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Lecture 14: Sanov’s Theorem

Lecturer: Tsachy Weissman Scribe: T Diamandis, R Gabrielsson, A Mohamed, G Murray

In this lecture, we will introduce and prove Sanov’s theorem, a useful tool in probability and statistics that
is relevant for many key characterizations and theorems throughout the course. We will start with a recap
of the method of types then proceed to discuss the main theorem.

1 Recap of the Method of Types

Consider the sequence ™ € X™, where X is a finite alphabet. Let P,» be the empirical distribution such
that Pyn(a) = N((LTW, where N(a|z™) denotes the number of times the symbol a appeared in the sequence
z". Let P,, be the set of all empirical distributions over sequences of length n. Then we define the type class
to be:

T(P)={2": Pyn = P} for PP,

We have shown the following results:
o [Py| < (n+ 1)

. Q(.’L‘n) — 9—n[H(Pyn)+D(Pynl|Q)]

— Equivalently: |T(P)| = 2"H#(P) (see Section 2)

e For P € P,, @, where @ describes the true source of X: W2*”D(P”Q) < Q(T(P)) <2-nP(llQ)

— Equivalently: Q(T(P)) = 27 "Pll?) (see Section 2)

— This follows from the previous two results

2 Notation

We write «,, = (,, to denote equality on an exponential scale, or equality to first order in the exponent.
More precisely, we have
. 1 « 1 1
ap =fBp = —log— = ~loga, — —logf, = 0 asn— oo
n Bn n n
Example:
an =2 = a, =2"0F) where ¢, — 0 as n — 00

Convention for empty sets: The maximum over an empty set is negative infinity; the minimum is positive
infinity.



3 Sanov’s Theorem

The version of Sanov’s Theorem we consider bounds the probability that a function’s empirical mean exceeds
some value . We begin by introducing some notation and stating the theorem.

Notation:
We let M(X) denote all pmf’s on X. Then for P € M(X) and f: X — R we define the inner product:

(P.f) =) Pla)f(a) = Ex~p[f(X)]
a€EX
Theorem 1. A Version of Sanov’s Theorem:

For X;, itd ~ Q, and a function f: X — R:

1

= 9-nDy(a) <
(nt DR-1° = Pr(

D> f(X) > a) < (n+ 1)¥I-1g=nDn(e)
=1

w}Le’r@
D (a) = min D(Pl||Q
n( ) PG]P’,L:<1P,f>>a ( || )

As n — oo, the set of P,,, which has components that are integer multiples of % is dense in the set of all
probability mass functions. Specifically, we can approximate any P € M(X) arbitrarily well with a P, € P,
for large enough n. Thus, we have

1< .
Pr| - X)) >a]=2P@
r(n;f( >_a>

where

D*(a) = PeM(g{rgp,ﬁZaD(PHQ)

3.1 Geometric Picture

For this example, let |X| = 3, so our probability mass function lies on a plane in R3.

z

Figure 1: Set of pmf vectors in R?



We can look more closely at this equilateral triangle representing M (X).

P

D*(a) = D(P*|Q)
Figure 2: Set of possible pmfs M(X)
The slope of the line (P, f) = «, shown above in blue, is determined by f € R?, and the offset is determined
by a € R. We look for the point P* in the feasible set (in gray) that is closest to  under relative entropy,
i.e. D*(a) = D(P*||Q). Note that a larger a will shrink the feasible set by moving the line in blue upwards.
Thus, P* will be further from @, implying that the event in question has smaller probability.
By the LLN:

Pr (izﬂxi) ~ <Q,f>> ~ 1

In other words, this sum will be very close to the expected value of f under @Q. We can conclude

Pr (}1 S s 2 a>

is non-decaying for all a < (Q, f), as the probability will go to 1 (the exponential decay rate is 0). Geomet-
rically, this corresponds to a « such that @ is already in the feasible region, so D(P*||Q) = 0 for o < {(Q, f).

On the other hand, if o > (Q, f), we know that the probability will vanish. Sanov’s Theorem tells us that
it will vanish very (exponentially) rapidly and characterizes the exponent.

3.2 Example

Let X; iid ~ Ber(%). We wish to find the exponential behavior of the probability that the fraction of 1’s

generated exceeds some level a:
1 n
Pr (n Zl X; > a)
=

By LLN, if a < %, this probability goes to 1, and if 1 > o > %, the probability is vanishing. However, we do
not know how fast. Finally if & > 1, the probability is 0, so the associated exponent is infinite.



By Sanov’s Theorem applied to @ = Ber(3), f(0) =0, f(1) =1,

.

D*(a)

n

Zn:Xi > oz) =Pr (Tll Zf(Xi) > a) = 9—nD*(a)
=1

i=1

S|

where

II=

i 1
0<p<l, (Iggl(p)J)ZQ D (Ber(p) || Ber (2))

b . 1
= 0Bt o P (Ber(p) || Ber (3))

Juin D (Ber(p) || Ber (3))

0
= { D (Bex(p) || Ber (3))
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(a) follow from the fact that any binary distribution P can be written as a Ber(p) distribution for some p.
(b) follows from the fact that (Ber (p), f) = (1 —p)f(0) +pf(1)=0+p=rp.
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Figure 3: Plot of D*(«), the exponential rate of decay, for the example of a Ber(3) source.

We note that this is consistent with our intuition from LLN:
e a < 1= Pr(-) = 1 (exponential rate of decay is 0)
e 1 <a<1= Pr()— 0 (exponential rate of decay)

o 1 <a<1= Pr(-) =0 (exponential rate of decay is 0o)



3.3 Proof of Sanov’s Theorem

First we note

LS @) = 23 Nl
i=1 acX
= Z Pyn(a)f(a) (since Pyn(a) = w )
aceX
- <PLE"’ f>

Now since Q(T(P)) = Q({z™ : Pyn = P}) = Pr({z™ : Pyn = P}) we have

Pr<;zf(xi>za>= S Q(p)

PEP,:(P,f)>o

Upper Bound:

Y. QTP) <[P max  Q(T(P))

PeP, (P, f)>«a

<+ 1)¥T max 2P
PeP,: (P, f)>a

= (n+ 1)I¥I-lg=nminper, (p.p)>a DIPIIQ)
= (n+ 1)/¥I-1g=nDn(e)

Lower Bound:

Y, QIP)= m Q(T(P))

> ax
PEeP, (P, f)>a

> max A omD(PlQ)
= PeP,: (P f)>a (n + 1)I1XI-1
1

R — N M )
(n+1)1xl=1

QED

3.4 A more general Sanov’s Theorem
For X; iild ~ Q and S C M(X)

Pr(empirical distribution of X" € §) = 27" minres D(PIIQ)

Comment: This follows because, among the polynomially many terms in the expression for the probability
(each of which decays exponentially with n), the largest term (one that is closest to @) will dominate, and
this term will be the one with the smallest exponent, i.e., 2~ ™inres D(PIIQ)



