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Channel coding

> Entropy




Channel coding

> Entropy

H{U) = log

» Conditional Entropy

H(X|Y) = log

Zp
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Channel coding

> Entropy

HU) = log

Zp ) log p(u

» Conditional Entropy

H(X[Y) = Ellog o = Lol =)

» Mutual Information

I(X;Y) = H(X)



Channel Capacity

» Channel capacity C is the maximal rate of reliable
communication over memoryless channel characterized by
P(Y]X)

> Theorem:

C =max I(X;Y)
Px



Capacity of the binary erasure channel (BEC)

BEC(¢)
0 1-c 0
1 :_6 1
I(X;Y) = H(X) - HX|Y)
— H(X) — H(X)e—0P(Y =0) — 0P(Y = 1)

Picking X ~ Ber(1), we have H(X) = 1. Thus, the capacity of
BECisC=1—¢



Channel Coding

J ~ uniform € {1,2,..., M} — | encoder RN ‘ memoryless channel Py|x | X7, Tdecoder | — J

rate % bits/channel use
probability of error P, = P(J # J)
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Channel Coding

J ~ uniform € {1,2,..., M} — | encoder RN ‘ memoryless channel Py|x ‘ X7, Tdecoder | — J

rate % bits/channel use
probability of error P, = P(J # .J)

> If R <maxp, I(X;Y), then rate R is achievable, i.e., there
exists schemes with rate > R and P, —» 0

» If R > maxp, [(X;Y), then R is not achievable.

Main result: maximum rate of reliable communication
C =maxp, I(X;Y)



Today: Polar Codes

» Invented by Erdal Arikan in 2009

P First code with an explicit construction to provably achieve
the channel capacity

» Nice structure with efficient encoding/decoding operations

» We will assume that the channel is symmetric, i.e., uniform
input distribution achieves capacity



Basic 2 x 2 transformation

Ui X1

Ui, Uy, X1, X2 € {0,1} binary variables (in GF(2))



Basic 2 x 2 transformation

Ui X1

Us X2

Ui, Uy, X1, X2 € {0,1} binary variables (in GF(2))

=l ][] e

or equivalently X1 = U; ® Uy and Xy = Uy



Properties of G

Uy X1

! ] then we have X = GyU

G2 := GGy



Properties of G

Uy X1

Define Gy := [ (1] 1 ] then we have X = GyU
G2 := GGy

aaw=[3 ][5 ][ 4]



Properties of G3

Uy r_p X1 Ci—\ Uz
Us T X2 T Us
. 11
Define Gy := [ 01 ] then we have X = GoU

G2 := G,Go

aawr=[3 ][4 ][ 4]

()



Erasure channel

BEC(¢)
1—¢€
0 -
3
?
€
1 - 1



Naively combining erasure channels

BEC(e)
0 Lo« 0
€
?
€
1 — 1
P Repetition coding
U1 W _2/1
w




Combining two erasure channels

U

| ? =]
Uz | W R
Invertible transformation does not alter capacity:
I(U;Y)=1(X;Y)




Sequential decoding

First bit-channel Wy : Uy — (Y1, Y2)

Us W _2’1
random UQ W _2/2




Second bit-channel Wy : Uy — (Y1, Y, Uy)

Ur

D w
b2 T W ERE




Capacity is conserved




Polarization process

2¢ — €



A familiar update rule...

Let e; be i.i.d. uniform £1 for t = 1,2...

w1 = wy + epw(1 — wy)



A familiar update rule

Let e; be i.i.d. uniform £1 fort =1,2...

Wit = Wy + eqwe (1 — wy)

0.154

0.14

0.054




Martingales

Let e; be i.i.d. uniform £1 for t = 1,2...

W41 = Wy + etwt(l — wt)

E[U)t+1 ’U)t] = W¢



Martingales

Let e; be i.i.d. uniform £1 for t = 1,2...

W41 = Wy + etwt(l — wt)

E[wtﬂ ’U)t] = W¢

» Doob’s Martingale convergence theorem

(informal) Bounded Martingale processes converge to a
limiting random variable wy, such that E[|w; — w|] — 0.



Non-convergent paths

» Down - Up - Down - Up ....
e\ €2 2e? — et =%



Non-convergent paths

» Down - Up - Down - Up ....

eNel 27—l =cife=% —§=

S

é ~ 0.61803398875



Non-convergent paths

» Down - Up - Down - Up ....

6\62/1262—6426”-6:%—%:%%0.61803398875
1 5
Golden ratio : ¢ := +5 ~ 1.61803398875

2



Non-convergent paths

» Down - Up - Down - Up ..
eN e 22—t =cife=

%

~ 0.61803398875

L_ 1
29

Golden ratio : ¢ := L+ V5 ~ 1.61803398875




Google images: golden ratio in nature

Hlustration of golden ratio in nature
tock ade

The golden ratio in nature, unveiled The Golden Ratio The Golden Ratio Occurring in Nature Examples Of The Golden Ratio Y.



Polarization theorem

Theorem

The bit-channel capacities { C(W;)} polarize: for any
d € (0,1), as the construction size N grows

{no. channels with C(W;) > 1 — 5} (W)
N
and
{no. channels m/(;th C(W;) < 5} 1 (W)

1-6




(W)
0.0039
0.1211
0.1914
0.6836
0.3164
0.8086
0.8789

0.9961
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(W)
0.0039
0.1211
0.1914
0.6836
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Freezing noisy channels

D
A
Vany

Fany
Fany

Fan)

D

Fany
A\

Fany

I(W;) Rank

0.0039 8 frozen 0 —
0.1211 7 frozen 0
0.1914 6 frozen 0 —)
0.6836 4 data U
0.3164 5 frozen 0 —P
0.8086 3 data U
0.8789 2 data Uy —D

0.9961 1 data Ug




Encoding

frozen 0—()0 () L (J L W n
frozen 0 0 () 1 () 1 @_ZQ
frozen 0—() 1 1 () 0 @_ﬁ
free L 1 1 @ 0 @—Z“
frozen 0—() 1 () 0 0 W Y5
free 1 1 () 0 0 W Ys
free 0—() 1 1 1 IZI—Y7
free 1 1 1 1 w Ys




Polarization of general channels

W= (Y1, Ya|U) = Zwl (y1lur @ u2) W (y2|uz)

u2

1
W+ (Y1, Y, Ur|Uz) = §W1(y1|ul + u2)Wa(y2|us)



Polarization of general channels

W™ (Y1, Ya|Ur) = Zwl (y1lur ® u2)Wa(ya|uz)

u2

1
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Polarization of general channels

W= (Y1, Ya|U) = Zwl (y1lur @ u2) W (y2|uz)

u2

1
W+ (Y1, Y, Ur|Uz) = §W1(y1|ul + u2)Wa(y2|us)

IW)+IWT)=I(W)+ (W) =2I(W)

» Mrs Gerber’'s Lemma: If I(W) =1 — H(p), then
I(WH) = I(W™1) > 2H(2p(1 — p)) — H(p)



General Polar Construction

Original channels New channels
(uniform) (polarized)
w Wi
Vector
channel

WVEC

5
7

Wi —1

w Wy

Combine == = Split =———



General Polar Construction

» Begin with N copies of W, Us
» use a 1-1 mapping
Uz
Gy : {0,1}N — {0,1}"
» to create a vector channel
Wiee : UV — YN Un

X, Y,

Xo Y>
Gn

XN Yn

erc



General Polar Construction

Splitting

Define bit-channels

Wi: U — (YN, U

Ui

erc




Successive Cancellation Decoder

" -
u2 o b> o X2 @_)Q
“_o s s 1]
ug ba O X4 @_)/4
us —O o) ai X5 @_)/5
Ue o ar X6 @_)/6
uz —0 as X7 @_W
ug as X3 Vs
(Wi



Successive Cancellation Decoder

First phase: treat a as noise, decode (uy, Uy, us, uy)

uy :f\> () bl ()Xl IW| n
v O+— 2w
“—o e N[l S
ug ba o) X4 @_ﬂ

noise a X5 @_)@

noise a, X6 D_y6
w

noise as X7

noise as _| X8 I y8




Successive Cancellation Decoder
End of first phase

>X1 DW i

o U

X3 @_)/3
X4 @_}/4

X5 @_YS

X6 @_}/6

ur__ m Fan Ve
— ) C
u2 M1 b P
& )
us__ m ba Ve
— C
Lg b M
&
Us__ !
— v
Ue N a
Y
uy M as
—
ug dsq

X7 @_}/7

X8 @_)/8



Successive Cancellation Decoder

Second phase: Treat b as known, decode (us, ug, U7, Ug

known by @ 7
known 132 @ @_)/2
known Bg @D @_)’3
known by @ @_)/4
*—p—o~ [w—"
Up C) ap @_y6
uy —O as @_)/7
ug a4 W‘_yg




Successive Cancellation Decoder

First phase in detail

Ui __ b1 ML Y1
— ) \H W|_
u | b M1 X2 Y2

v v IW|_
us_ bz~ X3 Y3
— &
us b4 M\ X4 ya
& w
noise a X5 Y5
w
noise a, X6 D_%
w
noise as X7 D_)’?
w
noise as _|




Successive Cancellation Decoder

Equivalent channel model

b X1 )21

-
b X2 2
2 @D @_y
bs X3 @_}@
b X4 4
4{) @_y
noise ai X5 @_)/5
noise a, X6 @_)/6
noise as X7 @_)’7
noise as _| X3 . ye

D
J




Successive Cancellation Decoder

First copy of W™
by le . n

noisear | | | x5 . Y5



Successive Cancellation Decoder

Second copy of W™

by O X2 y2

noise ap X6 . Y6
———4.—\/\/



Successive Cancellation Decoder
Third copy of W™

b3_€

9__ X3 V3

noise as _|__|

X7 . Y7



Successive Cancellation Decoder

Fourth copy of W~

b4_€3___ X4 ya

noise as _|

X8 .W Y8



Successive Cancellation Decoder

Decoding on W™~

i wW-——— _(y17y27"‘
Compute
L= é W___()/1a~~-7)/8 ‘ uip = 0)
W===(y1,...,ys |1 =1)

Set

0 =40 elseifL—— >0

7y8)



Successive Cancellation Decoder

Decoding on W~

T ()/1-,)’37)/57)’7)

known {1 ~
—

u (v2. ya. Y. ¥8)




Successive Cancellation Decoder

Decoding on W~—"

un W-—+ (yl,...
Compute
L——+ é W__+(y17 - Y8, L,]l ’ uy = 0)
W==+(y1,....ye. 0y |up=1)
Set

h=<0 elseif L= >0

, Y8, 01)



Polar Coding Theorem

For any rate R < [(W) and block-length N, the probability of
frame error for polar codes under successive cancelation decoding is

bounded as
Pe(N, R) = o (27VI+e(/M)




Improved decoders

» List decoder (Tal and Vardy, 2011)
First produce L candidate decisions
Pick the most likely word from the list
Complexity O(LN log N)



List decoder

——L=1

8 E|

< E ——L=2

T —e— [ =4

g E —e— [ =28

) 3 ——L=16

= 4 ——L=32

R E —<—ML bound

1.0 1.5 2.0 25 3.0
Signal-to-noise ratio [dB|



Polar Coding Summary

Given W, N =2" and R < I(W), a polar code can be constructed
such that it has

» construction complexity O(Npoly(log(N))),
» encoding complexity = N log N,
> successive-cancellation decoding complexity ~ N log N,

» frame error probability P.(N,R) = o (2*\W+0(W)>.




5G Communications

» The jump from 4G to 5G is far larger than any previous
jumps—from 2G to 3G; 3G to 4G

» The global 5G market is expected reach a value of 251 Bn by
2025
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5G Communications

>

>

The jump from 4G to 5G is far larger than any previous
jumps—from 2G to 3G; 3G to 4G

The global 5G market is expected reach a value of 251 Bn by
2025

In 2016, 27 Gbps downlink speed was reached using Polar
Codes!

Current LTE download speed is 5-12 Mbps

In November 2016, 3GPP agreed to adopt Polar codes for

control channels in 5G. LDPC codes will also be used in data
channels.
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