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Introduction



ML and IT

ML /Statistics & Information theory are two sides of the same coin!

Information Theory Machine Learning

1. Theoretical
Understanding

2. Guides the
intuition

1. Algorithmic issues
at the forefront

2. “Learning” stuff
given data

Figure 1: ML and IT



A short (very) intro to ML

Machine Learning

Figure 2: ML zoo



A short (very) intro to ML
—[ Unsupervised Learning J

Machine Learning

—[ Supervised Learning ]

Figure 3: ML Zoo




A short (very) intro to ML

UNSUPERVISED MACHINE LEARNING  SUPERVISED MACRINE LEARNING

SY3L0GSPOT.CA

TROOITAEADERSWHIM

Figure 4: ML Zoo



Supervised Learning

Given data tuples (X1, 1), (X2,¥2),- .., (Xn, yn), find a function F such
that:



Supervised Learning

Given data tuples (X1, 1), (X2,¥2),- .., (Xn, yn), find a function F such
that:
F(X)=y



Supervised Learning

Given data tuples (X1, 1), (X2,¥2),- .., (Xn, yn), find a function F such
that:
F(X)=y

Classification Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK  CAT, DOG, DUCK



Supervised Learning

1. What is the function F?
2. SVM, ConvNet, Recurrent Neural Network, Decision Tree ...



Supervised Learning

1. What is the function F?
2. SVM, ConvNet, Recurrent Neural Network, Decision Tree ...

Take C€S229, CS231n courses!



A short (very) intro to ML
—[ Unupervised Learning ]

Machine Learning

—[ Supervised Learning ]

Given data and labels: (X1, ¥1), (X2, ¥2), ..., Xn, Yn)
“Learn” the function F(X) = y:-

Figure 5: ML Zoo



A short (very) intro to ML

—[ Unsupervised Learning ]

Given data: X4, X», ..., Xy
“Learn” something useful about

——[ Supervised Learning ]

Given data and labels: (X;,y1), (Xz,yz) S Xnyn)
“Learn” the function F(X) = y:=

Machine Learning

Figure 6: ML Zoo



Unsupervised Learning



Unsupervised Learning

Given data: Xy, X5, X3,..., Xy
"Learn" something useful about X

1. Clustering
2. Data Representation

3. Distribution of the data

10



Clustering

Input data

@

Annotations

These are
apples

Input data

supervised learning

Model

@7

unsupervised learning

Model

Prediction

ltsan
apple!

XX XN

Figure 7: Clustering
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Data Representation

Male-Female

walked

walking

swimming

Verb tense

spain \
Italy \HAdz id
Rome

Germany —
Berlin
Turkey —_—
Ankara

Russia ——0
Moscow
Canada Ottawa

Japan ———
P Tokyo
vietnam ———— Hanoi

China ————————— Beijing

Country-Capital

Figure 8: Word2Vec Representation
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Data Representation

man mal woman
with glasses without glasses without glasses

- + \ o= 3 Results of doing the same
. k] arithmetic in pixel space
- A P P

13



Learning Data Distribution



Learning the distribution

"Learn” the underlying Distribution of the data
Given data: X1, X®) . XN) with distribution px(X), How do we
learn px(X)?

14



Learning the distribution

"Learn” the underlying Distribution of the data
Given data: X1, X®) . XN) with distribution px(X), How do we
learn px(X)?

Use cases

1. Sampling
2. Prediction
3. De-noising

4. Compression

14



Sampling

15



Prediction

Google

how fo

how to train your dragon
how to screenshot on mac
how fo tie a tie

how to make slime

how to draw

how to lose weight

how to write a check

how to screenshot

how to boil eggs

how to make french toast

Google Search I'm Feeling Lucky

Report inappropriate predictions

16



Denoising

17



Learning the distribution

"Learn” the underlying Distribution of the data

1. Sampling
2. Prediction
3. De-noising
4

. Compression

18



Learning the distribution

Data: XM, X® .. X(N)iid (independent and identically distributed)
with distribution px(X)

e X;ce X
e Potentially |X| can be high

19



Learning the distribution

Data: XM, X® .. X(N)iid (independent and identically distributed)
with distribution px(X)

e X;ce X
e Potentially |X| can be high

How do we learn px(X)?

19



Learning the distribution

Data: XM, X® .. X(N)iid (independent and identically distributed)
with distribution px(X)

e X;ce X
e Potentially |X| can be high

How do we learn px(X)?

e We can use the Log-loss (Cross-entropy loss) to learn px(X)

1
px = argminE,, log —— (1)
a(X) P a(X)

19



Learning the distribution

Data: XM, X®) . X(N) with distribution px (X)

_ L@
X;( ( q(x)
P(x)
= XGZX ) log ﬁ + 2 p(x) log m

= Hp(X) + Dku(px|lq)

20



Learning the distribution

Data: XM, X®) . X(N) with distribution px (X)

=3 plx |og—+z i
ex

= Hp(X) + Dku(px|lq)

1

px = argminE, log ——
P q(X)

q(X)

20



Learning the distribution

p argmin E,, log 1
= T
q(X) P q(X)

e In practice we consider empirical expectation instead:

N 1

1 1
argmin E,, log —— ~ argmin — log ———~
a) o aX) e N ; q(X")

21



Learning the distribution

e |n practice we consider empirical expectation instead:

argmln Zlg = argmin — Iog !
ax) N 7 a(X)q(X2). .. a(Xn)

ke 1
=argmmz%'ogr(x>

q(X) XEX

= argmin E;, log ——
a(X) P q(x)

22



Learning the distribution

23



Learning the distribution

e When X = (Yl, YQ.,..., Yd), |X| = kd
e For high |X|, px is not useful!

23



Learning the distribution

e When X = (Yl, YQ.,..., Yd), |X| = kd
e For high |X|, px is not useful!

e We need more data, or ... some regularization.

23



Data Example

F features

UserID Age Locatio Device Time DocID
%)
'E 4324234 25 90210 iPhone 7 9pm 33221
o
(8] 1223231 49 94087 iPad pro 10am 66543
g
<

o X =(Y1,Ys,...,Yy), |X| = k?, N = number of dimensions.

24



Regularization

1
argmin E,, log —— = argmin E;, log ——
ax)  alx) x0T ax)

~ argmin Eg, log —

q(X)eQ q(x)

) q(X) =S q(yl, Y27. o509 Yd) =
q1(Y1)a2(Y2| Y1) a3(Ya| Y2, Y1) ... qa(Ya| Y1, ..., Ya—1)

e Q@ restricts some distributions
eg.: q(Y1, Yz, ..., Ya) = q1(Y1)q2(Y2)q3(Y3) - - - qa(Ya)

25



Q, independent distributions

e (@ restricts the distribution over the d dimensions to be independent
eg: q(Y1, Y2, .., Ya) = q1(Y1)q2(Y2)q3(Y3) - . . qa(Ya)

1
argmin Ep, log —— = (G1(v1),-- -, Ga(va))
aeq o a(x)

e q(Y1,Y2,..., Ya) = G1(y1)G2(y2) - - - Ga(ya)
is not very useful for the tabular dataset

26



Tabular Example

F features

UserID Age Locatio Device Time DocID
%)
'E 4324234 25 90210 iPhone 7 9pm 33221
o
(8] 1223231 49 94087 iPad pro 10am 66543
g
<

27



Tree-based distributions

e We restrict distributions to 7 :
eg: T =1{qlg(Y1,Yo,...,Ya) =
q1(Y1)q2(Y2|Y;,)as(Ya| Ys) - - - qa(Yal Yi,)}

28



Tree-based distributions

e We restrict distributions to 7
eg: T ={qlq(Y1, Ya,...,Yy) =
q1(Y1)q2(Y2|Yi)as(Y3|Ys) - . qa(Yal Vi) }
e For every Y, we allow dependence on one of the other variables

Y i <i

J

28



Tree-based distributions

e We restrict distributions to 7 :
eg: T =1{qlg(Y1,Yo,...,Ya) =
q1(Y1)q2(Y2|Y;,)as(Ya| Ys) - - - qa(Yal Yi,)}

e For every Y, we allow dependence on one of the other variables
Y i <

J

e This exactly corresponds to a "tree distribution”

28



Tree-based distributions — Examples

e Example tree distribution:
qa(Y1, Y2, ..., Ys) = qi(Y1)q2(Y2| Y1) q3(Y3| Y1) qa(Ya| Y2)g5( V5| Y2)

q: (1)

qs(r31y1)

42 (21y1)

qa(aly2) qss1y2)

29



Tree-based distributions — Examples

e Example tree distribution:
q(Y1, Y2, Y3) = q1(Y1)q2(Y2| Y1)q3(Y3| Y2)

q1(71) q2(¥21y1) q3(v3ly2)

Figure 11: Graph example

30



Tree-based distributions

(1)

b

2:(y2 Iyl)/

4

/¢°

44(Valy2) / \Is(ysb’z)
/

/ h

Figure 12: Graph example

93(y3ly1)

e Tree distributions are practicall No of parameters = dk?

31



Tree-based distributions

(1)

b

2:(y2 Iyl)/

4

/¢°

44(Valy2) / \Is(ysb’z)
/

/ h

Figure 12: Graph example

93(y3ly1)

e Tree distributions are practicall No of parameters = dk?
e Sampling is easy (in a breadth-first search order):
YiI=-Yo—=>Ys—>Y,— Ys 31



Tree-based d butions

e Can be used for compression, using Arithmetic coding:
e q(Y1,Y2,..-, Ys) = q1(Y1)q2(Y2| Y1) q3( V3| Y1)qa(Ya| Y2)qs5( V5| Y2)

(f) Suppose both the encoder and the decoder have a prediction algorithm (say a
neural network) that provides probabilities g;(z|z*~*) for all i’s and all z € X.
How would you modify the scheme such that you achieve

1
I(z") <o +1
S o PR PPN BPR A Pl
Thus, if you have a prediction model for your data, you can apply arithmetic
coding on it - high probability translating to short compressed representations.

Figure 13: HW3 Q3(f)

32



Chow-Liu Tree Algorithm

e Let /(Y;;Y;) be the mutual information computed using the
"empirical” distribution: px(X) = px(Y1, Ya,..., Ya)
The best tree graph representing the data can be found by:

G = argmax Z i(Y,-; Yi) (2)
edges(i,j)

33



Chow-Liu Tree Algorithm

e Let /(Y;;Y;) be the mutual information computed using the
"empirical” distribution: px(X) = px(Y1, Ya,..., Ya)
The best tree graph representing the data can be found by:

G = argmax Z (Y ;) (2)
edges(i,j)

e Intuition:: Add edges which have "high" correlation.

33



Data Example

F features

UserID Age Locatio Device Time DocID
%)
'E 4324234 25 90210 iPhone 7 9pm 33221
o
(8] 1223231 49 94087 iPad pro 10am 66543
g
<

o X =(Y1,Ys,...,Yy), |X| = k?, N = number of dimensions.
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feature j

Empirical mutual information
Compression forest T*

1
2
: B ol W
4
& ~
< (%) >
6 86".
. 021 z
7
8
9

=
5]

.,11‘ &
feature i .
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Chow-Liu Tree Algorithm

e Let /(Y;; Y}) be the mutual information computed using the
"empirical” distribution: px(X) = px(Y1, Ya2,..., Ya)
The best tree graph representing the data can be found by:

G = argmax Z Yii Y;) (3)

edges(i _j)

e Intuition:: Add edges which have "high' correlation.

e We will proove this in the class!

36



Practical Considerations

Empirical mutual information
Compression forest T

o @mozs ‘ ’
% >
Yo S
6 86 —‘.
@ 021 2
g %

o, : N
2 \d,\‘ \
" &
123455739100.—7-ﬂ N
feature i

feature j

e Exaustive search over all trees is not possible, use O(d log d)
algorithm such as Kruskal's or Prim’s algorithm
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Practical Considerations

Empirical mutual information

» Compression forest T*

10 ‘ 929 ‘{) N’

8
W
60 86
® o :
4
32

g e

\J

feature j

0 1
1 2 3 456 7 8 910 .—7-X
feature i

e Exaustive search over all trees is not possible, use O(d log d)
algorithm such as Kruskal's or Prim’s algorithm

e Need to compute O(d?) mutual informations, which is the more

costly part

37



Practical Considerations

G=argmax Y I(Y;;Y)) (4)
edges(i.j)
G is a solution to the problem:
argmin Ez, log b ~ argmin E,, log b
q(X) q(x) q(X) q(x)

and thus "approximates” px(X).

38



Practical Considerations

G=argmax Y I(Y;;Y)) (4)
edges(i,j)

G is a solution to the problem:

1 1
argmin Ej5, log —— ~ argminE,, log ——
q(X) - q(x) q(X) P q(x)

and thus "approximates” px(X).

e We really want to solve the problem:

argmax Z (YY)
edges(i,j)

38



Practical Considerations

[ ]
G=argmax Y I(Y;;Y)) (4)
edges(i,j)
G is a solution to the problem:
inE;, | 1 inE,, |
argmin E;, log —— ~ argmin og ——
q(X) - q(x) q(X) P q(x)
and thus "approximates” px(X).
e We really want to solve the problem:
argmax Z (YY)
edges(i,j)
e Using N samples we can have better estimators for /( Y, Y;) than
the empirical plug-in estimator f(Y,-7 Y))

e Information theory helps us get better estimators!

38



Practical Considerations

e Using N samples we can have better estimators for /(Y;
the empirical plug-in estimator /( Y}, Y))
Information theory helps us get better estimators!

Tsachy (Itschak) The Jiao—Venkat—Han—Weissman

Weissman (JVHW) Shannon entropy, Renyi
e entropy, and mutual information
fLeeching estimator
Biography

Research =~ What is Shannon entropy, Renyi entropy, and
Books mutual information?
Papers The Shannon entropy, Renyi entropy, and mutual information are
Patents information theoretic measures that have far reaching applications in
Software and out of information theory.
Group
Sponsored Projects What can our software do?

Tl Our software comprises of MATLAB and Python 2.7(3) packages that
= can estimate the Shannon entropy of a discrete distribution from

Forum

independent identically distributed samples from this distribution, and
the mutual information between two discrete random variables from
samples. It also includes MATLAB packages that can estimate the
Renyi entropy of arbitrary positive orders of a discrete distribution
from independent identically distributed samples from this
distribution.

Stanford Compression Forum

For details about how it works, please refer to our paper 'Minimax
Estimation of Functionals of Discrete Distributions’,IEEE Transactions
on Information Theory, Vol.61, Issue 5, pp 2835-28835, May 2015. For
details about how to use it in Matlab or Python, please checkout our
Github repo below:

JVHW entropy and mutual information estimators Github code

JVHW Renyi entropy estimators Github code

Y;) than

39



Practical Considerations

e Using N samples we can have better estimators for /(Y;, Y;) than
the empirical plug-in estimator IA(Y,-7 Y;)
e Information theory helps us get better estimators!

%

08 ’I
08 '
1
07 !
Expected s i
wrong- . 'l
edges-ratio , 'i
1
o3 =47k
02 ] 4
[
01 1)
) . Yo
0 1 2 3 4 5 6
Sample size xo*

Setting: star graph, 7 nodes, each node alphabet size 300

40



Practical Considerations

e Using N samples we can have better estimators for /(Y;, Y;) than
the empirical plug-in estimator i(Y,-, Y;)

e Information theory helps us get better estimators!

1

N
09 — &~ Original CL *
—8— Modified CL !
08 !
1
07 1
Expected ;s i
wrong- e !l
edges-ratio ,, :
1 b
03 ~ 6k \ ~ k
02 // | 4
/ e
01 4 \/
0 - = =
0 1 2 3 4 5 3
Sample size o’

Setting: star graph, 7 nodes, each node alphabet size 300
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Practical Considerations

e Using N samples we can have better estimators for /( Y, Y;) than
the empirical plug-in estimator IA(Y;7 Y))

e Information theory helps us get better estimators!

09 _§
;
= ',
Fos '%
z ~ 22k ~1200k
3 / 05 T 75 _\“/
Alphabet size 300 Alphabet size 600
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Practical Considerations

e When we solve the optimization problem, we are not penalizing
model complexity:

G = argmax Z (v Y)) (5)
edges(i,j)

G is a solution to the problem:

e Practically this is important. For example in compression, we also
need space to store the distributions p(Y;|J;) themselves! (along
with arithmetic coding).

43



Practical Considerations

e When we solve the optimization problem, we are not penalizing
model complexity:

G = argmax Z (v Y)) (5)
edges(i,j)

G is a solution to the problem:

e Practically this is important. For example in compression, we also
need space to store the distributions p(Y;|J;) themselves! (along
with arithmetic coding).

e The BIC Criteria (Bayesian Information Criteria), alters the
optimization by adding a penalty function for model complexity

~ 1
argmax Z (/(Yi; Yi)+ 5 log N|yi||yj|>
edges(i.j)

43



General Bayesian Networks

d° | d' | I i)
0.6 0.4

i'd" 09 |0.08 50 ]!
ild" | o5 3 |02 %095 | 0.05
i'{o2 |08

0

ghor 09

22104 |06

g’ 0.99 | 0.01
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Chow-Liu Algorithm for Bayesian Networks

o Let f(Y,-; Y;) be the mutual information computed using the
"empirical” distributions.

For general bayesian networks:

G = argmax Z I(Yi; Y)) (6)
edges(i,j)

e Chow-liu algorithm for Bayesian networks is an approximation based

on the intuition for tree-based algorithms

e Exact solutions no more possible. Apply heuristic greedy schemes

45



Learning Distributions — Language model

* Language Modeling is the task of predicting what word comes

next. books
/ laptops
the students opened their —
\\ exams
minds
+ More formally: given a sequence of words =), 2. .. z®,

compute the probability distribution of the next word z(t*1 :
t+1 t 1
Pz 2® . 2M)
where z("*!) can be any word in the vocabulary V' = {w1, ..., w)y| }

e Asystem that does this is called a Language Model.

Figure 14: Slides borrowed from CS224n lecture, Jan 22
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Learning Distributions — Language model

Language Modeling

* You can also think of a Language Model as a system that
assigns probability to a piece of text.

* For example, if we have some text ("), ... (™), then the
probability of this text (according to the Language Model) is:

P®,.. ., 2™y = P(@®) x P@®| 2M) x ... x P@] TV, ... &)

T
= HP(‘”W‘ 2 a)
t=1

\ﬁf—j

This is what our LM provides

Figure 15: Slides borrowed from CS224n lecture, Jan 22
47



ributions — guage model

* First we make a simplifying assumption: (**1) depends only on the

preceding n-1 words.
n-1 words

P®D|e® 2y = Pt |g® | plt-nt2) (assumption)

prob of a n-gram
\.|P("”(t+1)’ LA 7:““7””))' (definition of

prob of a (n-1)-gram ——;"I P(z®,... zlt-—n+2) | conditional prob)

* Question: How do we get these n-gram and (n-1)-gram probabilities?
* Answer: By counting them in some large corpus of text!

~ count(a:(t*”, x(t)7 e 7w(f,—n+2)) (statistical
- count(z(®, ... xt-n+2)) approximation)

Figure 16: Slides borrowed from CS224n lecture, Jan 22
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Learning Distributions — Language model

Storage Problems with n-gram Language Models

Storage: Need to store count for
all n-grams you saw in the corpus.

count (students opened their w)|

P(w|students d their) =
(w]students opened their) count (students opened their)

Increasing n or increasing corpus
increases model size!

Figure 17: Slides borrowed from CS224n lecture, Jan 22
49



Learning Distributions — Language model

Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

Figure 18: Slides borrowed from CS224n lecture, Jan 22
50



ributions — Language model

g = P(z®|the students opened their)

A RNN Language Model books

laptops

RNN Advantages:

Can process any length
input

Computation for step t
can (in theory) use
information from many ) B2 R 3]
steps back (@) (@)
Model size doesn’t
increase for longer input
Same weights applied on
every timestep, so there is
symmetry in how inputs
are processed.

c

W W,

—>[oooo]€>[oooo
—>[oooo]§>[oooo
—{oooo}?[oooo

e®) e®)
RNN Disadvantages:
Recurrent computation is | More on \_T;‘ & B 5
slow these later )
In practice, difficult to in the thei’ students  opened their
access information from | course z z® x® z@

,many steps back

Figure 19: Slides borrowed from CS224n lecture, Jan 22 51



Training a RNN Language Model

» Get a big corpus of text which is a sequence of words =), ... z(™)

* Feed into RNN-LM; compute output distribution y( ) for every step t.
* i.e. predict probability dist of every word, given words so far

* Loss function on step t is cross-entropy between predicted probability
distribution ¢, and the true next word y*) (one-hot for z(*+1):

JO(0) = CB®,50) = = 3 4O logg® = —log g0,
weV

» Average this to get overall loss for entire training set:

1& 1 &
YOES= >0 (0) = = > —loggl),

t=1 t=1

Figure 20: Slides borrowed from CS224n lecture, Jan 22
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Learning Distributions — Language model

Evaluating Language Models

* The standard evaluation metric for Language Models is perplexity.

1/T
. 1 ~_
perplexity = H <PLM(:E(H'1)| o0, :1:(1))) Normalized by
t=1 number of words
\ J

~
Inverse probability of corpus, according to Language Model

* This is equal to the exponential of the cross-entropy loss J(6):

T T 1 T
=11 ( "0 ) =exp (TZ—IOgﬁS)H) — exp(J(0))

t=1 \Y=zi11 t=1

‘ Lower perplexity is better! ‘

41

Figure 21: Slides borrowed from CS224n lecture, Jan 22
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Learning Distributions — Language model

Why should we care about Language Modeling?

* Language Modeling is a benchmark task that helps us
measure our progress on understanding language

* Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

Predictive typing

Speech recognition
Handwriting recognition
Spelling/grammar correction
Authorship identification
Machine translation
Summarization

Dialogue

etc.

Figure 22: Slides borrowed from CS224n lecture, Jan 22 o



Learning Distributions — Language model

Obama-RNN — Machine generated
political speeches.

T

OQ  jun4,2015 - 8 min read

Figure 23: Slides borrowed from CS224n lecture, Jan 22
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Learning Distributions — Language model

DeepZip: Lossless Data Compression using
Recurrent Neural Networks

Mohit Goyal”, Kedar Tatwawadi*, Shubham Chandak* and Idoia Ochoa”

Unifarm NN NN
Distribution Predictor Predictor
Arithmetic Arithmetic

Encoder Encoder

Avrithmetic Compressed
kel -

N

'

a) Encoder Framework

Figure 24: DeepZip Language compressor based on Language models
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ML for Lossy Compression




Representation learning for Compression

e More recently, ML is being used for lossy compression of data
e Why use ML?

1. Unclear, high-dimensional data models. Eg: natural images.

57



Representation learning for Compression

e More recently, ML is being used for lossy compression of data
e Why use ML?

1. Unclear, high-dimensional data models. Eg: natural images.
2. Unclear Loss functions for lossy compression
3. EG: Image Compression — "Human perception loss”

57



ML for Compressionl

Extreme 2000:1 Compression of 512x512 Faces

JPEG* (398 bytes) JPEG 2000 (384 bytes) WebP (398 bytes)

BPG (389 bytes) WaveOne Faces (379 bytes) Original (786,432 bytes)

Figure 25: Waveone image compression using neural networks 58



ML for Compressionl

Extreme 2000:1 Compression of 512x512 Faces

JPEG* (330 bytes)

WebP (336 bytes)

BPG (337 bytes) WaveOne Faces (327 bytes) Original (786,432 bytes)

Figure 26: Waveone image compression using neural networks

59



ICLR Compression Contest

C L I C Workshop ~ Challenge  Leaderboard ~  Call for Papers  About

Workshop and Challenge on Learned Image Compression

News

Dec 18: The website of the 2019 edition of the workshop/challenge is online!
Jan 10: The evaluation server is online!

Jan 19: The leaderboard is up!

Feb 8: The prizes, of value more than 200008, have been announced!

Figure 27: More details: https://www.compression.cc
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ML for Compression

e Lots of very different types of techniques used. The core idea is:

1. Learn a "smooth" representation for the Image
2. Quantize the representation
3. Entropy coding of the representation

61



ML for Compression

e Lots of very different types of techniques used. The core idea is:

1. Learn a "smooth" representation for the Image
2. Quantize the representation
3. Entropy coding of the representation

e The "smoothness” of the representation is the key to good lossy
compression.

e Different techniques used for compression: Autoencoders, VAE,
GANs

61



ML for Compression

Some notable papers:

e Toderici, George, et al. "Full resolution image compression with
recurrent neural networks.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017.

Figure 28: Compression over multiple iterations
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ML for Compression

Some notable papers:

e Rippel et.al, "Real-time adaptive Image compression” ICML’'17
Proceedings

Reconstruction
= Bitstream S loss
— [ — () > oomem —> —> YOISSIS |
extraction v from features
Target \ Adaptive Reconstruction Discriminator
codelength [

regularization

The overall architecture of our model. The feature extractor discovers structure and reduces redundancy via the pyramidal

ion and i t modules. The lossless coding scheme further compresses the quantized tensor via
bitplane decomposition and adaptive arithmetic coding. The adaptive codelength regularization modulates the expected
length to a pr target bitrate. Distortions between the target and its reconstruction are penalized by the

reconstruction loss. The discriminator loss encourages visually pleasing reconstructions by penalizing discrepancies between

their distributions and the targets’

Figure 29: Using a GAN based loss
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ML for Channel Coding

Learning a code

for channels with feedback

Feedback

H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath, “Discovering feedback
codes via deep learning”, 2018

Figure 30: Using a RNN for channel coding
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ML for Channel Coding

« AWGN channel from transmitter to receiver

» Output fed back to the transmitter

A
b ecoder | /L ! b
Encoder X \-I-/ y @—»

Figure 31: Using a RNN for channel coding
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ML for Channel Coding

* Robust to noise in the feedback

BER

{[ == schalkwijk-Kailath
“ +—+ Chance-Love
|
i

s o—e Neural code
10 0 5 10 15 20

Feedback SNR (dB)
(Rate 1/3,50 bits, SNR = 0dB)

Figure 32: Using a RNN for channel coding
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ML for Joint Source-Channel Coding

7§~ qg(9lz) Y~ gpe(ylz)

of1|1]o|— [Pl | — n
channel model
T encoder decoder l

Figure 33: NECST: Neural Joint Source-Channel Code, Choi et.al. arxiv
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Conclusion?

ML /Statistics & Information theory are two sides of the same coin!

Information Theory Machine Learning

1‘
Y N
1. Theoretical O 1. Algorithmic issues
Understanding at the forefront
2. Guides the 2. “Learning” stuff
intuition given data

THIS IS TRUTH

Figure 34: ML and IT
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Thank You!
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