
EE376A - Information Theory
Final, Thursday March 22nd

Instructions:

• You have three hours, 12:15PM - 3:15PM

• The exam has 5 questions, totaling 100 points.

• Please start answering each question on a new page of the answer booklet.

• You are allowed to carry the textbook, your own notes and other course related ma-
terial with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are
allowed, provided they are used solely for reading pdf files already stored on them and
not for any other form of communication or information retrieval.

• Calculators are allowed for numerical computations.

• You are required to provide a sufficiently detailed explanation of how you arrived at
your answers.

• You can use previous parts of a problem even if you did not solve them.

• As throughout the course, entropy (H) and Mutual Information (I) are specified in
bits.

• log is taken in base 2.

• Good Luck!
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1. Universal Compression (20 points)
In this problem, we describe a lossless compression scheme that asymptotically (for large
n) achieves entropy for any iid source. Let xn be a particular sequence, where each
symbol is in alphabet X = {1, 2, 3, . . . , |X |}. Let Pxn be the empirical distribution of the
sequence xn. Consider the compressor C for the sequence xn:

• In the first step, the compressor encodes the empirical distribution Pxn of the se-
quence, using a fixed-length code.

• In the second step, the compressor outputs the index of the sequence in the type
class T (Pxn), using dlog2 |T (Pxn)|e bits.

(a) Describe the operations of the decoder D, when a sequence xn is compressed using
the compressor C.

(b) Let L(xn) be number of bits required to encode a sequence xn using the compressor.
Show that:

L(xn) ≤ |X | log2(n+ 1) + nH(Pxn) + 2

(c) Let the sequence Xn be generated i.i.d according to the distribution q(x). We define
the rate of the compressor to be R:

R =
E[L(Xn)]

n

Show that for any distribution q(x), the rate R converges to H(q) as n→∞.

(d) Let f : X → R be an arbitrary function, and let f̄(xn) = 1
n

∑n
i=1 f(xi). Show that

it is possible to compute f̄(xn) from the compressed sequence without decoding
it completely. How many bits of the compressed sequence need to be read for
computing f̄(xn)?

Solution:

(a) The decoder decodes the empirical distribution Pxn from the first fixed-length code,
and then using the index in the second part to find the sequence in T (Pxn).

(b) The number of types is at most (n+ 1)|X |, thus the fixed-length code is of length at
most dlog2(n+1)|X |e ≤ |X | log2(n+1)+1. We also know from class that |T (Pxn)| ≤
2nH(Pxn ), and thus the code in the second step has length at most dlog2 |T (Pxn)|e ≤
nH(Pxn) + 1. Summing up gives the desired answer.

(c) Note that H(P ) is concave in P , we have

R =
E[L(Xn)]

n
≤ |X | log2(n+ 1) + 2

n
+ EH(PXn)

≤ |X | log2(n+ 1) + 2

n
+H(EPXn)

=
|X | log2(n+ 1) + 2

n
+H(q)

n→∞→ H(q).
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On the other hand, R ≥ H(q) for any lossless code with source distribution q(x), so
the rate converges to H(q).

(d) We only need to know the type of Pxn to compute f̄(xn). Hence, only |X | log2(n +
1) + 1 bits at the beginning of the compressed sequence need to be read.

2. Rate-Distortion function for pairs of random variables (20 points)
Let X, Y be independent sources, with rate distortion functions RX(D) and RY (D),
corresponding to distortion functions dX : X×X̂ → R+ and dY : Y×Ŷ → R+ respectively.

We want to perform lossy compression on the product source (X, Y ), where the distortion
measure dX,Y is given by:

dX,Y ((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′)

Let R(D) be the rate distortion function corresponding to the product source (X, Y ) and
the distortion dX,Y .

(a) Show that if X, Y are independent, then for any X̂, Ŷ :

I(X, Y ; X̂, Ŷ ) ≥ I(X; X̂) + I(Y ; Ŷ )

(b) Show the following lower bound on R(D):

R(D) ≥ min
D1+D2≤D

[RX(D1) +RY (D2)]

(c) Show that the lower bound on R(D) is achievable, i.e.,

R(D) ≤ min
D1+D2≤D

[RX(D1) +RY (D2)]

(d) Let X, Y be independent binary random variables, distributed as X ∼ Ber(0.5) and
Y ∼ Ber(0.3). Find the value of R(D) for the product source (X, Y ), for D = 0.4
where dX and dY are Hamming distortions.
(you can leave the final answers in terms of binary entropy function)

(e) Let X, Y be independent Gaussian random variables distributed as X ∼ N (0, 1)
and Y ∼ N (0, 4). Find the value of R(D) for the product source (X, Y ), for D = 4
and mean square distortion:

dX,Y ((x, y), (x′, y′)) = (x− x′)2 + (y − y′)2

How many bits/symbol are used to describe X?

Solution:

(a) The following chain of inequalities holds:

I(X, Y ; X̂, Ŷ ) = H(X, Y )−H(X, Y |X̂, Ŷ )

= H(X) +H(Y )−H(X|X̂, Ŷ )−H(Y |X, X̂, Ŷ )

≥ H(X) +H(Y )−H(X|X̂)−H(Y |Ŷ )

= I(X; X̂) + I(Y ; Ŷ ).
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(b) Due to the additive structure of dX,Y , we have

R(D) = R(I)(D) = min
p(x̂,ŷ|x,y):EdX,Y ((x,y),(x̂,ŷ))≤D

I(X, Y ; X̂, Ŷ )

≥ min
p(x̂,ŷ|x,y):EdX,Y ((x,y),(x̂,ŷ))≤D

I(X; X̂) + I(Y ; Ŷ )

≥ min
D1+D2≤D

(
min

p(x̂,ŷ|x,y):EdX(x,x̂)≤D1

I(X; X̂) + min
p(x̂,ŷ|x,y):EdY (y,ŷ)≤D2

I(Y ; Ŷ )

)
= min

D1+D2≤D

(
min

p(x̂|x):EdX(x,x̂)≤D1

I(X; X̂) + min
p(ŷ|y):EdY (y,ŷ)≤D2

I(Y ; Ŷ )

)
= min

D1+D2≤D
R

(I)
X (D1) +R

(I)
Y (D2)

= min
D1+D2≤D

RX(D1) +RY (D2).

(c) For any D1, D2 ≥ 0 with D1 +D2 ≤ D, let p∗(x̂|x), p∗(ŷ|y) be the minimum achiev-

ing distributions of R
(I)
X (D1), R

(I)
Y (D2), respectively. Now consider p(x̂, ŷ|x, y) =

p∗(x̂|x)p∗(ŷ|y), then EdX,Y ((X, Y ), (X̂, Ŷ )) = EdX(X, X̂) +EdY (Y, Ŷ ) ≤ D1 +D2 ≤
D. Moreover, (X, X̂) is independent of (Y, Ŷ ), and thus

R(D) = R(I)(D) ≤ I(X, Y ; X̂, Ŷ ) = I(X; X̂) + I(Y ; Ŷ )

≤ R
(I)
X (D1) +R

(I)
Y (D2) = RX(D1) +RY (D2).

This inequality holds for any D1 +D2 ≤ D, and the result follows.

(d) By (b) and (c), we have

R(0.4) = min
D1+D2≤0.4

RX(D1) +RY (D2)

= min
D1+D2≤0.4

H(0.5)−H(min{D1, 0.5}) +H(0.3)−H(min{D2, 0.3})

≥ min
D1+D2≤0.4

H(0.5) +H(0.3)− 2H(
min{D1, 0.5}+ min{D2, 0.3}

2
)

≥ min
D1+D2≤0.4

H(0.5) +H(0.3)− 2H(
D1 +D2

2
)

≥ 1 +H(0.3)− 2H(0.2)

where we have used the fact that H(p) is increasing on p ∈ [0, 1
2
] and concave. The

minimum is attained at D1 = D2 = 0.2.

(e) By (b) and (c), we have

R(4) = min
D1+D2≤4

RX(D1) +RY (D2) = min
D1+D2≤4

1

2
log

1

min{D1, 1}
+

1

2
log

4

min{D2, 4}
.

If D1 ≤ 1, by the convexity of x 7→ − log x we know that the minimum is achieved
at D1 = 1, D2 = 3. If D1 > 1, we have D2 < 3 and log 4

D2
> log 4

3
. Hence,

(D∗1, D
∗
2) = (1, 3), and R(4) = 1

2
log 4

3
. Note that RX(D∗1) = 0 in this case, no bit is

used to describe X1.
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3. Compression with some help (25 points)
Consider the lossless source coding problem in Figure 1. The pair (Xn, Y n) is generated
by i.i.d. drawings of the finite alphabet pair (X, Y ), that is p(xn, yn) =

∏n
i=1 pXY (xi, yi).

We wish to transmit the source sequence Xn near-losslessly when Y n is available at
both the encoder and the decoder. Formally, a (2nR, n) code is defined by an encoder
m(xn, yn) ∈ {1, 2, . . . , 2nR} and a decoder X̂n(m, yn), and the probability of decoding
error is defined as Pe = P{X̂n 6= Xn}, where X̂n = X̂n(m(Xn, Y n), Y n). A rate R is
achievable if there exists a sequence of codes with Pe → 0 as n→∞.

ENCODER DECODER

X̂n(m,Y n)Xn

Y n

m(Xn, Y N) ∈ {1 : 2nR}

Figure 1: Conditional Lossless Source Coding

(a) Prove that any rate R > H(X|Y ) is achievable.

[Hint : If yn ∈ T
(n)
δ′ (Y ) and xn ∈ T

(n)
δ (X|yn) for appropriate δ′ < δ, transmit the

index of xn in T
(n)
δ (X|yn).]

(b) Prove that any rate R < H(X|Y ) is not achievable via the following steps:

i. For M = m(Xn, Y n) argue why

I(Xn;M |Y n) ≤ nR.

ii. Use the previous step and a relation that you know between conditional entropy
and probability of error to deduce that if R < H(X|Y ) then one cannot get
Pe → 0 as n→∞.

Now we consider a simple instance of this problem and develop concrete schemes for
achieving the optimal rate. Let X be a random variable uniformly distributed on {0, 1}3,
i.e., X is a sequence of 3 independent unbiased bits. Let Y = X ⊕ Z, where Z is
independent of X and is uniformly distributed on {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)} (set
of binary triplets with at most one 1).

(c) Give a scheme to losslessly compress X into 2 bits when Y is known at both the
encoder and the decoder. Specifically, you should describe the encoder m(x, y) ∈
{1, 2, 3, 4} and a decoder X̂(m, y) which satisfy X̂(m(X, Y ), Y ) = X. Is this opti-
mal?

(d) Now, if only the decoder has access to Y , show that random variable X can still be
losslessly compressed using 2 bits.
[Hint : Partition X into 4 suitable subsets, and transmit the index of the subset.]
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(e) In part (d), can we do better (with less) than 2 bits?

Solution:

(a) Fix any δ > δ′ > 0. By strong AEP, with probability tending to 1, we have yn ∈
T

(n)
δ′ (Y ) and xn ∈ T (n)

δ (X|yn). We consider the encoding/decoding scheme as follows:

• Encoding: the compressor sends the index of the sequence xn in T
(n)
δ (X|yn) if

conditional typicality holds; otherwise, just send 1;

• Decoding: find the sequence xn in T
(n)
δ (X|yn) with the received index.

Note that this scheme has error probability tending to zero. Moreover, |T (n)
δ (X|yn)| ≤

2n(1+δ)H(X|Y ), therefore the rate is at most R ≤ (1 + δ)H(X|Y ). Since δ > 0 is arbi-
trary, any rate R > H(X|Y ) is achievable.

(b) i. Note that H(M) ≤ nR since M ∈ {1, 2, · · · , 2nR}, we have

I(Xn;M |Y n) = H(M |Y n)−H(M |Xn, Y n) = H(M |Y n) ≤ H(M) ≤ nR.

ii. Let pe = P(X̂n 6= Xn), Fano’s inequality gives

I(Xn;M |Y n) = H(Xn|Y n)−H(Xn|M,Y n)

≥ H(Xn|Y n)−H(Xn|X̂n)

≥ nH(X|Y )−H(pe)− npe log |X |.

Combining with the previous question, we see that

R ≥ H(X|Y )− H(pe)

n
− pe log |X |

i.e., any R < H(X|Y ) is impossible given pe → 0.

(c) Since the alphabet of Z has size |Z| = 4, there exists a bijection f between Z and
{1, 2, 3, 4}. Define encoder m(x, y) = f(x⊕ y) and decoder X̂(m, y) = f−1(m)⊕ y.
This definition is feasible since X ⊕Y = Z ∈ Z. Clearly X̂(m(x, y), y) = f−1(f(x⊕
y))⊕ y = x, and the rate is log |Z| = 2. This is not improvable, for

H(X|Y ) = H(X) +H(Y |X)−H(Y ) = H(X) +H(Z)−H(X ⊕ Z) = 2.

(d) Split {0, 1}3 into four groups: G1 = {(0, 0, 0), (1, 1, 1)}, G2 = {(1, 0, 0), (0, 1, 1)}, G3 =
{(0, 1, 0), (1, 0, 1)}, G4 = {(0, 0, 1), (1, 1, 0)}. Upon receiving X, the encoder encodes
the index of the group which X lies in. The decoder determines X̂ to be the closest
symbol to the side information Y (in Hamming distance) in the given group. Clearly
the rate is 2, and this is lossless because the symbols in each group have minimum
distance 3 and can thus correct 1-bit error caused by Z.

(e) No, because 2 bits are optimal even in the setting of (c), where the encoder also has
the extra side information Y .

Final Page 6 of 9



4. Channel Capacity (15 points)
Find the capacities of the following channels with the given channel transition matrices
p(y|x). Also, give the capacity-achieving input distribution p(x). Justify your answers.
(you can leave the final answers in terms of the binary entropy function)

(a) X = Y = {0, 1, 2}

p(y|x) =

 0 1/3 2/3
2/3 0 1/3
1/3 2/3 0


(b) X = Y = {0, 1, 2}

p(y|x) =

 0 1/3 2/3
2/3 0 1/3
0 2/3 1/3


(c) X = {0, 1},Y = {0, 1, 2}

p(y|x) =

[
0 2/3 1/3

1/3 2/3 0

]
Solution:

(a) For any input distribution p(x), we have

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(
1

3
) ≤ log 3−H(

1

3
)

with equality iff Y is uniformly distributed on Y . Therefore, the capacity-achieving
input distribution is p(x) = (1

3
, 1
3
, 1
3
).

(b) We can show that I(X;Y ) ≤ log 3−H(1
3
) as in (a), with equality iff Y is uniformly

distributed on Y . This gives the capacity-achieving distribution p(x) = (0, 1
2
, 1
2
).

(c) For input distribution (p, 1− p), we have Y ∼ (1−p
3
, 2
3
, p
3
), and

I(X;Y ) = H(Y )−H(Y |X) = −1− p
3

log
1− p

3
− p

3
log

p

3
− 2

3
log

2

3
−H(

1

3
)

≤ 2 · log 6

6
− 2

3
log

2

3
−H(

1

3
) =

1

3

where the inequality follows from the concavity of x 7→ −x log x. As a result, the
capacity-achieving input distribution is p(x) = (1

2
, 1
2
).

The capacity can also be computed by observing that the channel is a special case
of BEC channel (erasure probability 2/3).

5. Information Theory and Statistics (20 points)
This problem illustrates an application of information-theoretic tools in statistics. Sup-
pose we observe a sample X ∼ N (θ, Id), where θ ∈ Rd is an unknown mean vector, and
Id denotes the d× d identity matrix. An estimator θ̂ = θ̂(X) is a function of X, and we
want to find an estimator θ̂ which is close to the true θ. We consider the mean squared
error l(θ) = Eθ‖θ̂(X)−θ‖22, where the expectation is taken with respect to X ∼ N (θ, Id).
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(a) A natural estimator is θ̂(X) = X. What is l(θ) in this case? What is the worst-case
l(θ) when θ can be any value in Rd?

In the following, we show that this natural estimator is in fact a minimax estimator
for estimating θ under mean squared error. By minimax we mean that it achieves the
minimum worst-case error possible for any estimator. For this we’ll use ideas from chan-
nel capacity and rate-distortion. First, we state some results for multivariate Gaussian
distributions. These can be derived using similar techniques as those used for univariate
Gaussian.

• Capacity of multivariate AWGN channel : Consider a channel from θ to X defined
as X = θ + Z where Z ∼ N (0, Id) with power constraint E‖θ‖22 ≤ dσ2. For this
channel,

C =
d

2
log(1 + σ2) (1)

• Rate-distortion function for multivariate Gaussian source: Consider a source θ ∼
N (0, σ2Id) and distortion metric d(θ, θ̂) = E‖θ − θ̂‖22. For this setting,

R(D) =
d

2
log

dσ2

D
(2)

(b) Assume that there exists an estimator θ̂ with l(θ) ≤ D for any θ ∈ Rd. Argue why
that implies that we must have R(D) ≤ C, where C and R(D) are as defined in
equations (1) and (2), respectively.
[Hint: Frame this as a joint source-channel coding problem with appropriate source
and channel.]

(c) Conclude from (b) that D ≥ dσ2

1+σ2 . Since that argument holds for any value of σ2,
further conclude that D ≥ d.

(d) Argue how your results in (b) and (c) imply that the estimator in (a) is a minimax
estimator. Specifically, argue why no other estimator can achieve worst-case risk
lower than that achieved by θ̂(X) = X.

Solution:

(a) We have Xi ∼ N (θ, 1) for each i = 1, 2, · · · , d. Hence, l(θ) =
∑d

i=1 Eθ(Xi− θ)2 = d.
Since l(θ) = d for any θ, so is the worst-case risk.

(b) Consider the joint source-channel coding problem with source θ ∼ N (0, σ2Id) and
channel x|θ ∼ N (θ, Id). The overall rate is 1, so R(D) ≤ C follows from the joint
source-channel coding theorem. Alternatively, we can also write

R(D) = min
p(θ̂|θ):E‖θ̂−θ‖22≤D

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ max
p(θ):E‖θ‖22≤dσ2

I(θ;X) = C

for θ −X − θ̂ forms a Markov chain.

(c) By (b) we have d
2

log dσ2

D
≤ d

2
log(1 + σ2), which gives D ≥ dσ2

1+σ2 . This inequality
holds for any σ2, we choose σ2 →∞ to conclude that D ≥ d.
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(d) Part (c) shows that the worst-case risk for any estimator must be no smaller than D.
Since the natural estimator θ̂(X) = X achieves the worst-case risk D, we conclude
that this estimator is minimax.
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