SGI Multi-Paradigm Architecture

Michael Woodacre

Chief Engineer, Server Platform Group woodacre@sgi.com

A History of Innovation in HPC

odi Piopiletary

Over Time, Problems Get More Complex, Data Sets Exploding

Bumper, hood, engine, wheels

Entire car

E-crash dummy

Organ damage

This Trend Continues Across SGI's Markets

Improve design & manufacturing

Improve patient safety

Improve oil exploration

Improve hurricane prediction

SGI Scalable ccNUMA ArchitectureBasic Node Structure and Interconnect

SGI Scalable ccNUMA ArchitectureBasic Node Structure and Interconnect

Logical Layout - 8TB

Altix 128 Processor 8TB - 1.6GB/s Uniform Memory Bandwidth

Interconnect Topology

Bi-Section Bandwidth Profiles GBs/sec/cpu

Dual Plane - NL3 router - 8 port router bricks

Dual Plane - NL4 router -8 port router bricks

SGI Proprietary

Examples of Single-Paradigm Architectures

<u>Scalar</u>	<u>Vector</u>	App-Specific
Intel Itanium	Cray XI	Graphics - GPU
SGI MIPS	NEC SX	Signals - DSP
IBM Power		Prog'ble - FPGA
Sun SPARC		Other ASICs
HP PA		

Paradigms to Applications

Peer I/O: Increased I/O Flexibility & Performance

SGI Scalable ccNUMA Architecture Multi-Paradigm Computing Architecture

Data-Centric Architecture

Big Data

1TB, 32*32=1024 elements

Each box represents 1GB

Big Data

Big Data

Big Datasets: 3D Interactive Visualization

1993 100 MB 10% viewed / year ~1 MB / month

40,000x Productivity 2004 ↓ 400 GB 100% viewed / month 400 GB / month

Commodity GPU systems 5X the price of a Scale-up System

March 17, 2005 nVIDIA visualizes large data set

- •473 million triangles
- •128 GPU's on Dell Systems
- •~\$1million system

Compliments of nVIDIA

January 21, 2005 SGI visualizes large data set

- •350 million triangles
- •12P, 56GB memory
- Utilizes a ray tracer
- •~\$180,000 system

Compliments of Boeing

Dynamic Load Balancing

Load Balancing OFF

Load Balancing ON

Dimensions of Scalability

- Processors
- Processor bandwidth
- Memory bandwidth
- Memory capacity
- Interconnect bandwidth
- IO bandwidth
- Graphics processing
- Reconfigurable processing
- Other acceleration elements

Origin3000 Building Blocks (Bricks)

SGI Altix[™] 3700 Bx2 Platform Introduction: Building Blocks

SGI®
Advanced
Linux
Environment
With
SGI
ProPack

High-End Servers – Moving Forward: Altix® 4700 Platform..... Blade Packaging

•Innovative Blade-to-NUMALink4 Concept: Provides Unprecedented Versatility, Density

•Blade Architecture Leads Next-Wave of HPC Blade-Based Platforms: With Better Upgradeability, Expansion & Repair

•Investment Protection: Processor-Only Upgrade to Future Dual Core Processors

•Enables Flexible Multi-Paradigm Computing: Enhanced integrated RASC, Graphics

Next Generation RASC™ TechnologyBlade Based Package

Standardized Blades, NUMAlink Backbone

Altix® 4700 Compute Blades

- Support for Madison9M Processors (Montecito/Montvale as Available)
- Two Compute Blade Options to Provide Different System Capabilities:
 - Best \$/FLOP, Best Density
 (Density Compute Blade)

OR

Best Performance, Memory BW (Bandwidth Compute Blade)

Altix® 4700 Compute Blades

Highest Memory BW, Performance: Bandwidth Compute Blade

- 667MHz FSB Madison9M -> 10.7GB/s Local Memory Bandwidth
- 32 M9M Sockets / S-Rack
- Processors Supported: 1.66GHz/9M, 1.66GHz/6M Madison9M with 667MHz FSB
- Memory Sizes: 2G 48G/core Single Blade

Front View

Front View

Best \$/FLOP, Best Density: Density Compute Blade

- 533MHz FSB Madison9M ->
 8.524GB/s Local Memory Bandwidth
- 64 M9M Sockets / S-Rack
- Processors Supported: 1.6GHz/9M, 1.6GHz/6M Madison9M with 533MHz FSB
- Memory Sizes: 1G 24GB/core
 Single Blade

26

Memory Blade

Altix® 4700 RASC Blade

• RASC Blade

- Abacus Computation Blade
- Enhanced Performance, Tightly Integrated

RASC Blades – Cont.

How does RASC™ Technology Differ from Traditional CPUs?

Application Segments

Application segments	Sample applications
Image and video processing	Transcoding (digital watermarks, format conversion), compression (JPEG, MPEG), color correction, ray-tracing, edge detection (Sobel)
Digital Signal Processing	FFT, IFFT, Filtering (FIR and IIR)
Network and Communication	Interleaver/de-interleaver, coding/decoding (Reed Solomon, Viterbi), convolution encoders, encryption, error correction, packet processing (IPsec)
Database Acceleration	Query, sorting, pattern recognition, data compression
HPC Algorithm Acceleration- Gov/Defense	MATLAB, STAR-P, random number generators, Sigint/Elint, image recognition (radar/vision/IR), DEM
HPC Algorithm Acceleration Bioinformatics	Blast, Smith-Waterman

Ease of Use

- •Leverage 3rd Party Std Language Tools
 - Celoxica, Mitrionics, Starbridge Systems, Nallatech
- Developed an FPGA aware version of GDB
 - Capable of debugging the FPGA and System Software
 - Capable of multiple CPUs and multiple FPGAs
- Developed RASC Abstraction Layer (RASCAL)
- Provide for HDL modules
 - Integrated environment with debugger
 - Highest performance

3rd Party Tools

- Celoxica http://www.celoxica.com
 - Handel-C
- Mitrionics http://www.mitrionics.com
 - Mitrion C
- Starbridge Systems http://www.starbridgesystems.com/
 - Viva graphical development environment
- Nallatech http://www.nallatech.com/
 - SGI strategic partner

Ease of Use v. Efficiency

Bitstream Generation... HLL Tools

Ease of Use

- •Leverage 3rd Party Std Language Tools
 - Celoxica, Impulse Acceleration, Mitrion, Starbridge Viva
 - In discussions with other HLL tool vendors
- Developed an FPGA aware version of GDB
 - Capable of debugging the FPGA and System Software
 - Capable of multiple CPUs and multiple FPGAs
- Developed RASC Abstraction Layer (RASCAL)
- Provide for HDL modules
 - Integrated environment with debugger
 - Highest performance

FPGA Aware Debugger

- Based on Open Source GNU Debugger (GDB)
- Uses extensions to current command set
- Can debug host application and FPGA
- Provides notification when FPGA starts or stops
- Supplies information on FPGA characteristics
- Can "single-step" or "run N steps" of the algorithm
- Can HLL line step per C-line source
- Dumps data regarding the set of "registers" that are visible when the FPGA is active

GDB Debugging Environment

Ease of Use

- •Leverage 3rd Party Std Language Tools
 - Celoxica, Impulse Acceleration, Mitrion, Starbridge Viva
 - In discussions with other HLL tool vendors
- Developed an FPGA aware version of GDB
 - Capable of debugging the FPGA and System Software
 - Capable of multiple CPUs and multiple FPGAs
- Developed RASC Abstraction Layer (RASCAL)
- Provide for HDL modules
 - Integrated environment with debugger
 - Highest performance

RASC™ Software Stack

Abstraction Layer: Algorithm API

The Abstraction Layer's algorithm API mirrors the COP API with a few

Working with industry/customers (www.openfpga.org) on API stds...

Ease of Use

- •Leverage 3rd Party Std Language Tools
 - Celoxica, Impulse Acceleration, Mitrion, Starbridge Viva
 - In discussions with other HLL tool vendors
- Developed an FPGA aware version of GDB
 - Capable of debugging the FPGA and System Software
 - Capable of multiple CPUs and multiple FPGAs
- Developed RASC Abstraction Layer (RASCAL)
- Provide for HDL modules
 - Integrated environment with debugger
 - Highest performance

FPGA Architecture Overview

Algorithm Block as Submodule

Verilog / VHDL Module Support

- Templates for Verilog and VHDL
 - Fast start to algorithm coding
- Provide a system simulation stub
 - Allows both simulation debug or system debug
- Provide source code for core service
 - Allows user to modify to meet special needs
- Extractor tools supports GDB meta-data
 - Application and FPGA debugging

RASC[™] Technology — Demonstrated Application Speed-up

Bit Manipulation (Cryptography)¹

- 79x 1.5GHz Intel[®] Itanium[®] 2 Processor (single RASC Unit)
- 119x 1.5GHz Intel[®] Itanium[®] 2 Processor (dual RASC Unit)

Graphics Edge Detection¹

7.4x 1.5GHz Intel® Itanium® 2 Processor (single RASC Unit)

Customer Application

- 20,000x speedup on scalar microprocessor
- EXERGY MAPLD 2005 paper 190

RASC Platform Capabilities

- Direct Connection to NUMAlink4
 - 6.4GB/s/connection
- Fast System Level Reprogramming of FPGA
 FPGA load at memory speeds
- Atomic Memory Operations
 Same set as System CPUs
- Hardware Barriers
 Dynamic Load Balancing
- Configurations to 8191 NUMA/FPGA Nodes
 Scalability

Thank You

sgi

Strategy for Big Data

- . IRIX
- . Linux
- . Windows
- . Solaris
- . IBM AIX
- . HP-UX
- . Mac OS X

SGI® RASC™ Technology Summary

Tightly coupled, high bandwidth/low latency integration into NUMA fabric

- Significant bandwidth advantage (6.4GB/s)
- Coherent shared memory access
- Atomic memory operations
- Scalability (wide scaling and deep scaling)

Orders-of-magnitude performance improvement and application speedup

 Beneficial when running data intensive applications critical to oil and gas exploration, defense and intelligence, bioinformatics, medical imaging, broadcast media, and other data-dependent industries.

Ease of programming—complete software stack

- RASClib (API and core services library) provides abstraction layer to support reconfigurable elements in a multi-processing, multi-user environment
- Fully integrated third-party party HLL development tools
- FPGA-aware enhancements to GNU debugger (open-source)
- Add-in module that seamlessly operates with SGI® Altix® servers and Silicon Graphics Prism™ visualization systems

Multi-Paradigm Computing Other Non-traditional Processing Initiatives

GPU-based processing

- High potential performance (200-300GF peak today) and performance/price on single precision floating point applications...clear roadmap to future semiconductor process technologies
- SGI working with SI on scaling to multiple GPUs and on development environment/programming paradigms...initial focus on signal processing apps
- Specialized processors... ClearSpeed™ processors, custom processors (MD-GRAPE, classified chip)
 - High potential performance/watt on certain apps

