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Abstract—This letter presents an algebraic method for con-
structing regular low-density parity-check (LDPC) codes based
on Reed–Solomon codes with two information symbols. The
construction method results in a class of LDPC codes in Gallager’s
original form. Codes in this class are free of cycles of length 4
in their Tanner graphs and have good minimum distances. They
perform well with iterative decoding.

Index Terms—Low-density parity-check codes (LDPCs),
Reed–Solomon codes, sum product algorithm.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes were discov-
ered by Gallager in early 1960s [1]. After being over-

looked for almost 35 years, this class of codes has been re-
cently rediscovered and shown to form a class of Shannon limit
approaching codes [2]–[8]. This class of codes decoded with
iterative decoding, such as the sum-product algorithm (SPA)
[1], [4]–[6], performs amazingly well. Since their rediscovery,
LDPC codes have become a focal point of research.

In this letter, an algebraic method for constructing regular
LDPC codes is presented. This construction method is based
on the simple structure of Reed–Solomon (RS) codes with two
information symbols. It guarantees that the Tanner graphs [9] of
constructed LDPC codes are free of cycles of length 4 and hence
have girth at least 6. The construction results in a class of LDPC
codes in Gallager’s original form [1]. These codes are simple in
structure and have good minimum distances. They perform well
with iterative decoding.

II. RS CODES WITH TWO INFORMATION SYMBOLS

Consider the Galois field where is a prime and
is a positive integer. Let be a primitive element of .
Let . Then , form all
the elements of . Let be a positive integer such that
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. Then the generator polynomial [10] of the cyclic
( ) RS code of length , dimension

, and minimum distance is

where .
Suppose we shorten by deleting the first informa-

tion symbols from each codeword of [10]. We obtain a ( , 2,
) shortened RS code with only two information symbols

whose generator matrix is

The nonzero codewords of have two different weights,
and .

In the following, we develop a number of structural properties
of which are keys to the construction of a class of regular
LDPC codes whose Tanner graphs are free of cycles of length
4. Since the minimum distance of is , two codewords in

have at most one location with the same code symbol. Let
be a codeword in with weight . Then the set

of codewords in forms a one-dimensional
subcode of . Each nonzero codeword in has weight .
Two codewords in differ at every location. Partition into

cosets, , based on the subcode . Then
two codewords in any coset must differ in all the locations.
If we arrange the codewords of a coset as a array,
then all the elements of any column of the array are different.

III. RS-BASED GALLAGER-LDPC CODES

Consider the elements, , of
. Let be a -tuple over

GF(2) whose components correspond to the elements of
, i.e, corresponds to the field element . We call

the location number of . For ,
we define the location vector of as a -tuple over GF(2)
for which the th component is equal to 1 and all the other
components are equal to zero.

Let be a codeword in . For ,
replacing each component of by its location vector ,
we obtain a -tuple over GF(2)

with weight , which is called the symbol location vector of
. Since any two codewords in have at most one location
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with the same code symbol, consequently their symbol loca-
tion vectors have at most one 1-component in common. Let

be the set of symbol location vec-
tors of the codewords in the th coset of . It follows
from the structural properties of the cosets of developed in
Section II that two symbol location vectors in do not
have any 1-component in common.

For , form a matrix over GF(2)
whose rows are the symbol location vectors in . Since
the weight of each vector in is , the total number of
1-entries in is . Since no two symbol location vectors in

have any 1-component in common, the weight of each
column of is one. Therefore, is a (1, )-regular matrix with
column and row weights 1 and , respectively. In fact, it follows
from the definition of the symbol location vector of a codeword
in and the structural properties of the codewords in each coset

that consists of a row of permutation matrices.
Matrix is called the symbol location matrix of the coset .
The class of symbol location matrices, ,
has the following structural properties: (1) no two rows in the
same matrix have any 1-component in common; and (2) no
two rows from two different member matrices, and , have
more than one 1-component in common.

Let be a positive integer such that . Form the
following matrix over GF(2):

...

This matrix is a ( )-regular matrix with column and row
weights and , respectively. It follows from the structural
properties of the member matrices in the class that no
two rows (or two columns) of have more than one
1-component in common. This implies that there are no 4 ones
in at the 4 corners of a rectangle. This ensures that the
associated Tanner graph of is free of cycles of length 4
and hence its girth is at least 6. We note that is exactly
in Gallager’s original form [1] for the parity check matrix of
a ( )-regular LDPC code. Therefore, the null space of this
matrix gives a -regular Gallager-LDPC code, denoted

, of length whose Tanner graph has girth at
least 6. The rate of this code is at least . If ,
the code is quasicyclic.

Since no two rows in have more than one 1-compo-
nent in common and each column of the matrix has weight ,
there are rows in that are orthogonal [10] on every
code bit of . It follows from Massey’s orthogonality the-
orem, [10], [11] that the minimum distance of is at least

. This lower bound on minimum distance can be improved
if the structure of parity check matrix is taken into ac-
count. Recall that each symbol location matrix in consists
of a row of permutation matrices. Therefore, the parity
check matrix consists of columns of per-
mutation matrices. Each column of consists of sec-
tions, each section consists of a single 1-component. For a set of
columns in the parity check matrix to sum to zero, the
number of columns in the set must be even. This implies that the

Fig. 1. Error performance of the (2048,1723) RS-based Gallager
(6,32)-regular LDPC code with construction field ���� �.

minimum distance of must be even. As a result, for even
, the minimum distance of is then at least . Sum-

marizing the above results, we have the following lower bound
on the minimum distance of :

for odd
for even

For a given choice of , , and , we can construct a se-
quence of Gallager-LDPC codes of length for

. For a given choice of , , and , we can construct
a sequence of Gallager-LDPC codes of different lengths with
minimum distance at least or by varying .

Since the construction is based on the shortened
RS code over , we call and the base code
and construction field, respectively.

IV. SOME RS-BASED GALLAGER-LDPC CODES AND THEIR

ERROR PERFORMANCES

In this section, we present several RS-based LDPC codes and
their error performances with iterative decoding using the SPA.
For performance computation, we assume BPSK transmission
over an AWGN channel.

A. Example 1

Let be the field for code construction. Let .
Then the base code is the (32,2,31) shortened RS code over

. The location vector of each symbol in is a
64-tuple over GF(2) with a single 1-component. Suppose we
set . Then the RS-based Gallager-LDPC code is a
(6,32)-regular (2048,1723) code with rate 0.841 and minimum
distance at least 8. The bit and block error performances with the
SPA decoding are shown in Fig. 1. At the BER of , the code
performs only 1.55 dB from the Shannon limit and achieves a
6-dB coding gain over the uncoded BPSK. For LDPC codes, the
code length of 2048 is considered to be short. For such a short
LDPC code, its error performance is very good. For comparison,
the performance of the MacKay’s computer generated code of
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Fig. 2. Error performances of the (8192,6754) RS-based Gallager
(6,32)-regular LDPC code with construction field ���� �, and the
(4032,3307) RS-based Gallager (60,63)-regular quasi-cyclic LDPC code with
construction field ���� �.

the same length and rate is also given in Fig. 1. We can see that
the two codes have almost the same error performance.

B. Example 2

Again we use as the construction field. Let .
Then the base code for construction is the (63,2,62) RS code. Set

. The code constructed is a (60,63)-regular (4032,3307)
LDPC quasicylic code with rate 0.82 and minimum distance at
least 62. The error performance of the code is shown in Fig. 2. At
the BER of , the code performs 1.65 dB from the Shannon
limit. Since the code has a very large minimum distance, there
should not be any error floor or the error floor occurs at a very
low bit error rate.

C. Example 3

Suppose we construct a (32,2,31) shortened RS code over
. Set . Then the Gallager-LDPC code constructed

based on is a (6,32)-regular (8192,6754) code with rate 0.824
and minimum distance at least 8. The error performance of the
LDPC code is also shown in Fig. 2. At the BER of , the
code performs 1.25 dB from the Shannon limit and achieves a
6.7-dB coding gain over the uncoded BPSK.

D. Example 4

Again we use as the construction field. The short-
ened RS code used for code construction is the (48,2,47)
code over . Set . Then the Gallager-LDPC code
constructed is a (6,48)-regular (12288,10845) code with rate
0.8825 and minimum distance at least 8. The error performance
is shown in Fig. 3. At the BER of , the code performs 1.1 dB
from the Shannon limit. For comparison, the performance of the
MacKay’s computer generated code of the same length and rate

Fig. 3. Error performance of the (12288,10845) RS-based Gallager
(6,48)-regular LDPC code with construction field ���� �.

is also given in Fig. 3. We see that in this case MacKay’s code
is 0.2 dB better than RS-based Gallager-LDPC code. However,
the error performance of the RS-based Gallager-LDPC code has
larger dropping rate. The performance curves of the two codes
may cross each other at lower BER.

V. CONCLUSION

In this letter, a simple RS-based algebraic method for con-
structing regular LDPC codes with girth at least 6 has been pre-
sented. Construction gives a large class of regular LDPC codes
in Gallager’s original form that perform well with the SPA.
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