
Information Theory meets Machine Learning

Kedar Tatwawadi

EE376a Course

Table of contents

1. Introduction

2. Unsupervised Learning

3. Learning Data Distribution

4. ML for Lossy Compression

1

Introduction

ML and IT

ML/Statistics & Information theory are two sides of the same coin!

Figure 1: ML and IT

2

A short (very) intro to ML

Figure 2: ML zoo

3

A short (very) intro to ML

Figure 3: ML Zoo

4

A short (very) intro to ML

Figure 4: ML Zoo

5

Supervised Learning

Given data tuples (X1, y1), (X2, y2), . . . , (XN , yN), find a function F such

that:

F (X) = y

6

Supervised Learning

Given data tuples (X1, y1), (X2, y2), . . . , (XN , yN), find a function F such

that:

F (X) = y

6

Supervised Learning

Given data tuples (X1, y1), (X2, y2), . . . , (XN , yN), find a function F such

that:

F (X) = y

6

Supervised Learning

1. What is the function F?

2. SVM, ConvNet, Recurrent Neural Network, Decision Tree ...

Take CS229, CS231n courses!

7

Supervised Learning

1. What is the function F?

2. SVM, ConvNet, Recurrent Neural Network, Decision Tree ...

Take CS229, CS231n courses!

7

A short (very) intro to ML

Figure 5: ML Zoo

8

A short (very) intro to ML

Figure 6: ML Zoo

9

Unsupervised Learning

Unsupervised Learning

Given data: X1,X2,X3, . . . ,XN

”Learn” something useful about X

1. Clustering

2. Data Representation

3. Distribution of the data

10

Clustering

Figure 7: Clustering
11

Data Representation

Figure 8: Word2Vec Representation

12

Data Representation

Figure 9: DCGAN Image Latent Representation

13

Learning Data Distribution

Learning the distribution

”Learn” the underlying Distribution of the data

Given data: X (1),X (2), . . . ,X (N) with distribution pX (X), How do we

learn pX (X)?

Use cases

1. Sampling

2. Prediction

3. De-noising

4. Compression

14

Learning the distribution

”Learn” the underlying Distribution of the data

Given data: X (1),X (2), . . . ,X (N) with distribution pX (X), How do we

learn pX (X)?

Use cases

1. Sampling

2. Prediction

3. De-noising

4. Compression

14

Sampling

15

Prediction

16

Denoising

17

Learning the distribution

”Learn” the underlying Distribution of the data

1. Sampling

2. Prediction

3. De-noising

4. Compression

18

Learning the distribution

Data: X (1),X (2), . . . ,X (N) i.i.d (independent and identically distributed)

with distribution pX (X)

• Xi ∈ X
• Potentially |X | can be high

How do we learn pX (X)?

• We can use the Log-loss (Cross-entropy loss) to learn pX (X)

pX = argmin
q(X)

EpX log
1

q(X)
(1)

19

Learning the distribution

Data: X (1),X (2), . . . ,X (N) i.i.d (independent and identically distributed)

with distribution pX (X)

• Xi ∈ X
• Potentially |X | can be high

How do we learn pX (X)?

• We can use the Log-loss (Cross-entropy loss) to learn pX (X)

pX = argmin
q(X)

EpX log
1

q(X)
(1)

19

Learning the distribution

Data: X (1),X (2), . . . ,X (N) i.i.d (independent and identically distributed)

with distribution pX (X)

• Xi ∈ X
• Potentially |X | can be high

How do we learn pX (X)?

• We can use the Log-loss (Cross-entropy loss) to learn pX (X)

pX = argmin
q(X)

EpX log
1

q(X)
(1)

19

Learning the distribution

Data: X (1),X (2), . . . ,X (N) with distribution pX (X)

EpX log
1

q(X)
=
∑
x∈X

p(x) log
1

q(x)

=
∑
x∈X

p(x) log
1

p(x)

p(x)

q(x)

=
∑
x∈X

p(x) log
1

p(x)
+
∑
x∈X

p(x) log
p(x)

q(x)

= Hp(X) + DKL(pX ||q)

pX = argmin
q(X)

EpX log
1

q(X)

20

Learning the distribution

Data: X (1),X (2), . . . ,X (N) with distribution pX (X)

EpX log
1

q(X)
=
∑
x∈X

p(x) log
1

q(x)

=
∑
x∈X

p(x) log
1

p(x)

p(x)

q(x)

=
∑
x∈X

p(x) log
1

p(x)
+
∑
x∈X

p(x) log
p(x)

q(x)

= Hp(X) + DKL(pX ||q)

pX = argmin
q(X)

EpX log
1

q(X)

20

Learning the distribution

pX = argmin
q(X)

EpX log
1

q(X)

• In practice we consider empirical expectation instead:

argmin
q(X)

EpX log
1

q(X)
≈ argmin

q(X)

1

N

N∑
i=1

log
1

q(X (i))

21

Learning the distribution

• In practice we consider empirical expectation instead:

argmin
q(X)

1

N

N∑
i=1

log
1

q(X (i))
= argmin

q(X)

1

N
log

1

q(X1)q(X2) . . . q(XN)

= argmin
q(X)

∑
x∈X

nx
N

log
1

q(x)

= argmin
q(X)

Ep̂X log
1

q(x)

22

Learning the distribution

argmin
q(X)

1

N

N∑
i=1

log
1

q(X (i))
= argmin

q(X)

Ep̂X log
1

q(x)

= p̂X (x) =
nx
N

• When X = (Y1,Y2, . . . ,Yd), |X | = kd

• For high |X |, p̂X is not useful!

• We need more data, or ... some regularization.

23

Learning the distribution

argmin
q(X)

1

N

N∑
i=1

log
1

q(X (i))
= argmin

q(X)

Ep̂X log
1

q(x)

= p̂X (x) =
nx
N

• When X = (Y1,Y2, . . . ,Yd), |X | = kd

• For high |X |, p̂X is not useful!

• We need more data, or ... some regularization.

23

Learning the distribution

argmin
q(X)

1

N

N∑
i=1

log
1

q(X (i))
= argmin

q(X)

Ep̂X log
1

q(x)

= p̂X (x) =
nx
N

• When X = (Y1,Y2, . . . ,Yd), |X | = kd

• For high |X |, p̂X is not useful!

• We need more data, or ... some regularization.

23

Data Example

• X = (Y1,Y2, . . . ,Yd), |X | = kd , N ≈ number of dimensions.

24

Regularization

argmin
q(X)

EpX log
1

q(x)
= argmin

q(X)

Ep̂X log
1

q(x)

≈ argmin
q(X)∈Q

Ep̂X log
1

q(x)

• q(X) = q(Y1,Y2, . . . ,Yd) =

q1(Y1)q2(Y2|Y1)q3(Y3|Y2,Y1) . . . qd(Yd |Y1, . . . ,Yd−1)

• Q restricts some distributions

e.g.: q(Y1,Y2, . . . ,Yd) = q1(Y1)q2(Y2)q3(Y3) . . . qd(Yd)

25

QI independent distributions

• QI restricts the distribution over the d dimensions to be independent

e.g.: q(Y1,Y2, . . . ,Yd) = q1(Y1)q2(Y2)q3(Y3) . . . qd(Yd)

argmin
q(X)∈QI

Ep̂X log
1

q(x)
= (q̂1(y1), . . . , q̂d(yd))

• q(Y1,Y2, . . . ,Yd) = q̂1(y1)q̂2(y2) . . . q̂d(yd)

is not very useful for the tabular dataset

26

Tabular Example

27

Tree-based distributions

• We restrict distributions to T :

e.g.: T = {q|q(Y1,Y2, . . . ,Yd) =

q1(Y1)q2(Y2|Yi2)q3(Y3|Yi3) . . . qd(Yd |Yid)}

• For every Yi , we allow dependence on one of the other variables

Yij , ij < i

• This exactly corresponds to a ”tree distribution”

28

Tree-based distributions

• We restrict distributions to T :

e.g.: T = {q|q(Y1,Y2, . . . ,Yd) =

q1(Y1)q2(Y2|Yi2)q3(Y3|Yi3) . . . qd(Yd |Yid)}
• For every Yi , we allow dependence on one of the other variables

Yij , ij < i

• This exactly corresponds to a ”tree distribution”

28

Tree-based distributions

• We restrict distributions to T :

e.g.: T = {q|q(Y1,Y2, . . . ,Yd) =

q1(Y1)q2(Y2|Yi2)q3(Y3|Yi3) . . . qd(Yd |Yid)}
• For every Yi , we allow dependence on one of the other variables

Yij , ij < i

• This exactly corresponds to a ”tree distribution”

28

Tree-based distributions — Examples

• Example tree distribution:

q(Y1,Y2, . . . ,Y5) = q1(Y1)q2(Y2|Y1)q3(Y3|Y1)q4(Y4|Y2)q5(Y5|Y2)

Figure 10: Graph example

29

Tree-based distributions — Examples

• Example tree distribution:

q(Y1,Y2,Y3) = q1(Y1)q2(Y2|Y1)q3(Y3|Y2)

Figure 11: Graph example

30

Tree-based distributions

Figure 12: Graph example

• Tree distributions are practical! No of parameters = dk2

• Sampling is easy (in a breadth-first search order):

Y1 → Y2 → Y3 → Y4 → Y5

31

Tree-based distributions

Figure 12: Graph example

• Tree distributions are practical! No of parameters = dk2

• Sampling is easy (in a breadth-first search order):

Y1 → Y2 → Y3 → Y4 → Y5 31

Tree-based distributions

• Can be used for compression, using Arithmetic coding:

• q(Y1,Y2, . . . ,Y5) = q1(Y1)q2(Y2|Y1)q3(Y3|Y1)q4(Y4|Y2)q5(Y5|Y2)

Figure 13: HW3 Q3(f)

32

Chow-Liu Tree Algorithm

• Let Î (Yi ;Yj) be the mutual information computed using the

”empirical” distribution: p̂X (X) = p̂X (Y1,Y2, . . . ,Yd)

The best tree graph representing the data can be found by:

G = argmax
∑

edges(i,j)

Î (Yi ;Yj) (2)

• Intuition:: Add edges which have ”high’ correlation.

33

Chow-Liu Tree Algorithm

• Let Î (Yi ;Yj) be the mutual information computed using the

”empirical” distribution: p̂X (X) = p̂X (Y1,Y2, . . . ,Yd)

The best tree graph representing the data can be found by:

G = argmax
∑

edges(i,j)

Î (Yi ;Yj) (2)

• Intuition:: Add edges which have ”high’ correlation.

33

Data Example

• X = (Y1,Y2, . . . ,Yd), |X | = kd , N ≈ number of dimensions.

34

Data Example

35

Chow-Liu Tree Algorithm

• Let Î (Yi ;Yj) be the mutual information computed using the

”empirical” distribution: p̂X (X) = p̂X (Y1,Y2, . . . ,Yd)

The best tree graph representing the data can be found by:

G = argmax
∑

edges(i,j)

Î (Yi ;Yj) (3)

• Intuition:: Add edges which have ”high’ correlation.

• We will proove this in the class!

36

Practical Considerations

• Exaustive search over all trees is not possible, use O(d log d)

algorithm such as Kruskal’s or Prim’s algorithm

• Need to compute O(d2) mutual informations, which is the more

costly part

37

Practical Considerations

• Exaustive search over all trees is not possible, use O(d log d)

algorithm such as Kruskal’s or Prim’s algorithm

• Need to compute O(d2) mutual informations, which is the more

costly part

37

Practical Considerations

•
G = argmax

∑
edges(i,j)

Î (Yi ;Yj) (4)

G is a solution to the problem:

argmin
q(X)

Ep̂X log
1

q(x)
≈ argmin

q(X)

EpX log
1

q(x)

and thus ”approximates” p̂X (X).

• We really want to solve the problem:

argmax
∑

edges(i,j)

I (Yi ;Yj)

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

38

Practical Considerations

•
G = argmax

∑
edges(i,j)

Î (Yi ;Yj) (4)

G is a solution to the problem:

argmin
q(X)

Ep̂X log
1

q(x)
≈ argmin

q(X)

EpX log
1

q(x)

and thus ”approximates” p̂X (X).

• We really want to solve the problem:

argmax
∑

edges(i,j)

I (Yi ;Yj)

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

38

Practical Considerations

•
G = argmax

∑
edges(i,j)

Î (Yi ;Yj) (4)

G is a solution to the problem:

argmin
q(X)

Ep̂X log
1

q(x)
≈ argmin

q(X)

EpX log
1

q(x)

and thus ”approximates” p̂X (X).

• We really want to solve the problem:

argmax
∑

edges(i,j)

I (Yi ;Yj)

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

38

Practical Considerations

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

39

Practical Considerations

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

40

Practical Considerations

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

41

Practical Considerations

• Using N samples we can have better estimators for I (Yi ,Yj) than

the empirical plug-in estimator Î (Yi ,Yj)

• Information theory helps us get better estimators!

42

Practical Considerations

• When we solve the optimization problem, we are not penalizing

model complexity:

G = argmax
∑

edges(i,j)

Î (Yi ;Yj) (5)

G is a solution to the problem:

• Practically this is important. For example in compression, we also

need space to store the distributions p̂(Yi |Jj) themselves! (along

with arithmetic coding).

• The BIC Criteria (Bayesian Information Criteria), alters the

optimization by adding a penalty function for model complexity

argmax
∑

edges(i,j)

(
Î (Yi ;Yj) +

1

2
logN|Yi ||Yj |

)

43

Practical Considerations

• When we solve the optimization problem, we are not penalizing

model complexity:

G = argmax
∑

edges(i,j)

Î (Yi ;Yj) (5)

G is a solution to the problem:

• Practically this is important. For example in compression, we also

need space to store the distributions p̂(Yi |Jj) themselves! (along

with arithmetic coding).

• The BIC Criteria (Bayesian Information Criteria), alters the

optimization by adding a penalty function for model complexity

argmax
∑

edges(i,j)

(
Î (Yi ;Yj) +

1

2
logN|Yi ||Yj |

)
43

General Bayesian Networks

44

Chow-Liu Algorithm for Bayesian Networks

• Let Î (Yi ;Yj) be the mutual information computed using the

”empirical” distributions.

For general bayesian networks:

G = argmax
∑

edges(i,j)

Î (Yi ;Yj) (6)

• Chow-liu algorithm for Bayesian networks is an approximation based

on the intuition for tree-based algorithms

• Exact solutions no more possible. Apply heuristic greedy schemes

45

Learning Distributions — Language model

Figure 14: Slides borrowed from CS224n lecture, Jan 22

46

Learning Distributions — Language model

Figure 15: Slides borrowed from CS224n lecture, Jan 22

47

Learning Distributions — Language model

Figure 16: Slides borrowed from CS224n lecture, Jan 22

48

Learning Distributions — Language model

Figure 17: Slides borrowed from CS224n lecture, Jan 22

49

Learning Distributions — Language model

Figure 18: Slides borrowed from CS224n lecture, Jan 22
50

Learning Distributions — Language model

Figure 19: Slides borrowed from CS224n lecture, Jan 22 51

Learning Distributions — Language model

Figure 20: Slides borrowed from CS224n lecture, Jan 22

52

Learning Distributions — Language model

Figure 21: Slides borrowed from CS224n lecture, Jan 22
53

Learning Distributions — Language model

Figure 22: Slides borrowed from CS224n lecture, Jan 22
54

Learning Distributions — Language model

Figure 23: Slides borrowed from CS224n lecture, Jan 22

55

Learning Distributions — Language model

Figure 24: DeepZip Language compressor based on Language models

56

ML for Lossy Compression

Representation learning for Compression

• More recently, ML is being used for lossy compression of data

• Why use ML?

1. Unclear, high-dimensional data models. Eg: natural images.

2. Unclear Loss functions for lossy compression

3. EG: Image Compression → ”Human perception loss”

57

Representation learning for Compression

• More recently, ML is being used for lossy compression of data

• Why use ML?

1. Unclear, high-dimensional data models. Eg: natural images.

2. Unclear Loss functions for lossy compression

3. EG: Image Compression → ”Human perception loss”

57

ML for Compressionl

Figure 25: Waveone image compression using neural networks 58

ML for Compressionl

Figure 26: Waveone image compression using neural networks 59

ICLR Compression Contest

Figure 27: More details: https://www.compression.cc

60

ML for Compression

• Lots of very different types of techniques used. The core idea is:

1. Learn a ”smooth” representation for the Image

2. Quantize the representation

3. Entropy coding of the representation

• The ”smoothness” of the representation is the key to good lossy

compression.

• Different techniques used for compression: Autoencoders, VAE,

GANs

61

ML for Compression

• Lots of very different types of techniques used. The core idea is:

1. Learn a ”smooth” representation for the Image

2. Quantize the representation

3. Entropy coding of the representation

• The ”smoothness” of the representation is the key to good lossy

compression.

• Different techniques used for compression: Autoencoders, VAE,

GANs

61

ML for Compression

Some notable papers:

• Toderici, George, et al. ”Full resolution image compression with

recurrent neural networks.” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2017.

Figure 28: Compression over multiple iterations

62

ML for Compression

Some notable papers:

• Rippel et.al, ”Real-time adaptive Image compression” ICML’17

Proceedings

Figure 29: Using a GAN based loss

63

ML for Channel Coding

Figure 30: Using a RNN for channel coding

64

ML for Channel Coding

Figure 31: Using a RNN for channel coding

65

ML for Channel Coding

Figure 32: Using a RNN for channel coding

66

ML for Joint Source-Channel Coding

Figure 33: NECST: Neural Joint Source-Channel Code, Choi et.al. arxiv

67

Conclusion?

ML/Statistics & Information theory are two sides of the same coin!

Figure 34: ML and IT

68

Thank You!

68

	Introduction
	Unsupervised Learning
	Learning Data Distribution
	ML for Lossy Compression

