EE376A
 Information Theory

Lecture 9: Polar Codes

Mert Pilanci

Stanford University
February 5, 2019

Outline

- Channel coding and capacity
- Polar code construction
- Decoding
- Theoretical analysis
- Extensions

Channel coding

- Entropy

$$
H(U)=\mathbb{E}\left[\log \frac{1}{p(U)}\right]=-\sum_{u} p(u) \log p(u)
$$

Channel coding

- Entropy

$$
H(U)=\mathbb{E}\left[\log \frac{1}{p(U)}\right]=-\sum_{u} p(u) \log p(u)
$$

- Conditional Entropy

$$
H(X \mid Y)=\mathbb{E}\left[\log \frac{1}{p(X \mid Y)}\right]=\sum_{y} p(y) H(X \mid Y=y)
$$

Channel coding

- Entropy

$$
H(U)=\mathbb{E}\left[\log \frac{1}{p(U)}\right]=-\sum_{u} p(u) \log p(u)
$$

- Conditional Entropy

$$
H(X \mid Y)=\mathbb{E}\left[\log \frac{1}{p(X \mid Y)}\right]=\sum_{y} p(y) H(X \mid Y=y)
$$

- Mutual Information

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Channel Capacity

- Channel capacity C is the maximal rate of reliable communication over memoryless channel characterized by $P(Y \mid X)$
- Theorem:

$$
C=\max _{P_{X}} I(X ; Y)
$$

Capacity of the binary erasure channel (BEC)

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(X)-H(X) \epsilon-0 P(Y=0)-0 P(Y=1) \\
& =(1-\epsilon) H(X)
\end{aligned}
$$

Picking $X \sim \operatorname{Ber}\left(\frac{1}{2}\right)$, we have $H(X)=1$. Thus, the capacity of BEC is $C=1-\epsilon$

Channel Coding

$$
J \sim \text { uniform } \in\{1,2, \ldots, M\} \rightarrow \text { encoder } \xrightarrow{X^{n}} \text { memoryless channel } P_{Y \mid X} \xrightarrow{Y^{n}} \text { decoder } \rightarrow \hat{J}
$$

rate $\frac{\log M}{n}$ bits/channel use
probability of error $P_{e}=P(\hat{J} \neq J)$

Channel Coding

$$
J \sim \text { uniform } \in\{1,2, \ldots, M\} \rightarrow \text { encoder } \xrightarrow{X^{n}} \text { memoryless channel } P_{Y \mid X} \xrightarrow{Y^{n}} \text { decoder } \rightarrow \hat{J}
$$

rate $\frac{\log M}{n}$ bits/channel use
probability of error $P_{e}=P(\hat{J} \neq J)$

- If $R<\max _{P_{x}} I(X ; Y)$, then rate R is achievable, i.e., there exists schemes with rate $\geq R$ and $P_{e} \rightarrow 0$

Channel Coding

$$
J \sim \text { uniform } \in\{1,2, \ldots, M\} \rightarrow \text { encoder } \xrightarrow{X^{n}} \text { memoryless channel } P_{Y \mid X} \xrightarrow{Y^{n}} \text { decoder } \rightarrow \hat{J}
$$

rate $\frac{\log M}{n}$ bits/channel use
probability of error $P_{e}=P(\hat{J} \neq J)$

- If $R<\max _{P_{x}} I(X ; Y)$, then rate R is achievable, i.e., there exists schemes with rate $\geq R$ and $P_{e} \rightarrow 0$
- If $R>\max _{P_{x}} I(X ; Y)$, then R is not achievable.

Main result: maximum rate of reliable communication
$C=\max _{P_{X}} I(X ; Y)$

Today: Polar Codes

- Invented by Erdal Arikan in 2009
- First code with an explicit construction to provably achieve the channel capacity
- Nice structure with efficient encoding/decoding operations
- We will assume that the channel is symmetric, i.e., uniform input distribution achieves capacity

Basic 2×2 transformation

$U_{1}, U_{2}, X_{1}, X_{2} \in\{0,1\}$ binary variables (in $\mathrm{GF}(2)$)

Basic 2×2 transformation

$U_{1}, U_{2}, X_{1}, X_{2} \in\{0,1\}$ binary variables (in $\mathrm{GF}(2)$)

$$
\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \quad \bmod 2
$$

$$
\text { or equivalently } X_{1}=U_{1} \oplus U_{2} \text { and } X_{2}=U_{2}
$$

Properties of G_{2}

$$
U=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

Define $\quad G_{2}:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ then we have $X=G_{2} U$

$$
G_{2}^{2}:=G_{2} G_{2}
$$

Properties of G_{2}

$$
U=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \quad X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

Define $\quad G_{2}:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ then we have $X=G_{2} U$

$$
G_{2}^{2}:=G_{2} G_{2}
$$

$$
G_{2} G_{2} U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]
$$

Properties of G_{2}^{2}

Define

$$
G_{2}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { then we have } X=G_{2} U
$$

$$
G_{2}^{2}:=G_{2} G_{2}
$$

$$
G_{2} G_{2} U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
U_{1} \oplus U_{2} \\
U_{2}
\end{array}\right]
$$

Erasure channel

$\operatorname{BEC}(\epsilon)$

Naively combining erasure channels

- Repetition coding

Combining two erasure channels

Invertible transformation does not alter capacity: $I(U ; Y)=I(X ; Y)$

Sequential decoding

First bit-channel $W_{1}: U_{1} \rightarrow\left(Y_{1}, Y_{2}\right)$

Second bit-channel $W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)$

Capacity is conserved

$$
\begin{gathered}
C\left(W_{1}\right)+C\left(W_{2}\right)=C(W)+C(W)=2 C(W) \\
C\left(W_{1}\right) \leq C(W) \leq C\left(W_{2}\right)
\end{gathered}
$$

Polarization process

A familiar update rule...

Let e_{t} be i.i.d. uniform ± 1 for $t=1,2 \ldots$

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

A familiar update rule

Let e_{t} be i.i.d. uniform ± 1 for $t=1,2 \ldots$

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

Martingales

Let e_{t} be i.i.d. uniform ± 1 for $t=1,2 \ldots$

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

$$
\mathbb{E}\left[w_{t+1} \mid w_{t}\right]=w_{t}
$$

Martingales

Let e_{t} be i.i.d. uniform ± 1 for $t=1,2 \ldots$

$$
w_{t+1}=w_{t}+e_{t} w_{t}\left(1-w_{t}\right)
$$

$$
\mathbb{E}\left[w_{t+1} \mid w_{t}\right]=w_{t}
$$

- Doob's Martingale convergence theorem (informal) Bounded Martingale processes converge to a limiting random variable w_{∞} such that $\mathbb{E}\left[\left|w_{t}-w_{\infty}\right|\right] \rightarrow 0$.

Non-convergent paths

- Down - Up - Down - Up

$$
\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=? \epsilon
$$

Non-convergent paths

- Down - Up - Down - Up

$$
\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=\epsilon \text { if } \epsilon=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{1}{\phi} \approx 0.61803398875
$$

Non-convergent paths

- Down - Up - Down - Up
$\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=\epsilon$ if $\epsilon=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{1}{\phi} \approx 0.61803398875$
Golden ratio : $\quad \phi:=\frac{1+\sqrt{5}}{2} \approx 1.61803398875$

Non-convergent paths

- Down - Up - Down - Up
$\epsilon \searrow \epsilon^{2} \nearrow 2 \epsilon^{2}-\epsilon^{4}=\epsilon$ if $\epsilon=\frac{\sqrt{5}}{2}-\frac{1}{2}=\frac{1}{\phi} \approx 0.61803398875$
Golden ratio : $\quad \phi:=\frac{1+\sqrt{5}}{2} \approx 1.61803398875$

Google images: golden ratio in nature

There won't be another day like June 1
hindustantimes.com

Class Assignment \#1 Golden Ratio a.. bellhsgraphicdesign 1.blogspot.com

Examples of The Golden Ratio memolition.com

... $:$ | slider-nature-golden-ratio flickr.com

lustration of golden ratio in nature stock adobe.com

The Goiden Ratio and Fibonacci S. icytales.com

Quantum Golden Ri blog.iso 50.00 m

The golden ratio in nature, unveiled phimatrix.com

The Golden Ratio
unc.edu

The Golden Ratio Occurring in Nature
themodernapecom

The Golden Ratio in nature | Downlo researchgate.net

Examples of The Golden Ratio Y.. memolition com

Polarization theorem

Theorem
The bit-channel capacities $\left\{C\left(W_{i}\right)\right\}$ polarize: for any $\delta \in(0,1)$, as the construction size N grows

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)>1-\delta}{N}\right] \rightarrow C(W)
$$

and

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)<\delta}{N}\right] \longrightarrow 1-C(W)
$$

Freezing noisy channels

Freezing noisy channels

Freezing noisy channels

Encoding

Polarization of general channels

$$
\begin{aligned}
W^{-}\left(Y_{1}, Y_{2} \mid U_{1}\right) & =\frac{1}{2} \sum_{u_{2}} W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
W^{+}\left(Y_{1}, Y_{2}, U_{1} \mid U_{2}\right) & =\frac{1}{2} W_{1}\left(y_{1} \mid u_{1}+u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right)
\end{aligned}
$$

Polarization of general channels

$$
\begin{gathered}
W^{-}\left(Y_{1}, Y_{2} \mid U_{1}\right)=\frac{1}{2} \sum_{u_{2}} W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
W^{+}\left(Y_{1}, Y_{2}, U_{1} \mid U_{2}\right)=\frac{1}{2} W_{1}\left(y_{1} \mid u_{1}+u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
I\left(W^{-}\right)+I\left(W^{+}\right)=I(W)+I(W)=2 I(W)
\end{gathered}
$$

Polarization of general channels

$$
\begin{gathered}
W^{-}\left(Y_{1}, Y_{2} \mid U_{1}\right)=\frac{1}{2} \sum_{u_{2}} W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
W^{+}\left(Y_{1}, Y_{2}, U_{1} \mid U_{2}\right)=\frac{1}{2} W_{1}\left(y_{1} \mid u_{1}+u_{2}\right) W_{2}\left(y_{2} \mid u_{2}\right) \\
I\left(W^{-}\right)+I\left(W^{+}\right)=I(W)+I(W)=2 I(W)
\end{gathered}
$$

- Mrs Gerber's Lemma: If $I(W)=1-\mathcal{H}(p)$, then $I\left(W^{+}\right)-I\left(W^{-1}\right) \geq 2 \mathcal{H}(2 p(1-p))-\mathcal{H}(p)$

General Polar Construction

General Polar Construction

- Begin with N copies of W,
- use a 1-1 mapping

$$
G_{N}:\{0,1\}^{N} \rightarrow\{0,1\}^{N}
$$

- to create a vector channel

$$
W_{\text {vec }}: U^{N} \rightarrow Y^{N}
$$

General Polar Construction

Splitting

$$
\begin{aligned}
C\left(W_{\text {vec }}\right) & =I\left(U^{N} ; Y^{N}\right) \\
& =\sum_{i=1}^{N} I\left(U_{i} ; Y^{N}, U^{i-1}\right) \\
& =\sum_{i=1}^{N} C\left(W_{i}\right)
\end{aligned}
$$

Define bit-channels

$$
W_{i}: U_{i} \rightarrow\left(Y^{N}, U^{i-1}\right)
$$

Successive Cancellation Decoder

Successive Cancellation Decoder

First phase: treat a as noise, decode $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$

Successive Cancellation Decoder

End of first phase

Successive Cancellation Decoder

Second phase: Treat $\hat{\mathbf{b}}$ as known, decode $\left(u_{5}, u_{6}, u_{7}, u_{8}\right.$

Successive Cancellation Decoder

First phase in detail

Successive Cancellation Decoder

Equivalent channel model

Successive Cancellation Decoder

First copy of W^{-}

Successive Cancellation Decoder

Second copy of W^{-}

Successive Cancellation Decoder

Third copy of W^{-}

Successive Cancellation Decoder

Fourth copy of W^{-}

Successive Cancellation Decoder

Decoding on W^{---}

Compute

$$
L^{---} \triangleq \frac{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=0\right)}{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=1\right)}
$$

Set

$$
\hat{u}_{1}= \begin{cases}u_{1} & \text { if } u_{1} \text { is frozen } \\ 0 & \text { else if } L^{---}>0 \\ 1 & \text { else }\end{cases}
$$

Successive Cancellation Decoder

Decoding on W^{--+}

Successive Cancellation Decoder

Decoding on W^{--+}

Compute

$$
L^{--+} \triangleq \frac{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=0\right)}{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=1\right)}
$$

Set

$$
\hat{u}_{2}= \begin{cases}u_{2} & \text { if } u_{2} \text { is frozen } \\ 0 & \text { else if } L^{--+}>0 \\ 1 & \text { else }\end{cases}
$$

Polar Coding Theorem

Theorem

For any rate $R<I(W)$ and block-length N, the probability of frame error for polar codes under successive cancelation decoding is bounded as

$$
P_{e}(N, R)=o\left(2^{-\sqrt{N}+o(\sqrt{N})}\right)
$$

Improved decoders

- List decoder (Tal and Vardy, 2011)

First produce L candidate decisions Pick the most likely word from the list Complexity $O(L N \log N)$

List decoder

$$
\begin{aligned}
& \because L=1 \\
& \because L=2 \\
& \because L=4 \\
& \hdashline L=8 \\
& \hdashline L=16 \\
& \because L=32 \\
& \rightarrow-\text { ML bound }
\end{aligned}
$$

Polar Coding Summary

Summary

Given $W, N=2^{n}$, and $R<I(W)$, a polar code can be constructed such that it has

- construction complexity $\mathcal{O}(N$ poly $(\log (N)))$,
- encoding complexity $\approx N \log N$,
- successive-cancellation decoding complexity $\approx N \log N$,

5G Communications

- The jump from 4G to 5G is far larger than any previous jumps-from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by 2025

5G Communications

- The jump from 4G to 5 G is far larger than any previous jumps-from 2G to 3 G ; 3 G to 4 G
- The global 5G market is expected reach a value of 251 Bn by 2025
- In 2016, 27 Gbps downlink speed was reached using Polar Codes!
- Current LTE download speed is $\mathbf{5 - 1 2} \mathbf{~ M b p s}$

5G Communications

- The jump from 4G to 5G is far larger than any previous jumps-from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by 2025
- In 2016, 27 Gbps downlink speed was reached using Polar Codes!
- Current LTE download speed is $\mathbf{5 - 1 2} \mathbf{~ M b p s}$
- In November 2016, 3GPP agreed to adopt Polar codes for control channels in 5G. LDPC codes will also be used in data channels.

References

- E. Arikan, Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE IT, 2009
- E. Arikan, Polar Coding Tutorial, Simons Institute, UC Berkeley, 2015
- B.C. Geiger, The Fractality of Polar and Reed-Muller Codes, Entropy, 2018

