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Channel coding

I Entropy

H(U) = E[log
1

p(U)
] = −

∑

u

p(u) log p(u)

I Conditional Entropy

H(X|Y ) = E[log
1

p(X|Y )
] =

∑

y

p(y)H(X|Y = y)

I Mutual Information

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y )
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Channel Capacity

I Channel capacity C is the maximal rate of reliable
communication over memoryless channel characterized by
P (Y |X)

I Theorem:

C = max
PX

I(X;Y )



Capacity of the binary erasure channel (BEC)

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:
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I(X;Y ) = H(X)−H(X|Y )

= H(X)−H(X)ε− 0P (Y = 0)− 0P (Y = 1)

= (1− ε)H(X)

Picking X ∼ Ber(12), we have H(X) = 1. Thus, the capacity of
BEC is C = 1− ε



Channel Coding

rate logM
n bits/channel use

probability of error Pe = P (Ĵ 6= J)

I If R < maxPx I(X;Y ), then rate R is achievable, i.e., there
exists schemes with rate ≥ R and Pe → 0

I If R > maxPx I(X;Y ), then R is not achievable.

Main result: maximum rate of reliable communication
C = maxPX

I(X;Y )
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Today: Polar Codes

I Invented by Erdal Arikan in 2009

I First code with an explicit construction to provably achieve
the channel capacity

I Nice structure with efficient encoding/decoding operations

I We will assume that the channel is symmetric, i.e., uniform
input distribution achieves capacity



Basic 2× 2 transformation

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1

U1, U2, X1, X2 ∈ {0, 1} binary variables (in GF(2))

[
X1

X2

]
=

[
1 1
0 1

] [
U1

U2

]
mod 2

or equivalently X1 = U1 ⊕ U2 and X2 = U2
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Properties of G2
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Properties of G2
2

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1
+

U2

U1

Define G2 :=

[
1 1
0 1

]
then we have X = G2U

G2
2 := G2G2

G2G2U =

[
1 1
0 1

] [
1 1
0 1

] [
U1

U2

]

=

[
1 1
0 1

] [
U1 ⊕ U2

U2

]

=



Erasure channel

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:
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Naively combining erasure channels
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Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:
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I Repetition coding

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

U1

W

W

Y2

Y1



Combining two erasure channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

Invertible transformation does not alter capacity:
I(U ;Y ) = I(X;Y )



Sequential decoding

First bit-channel W1 : U1 → (Y1, Y2)

Polarization Encoding Decoding Construction Performance

The first bit-channel W1

W1 : U1 → (Y1,Y2)

+

random U2

U1

W

W

Y2

Y1

C (W1) = I (U1;Y1,Y2)



Second bit-channel W2 : U2 → (Y1, Y2, U1)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1



Capacity is conserved

C(W1) + C(W2) = C(W ) + C(W ) = 2C(W )

C(W1) ≤ C(W ) ≤ C(W2)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1



Polarization process

ε

2ε− ε2

ε2

2(2ε− ε2)− (2ε− ε2)2

(2ε− ε2)2

2(ε2)− (ε2)2

(ε2)2



A familiar update rule...

Let et be i.i.d. uniform ±1 for t = 1, 2...

wt+1 = wt + etwt(1− wt)
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Martingales

Let et be i.i.d. uniform ±1 for t = 1, 2...

wt+1 = wt + etwt(1− wt)

E[wt+1|wt] = wt

I Doob’s Martingale convergence theorem

(informal) Bounded Martingale processes converge to a
limiting random variable w∞ such that E[|wt − w∞|]→ 0.
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Non-convergent paths

I Down - Up - Down - Up ....

ε↘ ε2 ↗ 2ε2 − ε4 =?ε
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Google images: golden ratio in nature



Polarization theorem

Theorem

The bit-channel capacities {C (Wi )} polarize: for any 
δ ∈ (0, 1), as the construction size N grows

[
no. channels with C (Wi ) > 1− δ

N

]
−→ C (W )

and
[
no. channels with C (Wi ) < δ

N

]
−→ 1− C (W )

0

δ

1− δ

1



Freezing noisy channels
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Freezing noisy channels
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Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W−(Y1, Y2|U1) =
1

2

∑

u2

W1(y1|u1 ⊕ u2)W2(y2|u2)

W+(Y1, Y2, U1|U2) =
1

2
W1(y1|u1 + u2)W2(y2|u2)

I(W−) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1−H(p), then
I(W+)− I(W−1) ≥ 2H(2p(1− p))−H(p)
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Successive Cancellation Decoder



Polar Coding Theorem

Theorem

For any rate R < I (W ) and block-length N, the probability of
frame error for polar codes under successive cancelation decoding is
bounded as

Pe(N,R) = o
(
2−

√
N+o(

√
N)
)



Improved decoders

I List decoder (Tal and Vardy, 2011)

First produce L candidate decisions
Pick the most likely word from the list
Complexity O(LN logN)



List decoder

Polarization Encoding Decoding Construction Performance

Tal-Vardy list decoder performance

Length n = 2048, rate R = 0.5, BPSK-AWGN channel, list-size L.



Polar Coding Summary

Summary

Given W , N = 2n, and R < I (W ), a polar code can be constructed
such that it has

◮ construction complexity O(Npoly(log(N))),

◮ encoding complexity ≈ N logN,

◮ successive-cancellation decoding complexity ≈ N logN,

◮ frame error probability Pe(N,R) = o
(
2−

√
N+o(

√
N)
)
.



5G Communications

I The jump from 4G to 5G is far larger than any previous
jumps–from 2G to 3G; 3G to 4G

I The global 5G market is expected reach a value of 251 Bn by
2025

I In 2016, 27 Gbps downlink speed was reached using Polar
Codes!

I Current LTE download speed is 5-12 Mbps

I In November 2016, 3GPP agreed to adopt Polar codes for
control channels in 5G. LDPC codes will also be used in data
channels.
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