIN 33

DEPARTMENT OF COMPUTER SCIENCES

Additional Laws

(Distributivity over �) if g is x-free(f � g where x:2 h) = (f where x:2 h) � g
(Distributivity over j) if g is x-free(f j g where x:2 h) = (f where x:2 h) j g
(Distributivity over where) if g is y -free((f where x:2 g) where y:2 h)= ((f where y:2 h) where x:2 g)
(Elimination of where) if f is x-free, for site M(f where x:2M) = f j M � 0

UNIVERSITY OF TEXAS AT AUSTIN 34

DEPARTMENT OF COMPUTER SCIENCES

Rules for Site Call

k freshM(v) Mk(v)! ?k (SITECALL)

?k k?v! let(v) (SITERET)

let(v) !v! 0 (LET)

UNIVERSITY OF TEXAS AT AUSTIN 35

DEPARTMENT OF COMPUTER SCIENCES

Symmetric Composition

f a! f 0f j g a! f 0 j g (SYM1)

g a! g0f j g a! f j g0 (SYM2)

UNIVERSITY OF TEXAS AT AUSTIN 36

DEPARTMENT OF COMPUTER SCIENCES

Sequencing

f a! f 0 a 6= !vf >x> g a! f 0 >x> g (SEQ1N)

f !v! f 0f >x> g �! (f 0 >x> g) j [v=x℄:g (SEQ1V)

UNIVERSITY OF TEXAS AT AUSTIN 37

DEPARTMENT OF COMPUTER SCIENCES

Asymmetric Composition

f a! f 0f where x:2 g a! f 0 where x:2 g (ASYM1N)

g !v! g0f where x:2 g �! [v=x℄:f (ASYM1V)

g a! g0 a 6= !vf where x:2 g a! f where x:2 g0 (ASYM2)

UNIVERSITY OF TEXAS AT AUSTIN 38

DEPARTMENT OF COMPUTER SCIENCES

Expression Call

[[E(x) � f ℄℄ 2 DE(p) �! [p=x℄:f (DEF)

UNIVERSITY OF TEXAS AT AUSTIN 39

DEPARTMENT OF COMPUTER SCIENCES

Rulesk freshM(v) Mk(v)! ?k?k k?v! let(v)let(v) !v! 0f a! f 0f j g a! f 0 j gg a! g0f j g a! f j g0[[E(x) � f ℄℄ 2 DE(p) �! [p=x℄:f
f a! f 0 a 6= !vf >x> g a! f 0 >x> gf !v! f 0f >x> g �! (f 0 >x> g) j [v=x℄:gf a! f 0f where x:2 g a! f 0 where x:2 gg !v! g0f where x:2 g �! [v=x℄:fg a! g0 a 6= !vf where x:2 g a! f where x:2 g0

UNIVERSITY OF TEXAS AT AUSTIN 40

DEPARTMENT OF COMPUTER SCIENCES

Example

((M(x) j let(x)) >y> R(y)) where x:2 (N j S)Sk!fCall S : S Sk! ?k ; N j S Sk! N j ?kg((M(x) j let(x)) >y> R(y)) where x:2 (N j ?k)Nl!fCall N g((M(x) j let(x)) >y> R(y)) where x:2 (?l j ?k)l?5!f ?l l?5! let(5) ; ?l j ?k l?5! let(5) j ?kg((M(x) j let(x)) >y> R(y)) where x:2 (let(5) j ?k)

UNIVERSITY OF TEXAS AT AUSTIN 41

DEPARTMENT OF COMPUTER SCIENCES

Example; contd.((M(x) j let(x)) >y> R(y)) where x:2 (let(5) j ?k)�!f let(5) !5! 0 ; let(5) j ?k !5! 0 j ?kg(M(5) j let(5)) >y> R(y)�!f let(5) !5! 0 ; M(5) j let(5) !5! M(5) j 0 ;f !v! f 0 implies f >y> g �! (f 0 >y> g) j [v=y℄:gg((M(5) j 0) >y> R(y)) j R(5)Rn(5)!fcall R with argument (5)g((M(5) j 0) >y> R(y)) j ?n

UNIVERSITY OF TEXAS AT AUSTIN 42

DEPARTMENT OF COMPUTER SCIENCES

Example; contd.

((M(5) j 0) >y> R(y)) j ?nn?7!f ?n n?7! let(7)g((M(5) j 0) >y> R(y)) j let(7)!7!f f j let(7) !7! f j 0g((M(5) j 0) >y> R(y)) j 0
The sequence of events: Sk Nl l?5 � � Rn(5) n?7 !7

The sequence minus � events: Sk Nl l?5 Rn(5) n?7 !7

UNIVERSITY OF TEXAS AT AUSTIN 43

DEPARTMENT OF COMPUTER SCIENCES

Executions and Traces

Define f �) f f a! f 00; f 00 s) f 0f as) f 0

� Given f s) f 0 , s is an execution of f .� A trace is an execution minus � events.� The set of executions of f (and traces) are prefix-closed.

UNIVERSITY OF TEXAS AT AUSTIN 44

DEPARTMENT OF COMPUTER SCIENCES

Laws, using strong bisimulation

� f j 0 � f� f j g � g j f� f j (g j h) � (f j g) j h� f >x> (g >y> h) � (f >x> g) >y> h , if h is x-free.� 0 >x> f � 0� (f j g) >x> h � f >x> h j g >x> h� (f j g) where x:2 h � (f where x:2 h) j g , if g is x-free.� (f >y> g) where x:2 h � (f where x:2 h) >y> g , if g is x-free.� (f where x:2 g) where y:2 h � (f where y:2 h) where x:2 g ,
if g is y -free,h is x-free.

UNIVERSITY OF TEXAS AT AUSTIN 45

DEPARTMENT OF COMPUTER SCIENCES

Relation � is an equality

Given f � g , show

1. f j h � g j hh j f � h j g

2. f >x> h � g >x> hh >x> f � h >x> g
3. f where x:2 h � g where x:2 hh where x:2 f � h where x:2 g

UNIVERSITY OF TEXAS AT AUSTIN 46

DEPARTMENT OF COMPUTER SCIENCES

Treatment of Free Variables

Closed expression: No free variable.
Open expression: Has free variable.� Law f � g holds only if both f and g are closed.

Otherwise: let(x) � 0
But let(1) >x> 0 6= let(1) >x> let(x)� Then we can’t show let(x) j let(y) � let(y) j let(x)

UNIVERSITY OF TEXAS AT AUSTIN 47

DEPARTMENT OF COMPUTER SCIENCES

Substitution Event

f [v=x℄! [v=x℄:f (SUBST)

� Now, let(x) [1=x℄! let(1) .

So, let(x) 6= 0� Earlier rules apply to base events only.

From f [v=x℄! [v=x℄:f , we can not conclude:f j g [v=x℄! [v=x℄:f j g
UNIVERSITY OF TEXAS AT AUSTIN 48

DEPARTMENT OF COMPUTER SCIENCES

Traces as Denotations

Define Orc combinators over trace sets, S and T . Define:S j T , S >x> T , S where x:2 T .

Notation: hfi is the set of traces of f .

Theoremhf j gi = hfi j hgihf >x> gi = hfi >x> hgihf where x:2 gi = hfi where x:2 hgi

UNIVERSITY OF TEXAS AT AUSTIN 49

DEPARTMENT OF COMPUTER SCIENCES

Expressions are equal if their trace sets are equal

Define: f �= g if hfi = hgi .
Theorem (Combinators preserve �=)

Given f �= g and any combinator � : f � h �= g � h , h � f �= h � g

Specifically, given f �= g

1. f j h �= g j hh j f �= h j g

2. f >x> h �= g >x> hh >x> f �= h >x> g
3. f where x:2 h �= g where x:2 hh where x:2 f �= h where x:2 g

UNIVERSITY OF TEXAS AT AUSTIN 50

DEPARTMENT OF COMPUTER SCIENCES

Monotonicity, Continuity

� Define: f v g if hfi � hgi .
Theorem (Monotonicity) Given f v g and any combinator �f � h v g � h , h � f v h � g� Chain f : f0 v f1; � � � fi v fi+1; � � � .

Theorem: t(fi � h) �= (tf) � h .

Theorem: t(h � fi) �= h � (tf) .

UNIVERSITY OF TEXAS AT AUSTIN 51

DEPARTMENT OF COMPUTER SCIENCES

Least Fixed Point

M � S j R �MM0 �= 0Mi+1 �= S j R �Mi , i � 0M is the least upper bound of the chain M0 v M1 v � � �

UNIVERSITY OF TEXAS AT AUSTIN 52

DEPARTMENT OF COMPUTER SCIENCES

Weak Bisimulation

signal � f �= ff >x> let(x) �= f
UNIVERSITY OF TEXAS AT AUSTIN 53

