
EE376A/STATS376A Information Theory Lecture 9 - 02/06/2018

Lecture 9: AWGN channel and the Joint AEP
Lecturer: Tsachy Weissman Scribe: Tadafumi Ikezu, Alex Kern, Jack O’Reilly, Daniel Wright

1 Midterm Announcement

The midterm will cover through lossless compression, and will be open notes and open book. Electronics
are permitted only for viewing PDFs.

2 Communication Setting

• Encoder which takes as input m bits and outputs Xn.

• Memoryless channell defined by PY |X which takes as input Xn and outputs Y n.

• Decoder which takes as input Y n and outputs m bits.

Note that we can think of the m bits as equivalent to a message, J , uniformly distributed on {1, 2, . . . ,M}
where M = 2m. The decoder, in this interpretation, outputs a message Ĵ(Y n).

• A scheme is the (encoder, decoder) pair.

• An encoder can be thought of as a codebook cn = {Xn(1), Xn(2), . . . Xn(M)} where Xn(i) is the
encoding of the i-th message.

• The decoder can be thought of as the mapping Ĵ(·), which maps Y n to a message in {1, . . . ,M}.

• The rate = logM
n = log |cn|

n = m
n

bits
channel use .

• Pe = P (Ĵ 6= J).

Sometimes we also have a transmission constraint:

1

n

n∑
i=1

Λ(Xi) ≤ α

E.g., Λ(x) = x2 in wireless communication corresponds to a constraint on the average power of the
transmission.

C = maximal rate of reliable communication

C(I) =

max
Px

I(X;Y ) without a transmission constraint

max
Px:E Λ(X)≤α

I(X;Y ) with a transmission constraint

Theorem 1 (Channel Coding Theorem). C = C(I)
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Figure 1: Additive White Gaussian Noise channel. Assume independence of Xi and Zi.

3 Example III: AWGN channel

Recall that if G ∼ N (0, σ2), then

1. the differential entropy h(G) = 1
2 log 2πeσ2,

2. h(X) ≤ h(G), if X is any random variable with E[X2] ≤ σ2.

The previous lecture we found that under transmission power constraint, the channel capacity of the
AWGN channel is

C(P ) = max
PX :E[X2]≤P

I(X;Y ).

We define an upper bound by the below calculation,

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(Y −X|X)

= h(Y )− h(W |X)

= h(Y )− h(W ), by independence of W and X

≤ h(N (0, P + σ2))− h(N (0, σ2))

=
1

2
log 2πe(P + σ2)− 1

2
log 2πeσ2

=
1

2
log

(
1 +

P

σ2

)
,

where the inequality follows from V ar(Y ) = V ar(X) + V ar(W ) ≤ P + σ2 and the second equality holds
because translation by a constant does not change the differential entropy, and X is a constant conditioned
on X. Equality is achieved with Y ∼ N (0, P + σ2), which we find with X ∼ N (0, p).

We now have our expression for the capacity of the AWGN channel:

C(p) =
1

2
log

(
1 +

P

σ2

)
. (1)

All that is left to prove is that any rate above the capacity is not achievable. Below is a geometric
argument for why we might expect this to be the case. Note: P

σ2 is commonly called the signal to noise
ratio, or SNR.
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3.1 A rough geometric interpretation

Figure 2: The space of message points lie within a sphere in Rn, with radius set by the transmission power constraint.

Recall the power constraint over multiple uses of the channel:

1

n

n∑
i=1

X2 ≤ P (2)

Or, equivalently: √√√√ n∑
i=1

X2 ≤
√
nP (3)

If we represent the elements of our codebook as points in Rn, we can interpret the LHS of (3) as the
2-norm of said points. We can think of the power constraint as being equivalent to constraining the points
in the codebook to the sphere of radius

√
nP centered at the origin.

Next, we consider the geometric interpretation of added noise:

1

n

n∑
i=1

W 2
i −→E[W 2

i ] with high probability by L.L.N.

= σ2
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It follows that for large n: √√√√ n∑
i=1

W 2
i ≈
√
nσ2 (4)

The RHS of (4) can similarly can be interpreted as noting that addition of noise to the transmitted signal

applies uncertainty in the form of a sphere of radius
√
nσ2. Consider the expected channel output:

E[

n∑
i=1

Y 2
i ] = E[

n∑
i=1

X2
i ] + E[

n∑
i=1

W 2
i ]

. nP + nσ2 (5)

Geometrically, we interpret (5) as saying that on average the channel outputs in such a power constrained
scheme will lie within a sphere of radius

√
nP + nσ2. In order to achieve reliable communication, we want

the ”noise balls” (given by spheres of radius
√
nσ2 around each of the n-vectors Xn(i)) to be

non-intersecting. This leads us to a constraint on the number of possible messages we can communicate, or
the size of the codebook:

number of messages ≤
volume of ball of radius

√
n(P + σ2)

volume of ball of radius
√
nσ2

=
Kn(

√
n(P + σ2))n

Kn(
√
nσ2)n

=

(
P + σ2

σ2

)n
2

=

(
1 +

P

σ2

)n
2

⇒ rate =
log(number of messages)

n
≤ 1

2
log

(
1 +

P

σ2

)
(6)

Definition 2. We refer to the n-vector Xn(i) as the message point corresponding to entry i (1 ≤ i ≤M)
in our codebook of size M .

The Channel Coding Theorem tells us that the channel capacity is equal to the maxiumum achievable rate
given in (6). Intuitively, we achieve this rate by optimally packing the noise balls of radius

√
nσ2 into the

sphere of radius
√
n(P + σ2) in a non-overlapping manner. The centers of the noise spheres are used as the

message points Xn(i) in our codebook. Note that although there are packing inefficiencies for low
dimensions (i.e., for small n), these inefficiencies are overcome as n increases.
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4 Joint AEP

We have the following setting:

X,Y random variables on alphabets X ,Y
(X,Y ) ∼ PX,Y

X ∼ PX
Y ∼ PY

(Xi, Yi) iid ∼ (X,Y )

p(xn) =

n∏
i=1

PX(xi)

p(yn) =

n∏
i=1

PY (yi)

p(xn, yn) =

n∏
i=1

PX,Y (xi, yi)

Definition 3. The set of jointly ε-typical sequences is:

A(n)
ε (X,Y ) =

{
(xn, yn) :

∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ ≤ ε,}
Theorem 4. Joint AEP.
Part A. If (Xn, Y n) formed by iid (Xi, Yi):

1. P
(

(Xn, Y n) ∈ A(n)
ε (X,Y )

)
n→∞−−−−→ 1

2. (1− ε)2n(H(X,Y )−ε) ≤
∣∣∣A(n)

ε (X,Y )
∣∣∣ ≤ 2n(H(X,Y )+ε), where the first inequality holds for sufficiently

large n, and the second inequality holds for all n.

Proof
We apply AEP, and convergence in probability on the three conditions of the jointly typical set. That is,
there exists n1, n2, n3 such that for all n > n1, we have

Pr

{∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ ≥ ε} < ε/3,

and for all n > n2, we have

Pr

{∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ ≥ ε} < ε/3,

and for all n > n3, we have

Pr

{∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ ≥ ε} < ε/3.
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All three apply for n greater than the largest of n1, n2, n3. Therefore the probability of the union the set of
(xn, yn) satisfying these inequalities must be less than ε, and for n sufficiently large, the probability of the

set A
(n)
ε is greater than 1− ε.

Upper Bound:

1 =
∑

p(xn, yn)

≥
∑

(xn,yn)∈A(n)
ε (X,Y )

p(xn, yn)

≥
∑

(xn,yn)∈A(n)
ε (X,Y )

2−n(H(X,Y )+ε), by definition of typicality

= 2−n(H(X,Y )+ε)
∣∣∣A(n)

ε (X,Y )
∣∣∣

⇒
∣∣∣A(n)

ε (X,Y )
∣∣∣ ≤ 2n(H(X,Y )+ε)

Lower Bound:
By Part 1, P

(
(Xn, Y n) ∈ A(n)

ε (X,Y )
)

n→∞−−−−→ 1.

Thus, for large n:

1− ε ≤ P ((Xn, Y n) ∈ A(n)
ε (X,Y ))

≤
∑

(xn,yn)∈A(n)
ε

2−n(H(X,Y )−ε)

= 2−n(H(X,Y )−ε)
∣∣∣A(n)

ε (X,Y )
∣∣∣

⇒
∣∣∣A(n)

ε (X,Y )
∣∣∣ ≥ (1− ε)2n(H(X,Y )−ε)

Part B. For (X̃n, Ỹ n) where PX̃,Ỹ = PX × PY (essentially you have sequences Xn, Y n which are drawn

from PX and PY independently):

(1− ε)2−n(I(X;Y )+3ε) ≤ P
{

(X̃n, Ỹ n) ∈ A(n)
ε (X,Y )

}
≤ 2−n(I(X;Y )−3ε)
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