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Lecture 4: Asymptotic Equipartition Property
Lecturer: Tsachy Weissman Scribe: Alexandros Anemogiannis, Dongyuan Mao, Mirae Parker

In this lecture, we discuss the asymptotic equipartition property (AEP) regarding the sequences output
by a stochastic source. We’ll find that virtually all sequences generated by the source are confined to an
exponentially small subset of the set of all possible source sequences, which we use to define a near-lossless
fixed length compression scheme.

1 Asymptotic Equipartition Property

1.1 Notation

We briefly describing some of the relevant terms and notations used in this section

1. Memoryless source: U1, U2, . . . iid ∼ U . Note that “memoryless” is used here because samples are
drawn iid and have no dependence on past realizations.

2. Alphabet: U = {1, 2, . . . , r} specifies the possible values that each symbol Ui can take on. The size
of U is denoted |U|.

3. Source sequence: Un = (U1, . . . , Un) denotes the n-tuple that specifies a sequence of n source
symbols. Further note that Un indicates the set of all possible source sequences of length n.

4. Probability: The probability assigned to a source sequence Un is given by P (Un) =
∏n
i=1 PU (Ui).

Since we implicitly evaluate the probabilities over the alphabet U , we may also write

P (Un) =

n∏
i=1

P (Ui).

1.2 The ε-typical set

Definition 1. For some ε > 0, the source sequence Un is ε-typical if,∣∣∣∣− 1

n
logP (Un)−H(U)

∣∣∣∣ ≤ ε.
Let A

(n)
ε denote the “ε-typical set”, that is the set of all source sequences Un that are ε-typical. Further-

more, note the following equivalent way of defining ε-typicality:∣∣∣∣− 1

n
logP (Un)−H(U)

∣∣∣∣ ≤ ε⇐⇒ H(u)− ε ≤ − 1

n
logP (Un) ≤ H(U) + ε (1)

⇐⇒ −n(H(u) + ε) ≤ log(P (Un)) ≤ −n(H(u)− ε) (2)

⇐⇒ 2−n(H(u)+ε) ≤ P (Un) ≤ 2−n(H(u)−ε). (3)

Theorem 2. ∀ε > 0, P (Un ∈ A(n)
ε )

n→∞−−−−→ 1.
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Proof Observe the following reformulation

P (Un ∈ A(n)
ε ) = P

(∣∣∣∣− 1

n
logP (Un)−H(U)

∣∣∣∣ ≤ ε) (4)

= P

(∣∣∣∣∣− 1

n
log

[
n∏
i=1

P (Ui)

]
−H(U)

∣∣∣∣∣ ≤ ε
)

(5)

= P

(∣∣∣∣∣ 1n
n∑
i=1

log
1

P (Ui)
−H(U)

∣∣∣∣∣ ≤ ε
)
, (6)

Noting that:

H(U) , E
(

log 1
P (U)

)
, and log 1

P (Ui)
are iid, since Ui are iid.

Then by the weak law of large numbers (LLN),

P (Un ∈ A(n)
ε ) = P

(∣∣∣∣∣ 1n
n∑
i=1

log
1

P (Ui)
−H(U)

∣∣∣∣∣ ≤ ε
)

n→∞−−−−→ 1.

Note: Since P (Un ∈ A(n)
ε ) ≈ 1 and A

(n)
ε is comprised of sequences each with probability roughly 2−nH(U)

of being observed, then
∣∣A(n)

ε

∣∣ ≈ 2nH(U). We’ll provide more rigorous bounds on
∣∣A(n)

ε

∣∣ in the following
theorem.

Theorem 3. ∀ε > 0 and n sufficiently large, (1− ε) · 2n(H(U)−ε) ≤
∣∣A(n)

ε

∣∣ ≤ 2n(H(u)+ε).

Proof

Upper bound:

1 ≥ P (Un ∈ A(n)
ε )

≥
∑

un∈A(n)
ε

2−n(H(U)+ε)

= 2−n(H(U)+ε) ·
∣∣A(n)

ε

∣∣
⇒
∣∣A(n)

ε

∣∣ ≤ 2n(H(U)+ε)

Lower bound:

1− ε ≤ P (Un ∈ A(n)
ε )

≤
∑

un∈A(n)
ε

2−n(H(U)−ε)

= 2−n(H(U)−ε) ·
∣∣A(n)

ε

∣∣
⇒
∣∣A(n)

ε

∣∣ ≥ (1− ε) · 2n(H(U)−ε).

The starting equation in the lower bound proof is a consequence of Theorem 2. Since

P (Un ∈ A(n)
ε )

n→∞−−−−→ 1, we can choose a sufficiently large n such that P (Un ∈ A(n)
ε ) ≥ 1− ε ∀ε > 0.

1.3 Some perspective

The space of all possible source sequences Un has exponential size |Un| = rn, and the ε-typical set A
(n)
ε

comprises a tiny fraction of Un with size |A(n)
ε | ≈ 2nH(U). In fact, A

(n)
ε is an exponentially smaller than Un,

as indicated by the ratio of their sizes, except when U is uniformly distributed.∣∣A(n)
ε

∣∣
|Un|

≈ 2nH(U)

rn
=

2nH(U)

2n log r
= 2−n(log r−H(U)).

Despite the small size of A
(n)
ε , the probabilistic mass in Un is almost entirely concentrated in A

(n)
ε . The

forthcoming theorem illustrates the point that any subset of Un that’s smaller than A
(n)
ε fails to capture

almost all of its probabilistic mass.
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Figure 1: ε-typical set: almost all the probability mass is concentrated in an exponentially small set

Theorem 4. Fix δ > 0 and B(n) ⊆ Un such that
∣∣B(n)

∣∣ ≤ 2n(H(U)−δ). Then

lim
n→∞

P (Un ∈ B(n)) = 0.

Proof

P (Un ∈ B(n)) = P (Un ∈ B(n) ∩A(n)
ε ) + P (Un ∈ B(n) ∩ (A(n)

ε )c) (7)

≤ P (Un ∈ B(n) ∩A(n)
ε ) + P (Un /∈ A(n)

ε ) (8)

=
∑

un∈B(n)∩A(n)
ε

P (un) + P (Un /∈ A(n)
ε ) (9)

≤
∑

un∈B(n)∩A(n)
ε

2−n(H(U)−ε) + P (Un /∈ A(n)
ε ) (10)

=
∣∣B(n) ∩A(n)

ε

∣∣ · 2−n(H(U)−ε) + P (Un /∈ A(n)
ε ) (11)

≤
∣∣B(n)

∣∣ · 2−n(H(U)−ε) + P (Un /∈ A(n)
ε ) (12)

≤ 2n(H(U)−δ) · 2−n(H(U)−ε) + P (Un /∈ A(n)
ε ) (13)

= 2−n(δ−ε)︸ ︷︷ ︸
→0 as n→∞

+P (Un /∈ A(n)
ε )︸ ︷︷ ︸

→0 as n→∞

(14)

From the theorems proven above, we understand A
(n)
ε as a subset of Un that most efficiently contains

virtually all of the source sequences that can be drawn from Un. The following section confirms the intuition
that, when developing a scheme which encodes sequences from Un, we should focus our efforts towards the

sequences that lie in A
(n)
ε .

2 Near-lossless (fixed-length/block) compression

In this section, we consider the problem of developing a scheme that allows us to encode and decode a source
sequence UN = (U1, . . . , UN ) iid ∼ U .

Un = (U1, . . . , Un)
compressor
(encoder)

decompressor
(decoder) Ûn

m bits
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2.1 Notation

We briefly describing some of the relevant terms and notations used in this section

1. Probability of error: Pe = P (ÛN 6= UN ) denotes the probability of error.

2. Rate: The rate of a scheme is the average number of bits it uses to encode source symbols.

3. “Near lossless” indicates that Pe � 1.

4. “Fixed length” or “block” indicates that source symbols are encoded with a fixed number of bits.

5. “Scheme” is a compressor (encoder) and its corresponding decompressor (decoder).

2.2 Encoder & decoder design

Theorem 5 (Direct theorem). ∀R > H(U) and ∀δ > 0, ∃ a large enough N and a scheme with rate r < R
and Pe < δ.

Proof Fix ε > 0 such that H(U) + ε < R and enumerate the elements in A
(N)
ε , where I(uN ) indicates

index of uN ∈ A(N)
ε . Then use the following encoding approach{

output a m-bit representation of I(uN ), if uN ∈ A(N)
ε

output an arbitrary sequence of bits, if uN /∈ A(N)
ε .

For decoding, simply let ÛN be the sequence in A
(N)
ε whose index corresponds to the m received bits. Note

that this scheme makes an error whenever uN is not in A
(N)
ε . Such a scheme requires m = log

∣∣A(N)
ε

∣∣ bits
per source symbol, which achieves the following rate and probability of error

r =
m

N
=

log
∣∣A(N)

ε

∣∣
N

≤ N(H(U) + ε)

N
= H(U) + ε < R

Pe = P (UN /∈ A(N)
ε ) < δ for N sufficiently large.

Theorem 6 (Converse theorem). If R < H(U) then for all sequences of schemes with rate r ≤ R,

Pe
n→∞−−−−→ 1.

Proof A scheme with rate r can at most represent 2Nr different sequences without error. Let’s define
B(N) as the set of these sequences. Because r ≤ R < H(u), ∃ε > 0 s.t. r + ε < H(U).

P (UN ∈ B(N)) = P (UN ∈ B(N) ∩A(N)
ε ) + P (UN ∈ B(N) ∩ (A(N)

ε )c) (15)

(16)

By Theorem 4 we know: (17)

(18)

Pe = 1− P (UN ∈ B(N))
N→∞−−−−→ 1 (19)

Note: Drawbacks of this framework:
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1. Nonzero error probability (which can be resolved by using a variable length scheme).

2. Enumerating an exponentially large set and then searching through the resulting list is incredibly
inefficient.

3. Large block length N introduces significant delay in encoding and decoding.

A simple variable length scheme to solve the first problem above is to first send 1 bit to indicate whether
the sequence is typical. If typical, we use the above encoding scheme. In the unlikely event that the sequence
is not typical, we can just send the N bits without encoding.
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