Network Security Protocols: Analysis methods and standards

> John Mitchell Stanford University

Joint work with many students, postdocs, collaborators

TRUST: Team for Research in Ubiquitous Secure Technologies

Carnegie Mellon	Cornell University	MILLS	San José State
SMITH COLLEGE	STANFORD UNIVERSITY	Berkeley	VANDERBILT UNIVERSITY
	NSF Science and Technology Center		ce and Technology Center
		Research,	education, outreach
		http://tru	ust.eecs.berkeley.edu/

TRUST Research Vision

Network security protocols

Primarily key management

- Cryptography reduces many problems to key management
- Also denial-of-service, other issues
- Hard to design and get right

4

- People can do an acceptable job, eventually
- Systematic methods improve results
- Practical case for software verification
 - Even for standards that are widely used and carefully reviewed, automated tools find flaws

Recent and ongoing protocol efforts

- Wireless networking authentication
 - 802.11i improved auth for access point
 - 802.16e metropolitan area networks
 - Simple config setting up access point
- 🔷 Mobility
 - Mobile IPv6 update IP addr to avoid triangle routing
- VoIP
 - SIP call referral feature, other issues
- Kerberos
 - PKINIT public-key method for cross-domain authentication
- IPSec
 - IKEv1, JFK, IKEv2 improved key management

Mobile IPv6 Architecture

Needham-Schroeder Protocol

Result: A and B share two private numbers not known to any observer without Ka⁻¹, Kb⁻¹

Anomaly in Needham-Schroeder

Explicit Intruder Method

Automated Finite-State Analysis

Define finite-state system

- Bound on number of steps
- Finite number of participants
- Nondeterministic adversary with finite options
- Pose correctness condition

14

- Can be simple: authentication and secrecy
- Can be complex: contract signing
- Exhaustive search using "verification" tool
 - Error in finite approximation \Rightarrow Error in protocol
 - No error in finite approximation \Rightarrow ???

State Reduction on N-S Protocol

CS259 Term Projects - 2006

Security Analysis of Formalization of		Security analysis of SIP	
Onion Routing	Analysis of ZRTP	MOBIKE - IKEv2 Mobility and Multihoming Protocol	
802.16e Multicast- Broadcast Key Distribution Protocols	Short-Password Key Exchange Protocol	Analysis of the IEEE 802.16e 3-way handshake	
Analysis of Octopus			
and Related Protocols			
http://www	v.stanford.edu/class/c	s259/	

CS259 Term Projects - 2004

	iKP protocol family	Electronic voting	XML Security
	IEEE 802.11i wireless handshake protocol	Onion Routing	Electronic Voting
	Secure Ad-Hoc Distance Vector Routing	An Anonymous Fair Exchange E-commerce Protocol	Key Infrastructure
	Secure Internet Live Conferencing	Windows file-sharing protocols	
17	http://www.sta	nford.edu/class/cs259	9/WWW04/

Changhua He

Wireless Threats

- Passive Eavesdropping/Traffic Analysis
 - Easy, most wireless NICs have promiscuous mode
- Message Injection/Active Eavesdropping
 - Easy, some techniques to gen. any packet with common NIC
- Message Deletion and Interception
 - Possible, interfere packet reception with directional antennas
 - Masquerading and Malicious AP
 - Easy, MAC address forgeable and s/w available (HostAP)
- Session Hijacking
 - Man-in-the-Middle
 - Denial-of-Service: cost related evaluation

Countermeasures

Random-Drop Queue

- Randomly drop a stored entry if the queue is full
- Not so effective
- Authenticate Message 1
 - Use the share PMK; must modify the packet format
- Reuse supplicant nonce
 - Reuse SNonce, derive correct PTK from Message 3
 - Performance degradation, more computation in supplicant

Combined solution

- Supplicant reuses SNonce
- Store one entry of ANonce and PTK for the first Message 1
- If nonce in Message 3 matches the entry, use PTK directly
- Eliminate memory DoS, only minor change to algorithm
- Adopted by TGi

Summary of larger study

ATTACK	SOLUTIONS		
security rollback	supplicant <i>manually</i> choose security; authenticator restrict pre-RSNA to only insensitive data.		
reflection attack	each participant plays the role of either authenti-cator or supplicant; if both, use different PMKs.		
attack on Michael countermeasures	cease connections for a specific time instead of re-key and deauthentication; update TSC before MIC and after FCS, ICV are validated.		
RSN IE poisoning	Authenticate Beacon and Probe Response frame; Confirm RSN IE in an earlier stage; Relax the condition of RSN IE confirmation.		
4-way handshake	adopt random-drop queue, not so effective;		
blocking	authenticate Message 1, packet format modified;		
	re-use supplicant nonce, eliminate memory DoS.		

Model checking vs proof

- Finite-state analysis
 - Attacks on model \Rightarrow Attack on protocol

Formal proof

Proof in model \Rightarrow No attack using only these attacker capabilities

Finite state analysis assumes small number of principals, formal proofs do not need these assumptions

Protocol composition logic

802.11i correctness proof in PCL

EAP-TLS

- Between Supplicant and Authentication Server
- Authorizes supplicant and establishes access key (PMK)

4-Way Handshake

- Between Access Point and Supplicant
- Checks authorization, establish key (PTK) for data transfer
- Group Key Protocol
 - AP distributes group key (GTK) using KEK to supplicants
- AES based data protection using established keys

Formal proof covers subprotocols 1, 2, 3 alone and in various combinations

Theorems: Agreement and Secrecy

```
\mathsf{Honest}(\hat{X}) \land \mathsf{Honest}(\hat{Y}) \land \mathsf{Honest}(\hat{CA}) \land \hat{X} \neq \hat{Y}
[Client]_X
\exists Y.(\mathsf{Send}(X, \hat{X}, \hat{Y}, m1))
< \mathsf{Receive}(Y, \hat{X}, \hat{Y}, m1)
< Send(Y, \hat{Y}, \hat{X}, m2)
< \mathsf{Receive}(X, \hat{Y}, \hat{X}, m2)
< Send(X, \hat{X}, \hat{Y}, m3)
< \mathsf{Receive}(Y, \hat{X}, \hat{Y}, m3)
< Send(Y, \hat{Y}, \hat{X}, m4)
< \mathsf{Receive}(X, \hat{Y}, \hat{X}, m4))
        Honest(\hat{Y})[Client]_X
         Has(\hat{Z}, secret)
         \wedge \hat{X} \neq \hat{Z} \supset \hat{Z} = \hat{Y}
```

27

Client is guaranteed: there exists a session of the intended server this server session agrees on the values of all messages all actions viewed in same order by client and server there exists exactly one such server session Similar specification for server

Composition

All necessary invariants are satisfied by basic blocks of all the sub-protocols

The postconditions of TLS imply the preconditions of the 4-Way handshake

The postconditions of 4-Way handshake imply the preconditions of the Group Key protocol

Complex Control Flows

TLS

4-Way

Group

Kev

Fail

Update

Update

Success

Success

Success

Fail

29

Simple Flow

Study results

- 802.11i provides
 - Satisfactory data confidentiality & integrity with CCMP
 - Satisfactory mutual authentication & key management
- Some implementation mistakes
 - Security Level Rollback Attack in TSN
 - Reflection Attack on the 4-Way Handshake
- Availability is a problem
 - Simple policies can make 802.11i robust to some known DoS
 - Possible attack on Michael Countermeasures in TKIP
 - RSN IE Poisoning/Spoofing
 - 4-Way Handshake Blocking
 - Inefficient failure recovery scheme

Improved 802.11i

Some other case studies

Microsoft TechNet

Microsoft Security Bulletin MS05-042 Vulnerabilities in Kerberos Could Allow Denial of Service, Information Disclosure, and Spoofing (899587)

Published: August 9, 2005

Affected Software:

- Microsoft Windows 2000 Service Pack 4
- Microsoft Windows XP Service Pack 1 and Microsoft Windows XP Service Pack 2
- Microsoft Windows XP Professional x64 Edition
- Microsoft Windows Server 2003 and Microsoft Windows Server 2003 Service Pack 1
- Microsoft Windows Server 2003 for Itanium-based Systems and Microsoft Windows Server 2003 with SP1 for Itanium-based Systems
- Microsoft Windows Server 2003 x64 Edition

Kerberos Project

I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad

Formal analysis of Kerberos 5

- Several steps
 - Detailed core protocol
 - Cross-realm authentication
 - Public-key extensions to Kerberos

Attack on PKINIT

- Breaks association of client request and the response
- Prevents full authentication and confidentiality
- Formal verification of fixes preventing attack
 - Close, ongoing interactions with IETF WG

Public-Key Kerberos

Extend basic Kerberos 5 to use PKI

- Change first round to avoid long-term shared keys
- Originally motivated by security
 - If KDC is compromised, don't need to regenerate shared keys
 - Avoid use of password-derived keys
- Current emphasis on administrative convenience
 - Avoid the need to register in advance of using Kerberized services
- This extension is called PKINIT
 - Current version is PKINIT-29
 - Attack found in -25; fixed in -27
 - Included in Windows and Linux (called Heimdal)
 - Implementation developed by CableLabs (for cable boxes)

The Attack

Fix Adopted in pk-init-27

The KDC signs k, cksum (place of k, n₂)

- k is replyKey
- cksum is checksum over AS-REQ
- Easier to implement than signing C, k, n₂

Formal proof: this guarantees authentication

- Assume checksum is preimage resistant
- Assume KDC's signature keys are secret

Published proof uses simplified symbolic model Cryptographically sound proofs now exist

Recent and ongoing protocol efforts

Wireless networking authentication

- 802.11i improved auth for access point
- 802.16e metropolitan area networks
- Simple config setting up access point
- Bluetooth simple pairing protocols
- Mobility
 - Mobile IPv6 update IP addr to avoid triangle routing

VoIP

SIP – call referral feature, other issues

Kerberos

- PKINIT public-key method for cross-domain authentication
- Full cryptographically sound proof recently developed

IPSec

IKEv1, JFK, IKEv2 – improved key management

OTRv2

- student project in CS259 this winter
- ZPhone ??

38

Conclusions

Protocol analysis methods

- Model checking is fairly easy to apply
- Ready for industrial use
- Logical proofs are feasible, can be made easier
- Example: Wireless 802.11i
 - Automated study led to improved standard
 - Deployment recommendations, more flexible error recovery
- Many ongoing efforts
 - Examples: Wireless networking, VoIP, mobility
 - Typical standardization effort takes a couple of years

Achievable goal: systematic methods that can be used by practicing engineers to improve network, system security

