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Lecture 14: Sanov’s Theorem
Lecturer: Tsachy Weissman Scribe: T Diamandis, R Gabrielsson, A Mohamed, G Murray

In this lecture, we will introduce and prove Sanov’s theorem, a useful tool in probability and statistics that
is relevant for many key characterizations and theorems throughout the course. We will start with a recap
of the method of types then proceed to discuss the main theorem.

1 Recap of the Method of Types

Consider the sequence xn ∈ Xn, where X is a finite alphabet. Let Pxn be the empirical distribution such

that Pxn(a) = N(a|xn)
n , where N(a|xn) denotes the number of times the symbol a appeared in the sequence

xn. Let Pn be the set of all empirical distributions over sequences of length n. Then we define the type class
to be:

T (P ) = {xn : Pxn = P} for P ∈ Pn
We have shown the following results:

• |Pn| ≤ (n+ 1)|X |−1

• Q(xn) = 2−n[H(Pxn )+D(Pxn ||Q)]

• For P ∈ Pn: 1
(n+1)|X|−1 2nH(P ) ≤ |T (P )| ≤ 2nH(P )

– Equivalently: |T (P )| .= 2nH(P ) (see Section 2)

• For P ∈ Pn, Q, where Q describes the true source of X: 1
(n+1)|X|−1 2−nD(P ||Q) ≤ Q(T (P )) ≤ 2−nD(P ||Q)

– Equivalently: Q(T (P ))
.
= 2−nD(P ||Q) (see Section 2)

– This follows from the previous two results

2 Notation

We write αn
.
= βn to denote equality on an exponential scale, or equality to first order in the exponent.

More precisely, we have

αn
.
= βn ⇐⇒

1

n
log

αn
βn

=
1

n
logαn −

1

n
log βn → 0 as n→∞

Example:
αn

.
= 2nγ ⇐⇒ αn = 2n(γ+εn), where εn → 0 as n→∞

Convention for empty sets: The maximum over an empty set is negative infinity; the minimum is positive
infinity.
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3 Sanov’s Theorem

The version of Sanov’s Theorem we consider bounds the probability that a function’s empirical mean exceeds
some value α. We begin by introducing some notation and stating the theorem.

Notation:
We let M(X ) denote all pmf’s on X . Then for P ∈M(X ) and f : X → R we define the inner product:

〈P, f〉 =
∑
a∈X

P (a)f(a) = EX∼P [f(X)]

Theorem 1. A Version of Sanov’s Theorem:
For Xi, iid ∼ Q, and a function f : X → R:

1

(n+ 1)|X |−1
2−nD

∗
n(α) ≤ Pr

(
1

n

n∑
i=1

f(Xi) ≥ α

)
≤ (n+ 1)|X |−12−nD

∗
n(α)

where
D∗n(α) = min

P∈Pn : 〈P,f〉≥α
D(P ||Q)

As n → ∞, the set of Pn, which has components that are integer multiples of 1
n is dense in the set of all

probability mass functions. Specifically, we can approximate any P ∈M(X ) arbitrarily well with a Pn ∈ Pn
for large enough n. Thus, we have

Pr

(
1

n

n∑
i=1

f(Xi) ≥ α

)
.
= 2−nD

∗(α)

where
D∗(α) = min

P∈M(X ) : 〈P,f〉≥α
D(P ||Q)

3.1 Geometric Picture

For this example, let |X | = 3, so our probability mass function lies on a plane in R3.
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1

1

M(X )

Figure 1: Set of pmf vectors in R3
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We can look more closely at this equilateral triangle representing M(X ).

〈P, f〉 = α

{P : 〈P, f〉 ≥ α}

P ∗

Q

D∗(α) = D(P ∗||Q)

Figure 2: Set of possible pmfs M(X )

The slope of the line 〈P, f〉 = α, shown above in blue, is determined by f ∈ R3, and the offset is determined
by α ∈ R. We look for the point P ∗ in the feasible set (in gray) that is closest to Q under relative entropy,
i.e. D∗(α) = D(P ∗||Q). Note that a larger α will shrink the feasible set by moving the line in blue upwards.
Thus, P ∗ will be further from Q, implying that the event in question has smaller probability.

By the LLN:

Pr

(
1

n

n∑
i=1

f(Xi) ≈ 〈Q, f〉

)
≈ 1.

In other words, this sum will be very close to the expected value of f under Q. We can conclude

Pr

(
1

n

n∑
i=1

f(Xi) ≥ α

)

is non-decaying for all α ≤ 〈Q, f〉, as the probability will go to 1 (the exponential decay rate is 0). Geomet-
rically, this corresponds to a α such that Q is already in the feasible region, so D(P ∗||Q) = 0 for α ≤ 〈Q, f〉.

On the other hand, if α > 〈Q, f〉, we know that the probability will vanish. Sanov’s Theorem tells us that
it will vanish very (exponentially) rapidly and characterizes the exponent.

3.2 Example

Let Xi iid ∼ Ber( 1
2 ). We wish to find the exponential behavior of the probability that the fraction of 1’s

generated exceeds some level α:

Pr

(
1

n

n∑
i=1

Xi ≥ α

)
By LLN, if α ≤ 1

2 , this probability goes to 1, and if 1 ≥ α > 1
2 , the probability is vanishing. However, we do

not know how fast. Finally if α > 1, the probability is 0, so the associated exponent is infinite.
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By Sanov’s Theorem applied to Q = Ber( 1
2 ), f(0) = 0, f(1) = 1,

Pr

(
1

n

n∑
i=1

Xi ≥ α

)
= Pr

(
1

n

n∑
i=1

f(Xi) ≥ α

)
.
= 2−nD

∗(α)

where

D∗(α)
a
= min

0≤p≤1, 〈Ber(p),f〉≥α
D
(
Ber(p) || Ber

(
1
2

))
b
= min

0≤p≤1, p≥α
D
(
Ber(p) || Ber

(
1
2

))
= min
α≤p≤1

D
(
Ber(p) || Ber

(
1
2

))
=


0 α ≤ 1

2

D
(
Ber(p) || Ber

(
1
2

))
1
2 < α ≤ 1

∞ 1 < α

=


0 α ≤ 1

2

α log α
1
2

+ (1− α) log 1−α
1
2

1
2 < α ≤ 1

∞ 1 < α

D∗(α) =


0 α ≤ 1

2

1− h2(α) 1
2 < α ≤ 1

∞ 1 < α

(a) follow from the fact that any binary distribution P can be written as a Ber(p) distribution for some p.
(b) follows from the fact that 〈Ber (p) , f〉 = (1− p)f(0) + pf(1) = 0 + p = p.

1
2

1
0

1

∞

α

D
∗ (
α

)

Figure 3: Plot of D∗(α), the exponential rate of decay, for the example of a Ber( 1
2
) source.

We note that this is consistent with our intuition from LLN:

• α ≤ 1
2 ⇒ Pr(·)→ 1 (exponential rate of decay is 0)

• 1
2 < α ≤ 1⇒ Pr(·)→ 0 (exponential rate of decay)

• 1 < α ≤ 1⇒ Pr(·) = 0 (exponential rate of decay is ∞)
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3.3 Proof of Sanov’s Theorem

First we note

1

n

n∑
i=1

f(xi) =
1

n

∑
a∈X

N(a|xn)f(a)

=
∑
a∈X

Pxn(a)f(a) ( since Pxn(a) =
N(a|xn)

n
)

= 〈Pxn , f〉

Now since Q(T (P )) = Q({xn : Pxn = P}) = Pr({xn : Pxn = P}) we have

Pr

(
1

n

n∑
i=1

f(Xi) ≥ α

)
=

∑
P∈Pn:〈P,f〉≥α

Q(T (P ))

Upper Bound: ∑
P∈Pn:〈P,f〉≥α

Q(T (P )) ≤ |Pn| max
P∈Pn:〈P,f〉≥α

Q(T (P ))

≤ (n+ 1)|X |−1 max
P∈Pn:〈P,f〉≥α

2−nD(P ||Q)

= (n+ 1)|X |−12−nminP∈Pn:〈P,f〉≥αD(P ||Q)

= (n+ 1)|X |−12−nD
∗
n(α)

Lower Bound: ∑
P∈Pn:〈P,f〉≥α

Q(T (P )) ≥ max
P∈Pn:〈P,f〉≥α

Q(T (P ))

≥ max
P∈Pn:〈P,f〉≥α

1

(n+ 1)|X |−1
2−nD(P ||Q)

=
1

(n+ 1)|X |−1
2−nD

∗
n(α)

Q.E.D

3.4 A more general Sanov’s Theorem

For Xi iid ∼ Q and S ⊂M(X )

Pr(empirical distribution of Xn ∈ S)
.
= 2−nminP∈S D(P ||Q)

Comment: This follows because, among the polynomially many terms in the expression for the probability
(each of which decays exponentially with n), the largest term (one that is closest to Q) will dominate, and
this term will be the one with the smallest exponent, i.e., 2−nminP∈S D(P ||Q).
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