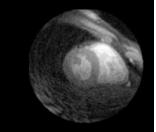
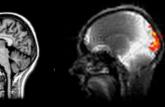


MR Imaging

- No radiation non toxic
- Flexible contrast
- Arbitrary imaging plane
- Many applications





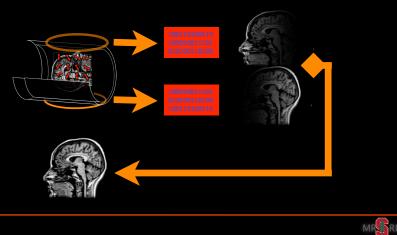
Cons.

• Inherent slow data collection

- Limits spatial resolution
- Limits temporal resolution
- Artifact in the image
- Possible solution: Faster imaging by reducing data (by exploiting redundancies)

<u>Redundancy I: Phased Array</u> Multiple receive channels

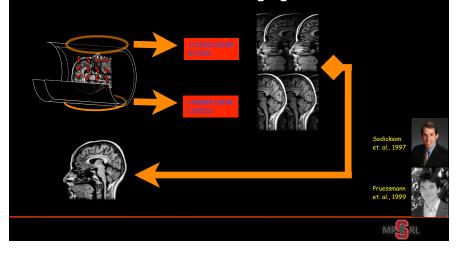
redundant data



¹ cardiovascularultrasound.com ² siemensehealthcare.com

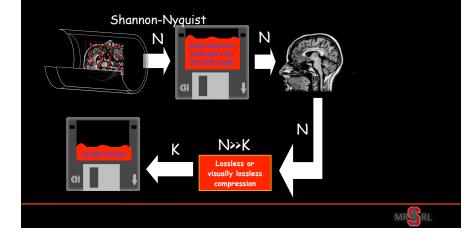
Parallel Imaging

Multiple receive channels reduced data - Parallel Imaging



Redundancy II: Compression

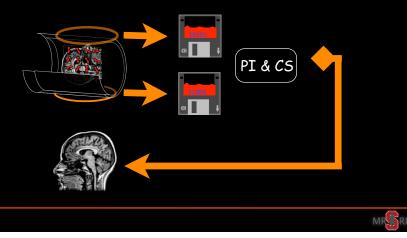
Most images are compressible Standard approach: First collect, then compress



<section-header><section-header><section-header><text>

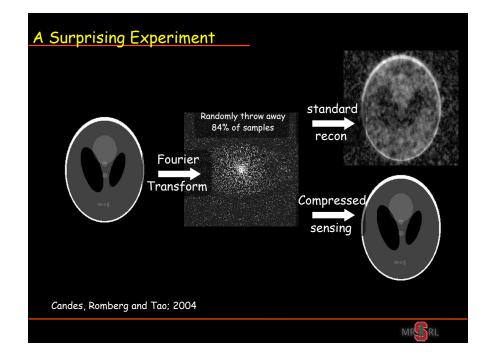
<u>Parallel Imaging + Compressed</u> Sensing

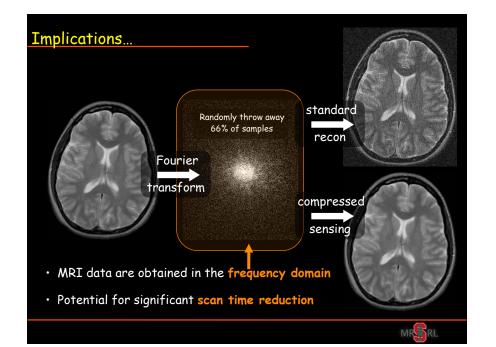
Synergy: multiple receivers + compressibility Faster imaging, or better images.

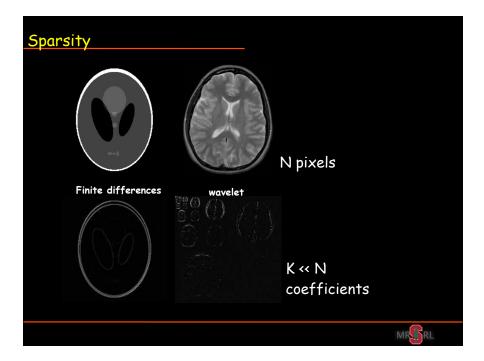


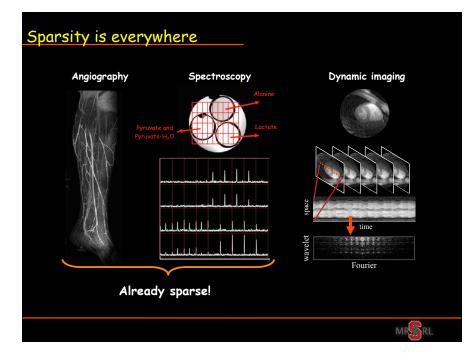
Outline

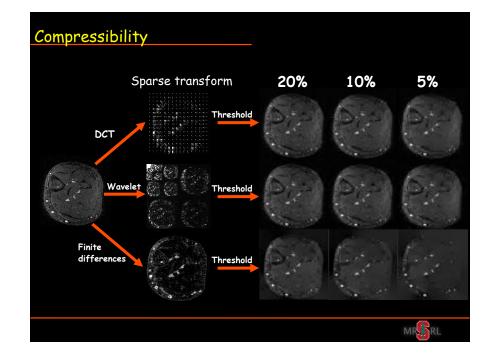
- Compressed review of
 - compressed sensing
 - parallel imaging
- parallel imaging + CS

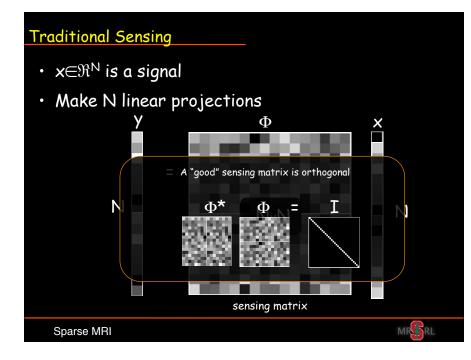


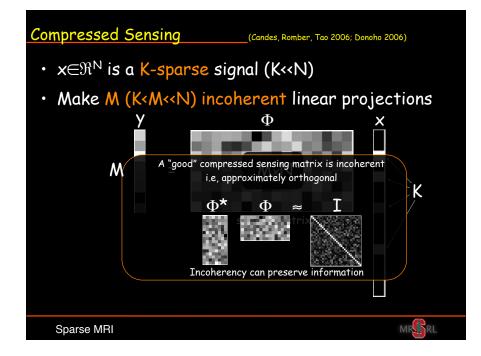






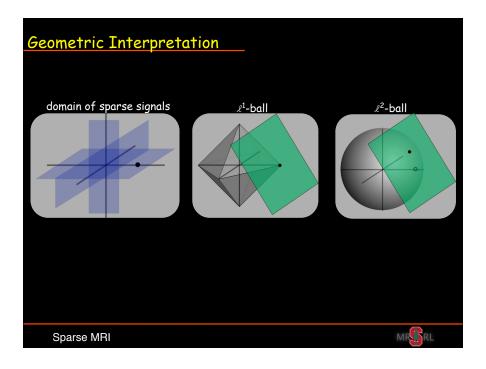






<text><text><text><text>

CS recovery• Given $y = \Phi x$
find xUnder-determined• But there's hope, x is sparse!• But there's hope, x is sparse!minimize $||x||_1$
s.t. $y = \Phi x$ need $M \approx K \log(N) << N$
Solved by linear-programmingSparse MRI



Practicality of CS

• Can such sensing system exist in practice?

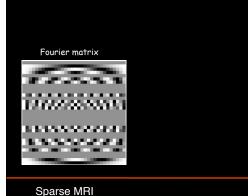
Fourier matrix



Sparse MRI

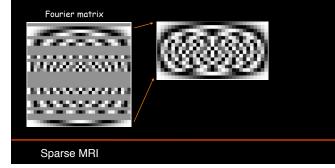
Practicality of CS

• Can such sensing system exist in practice?



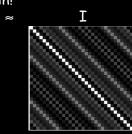
Practicality of CS

• Can such sensing system exist in practice?



Practicality of CS

- Can such sensing system exist in practice?
- Randomly undersampled Fourier is incoherent
- MRI samples in the Fourier domain! $\Phi^* \Phi \approx \Phi$



MR

Sparse MRI

Compressed Sensing

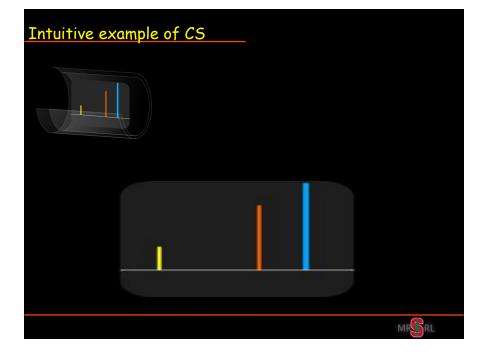
Ingredients:

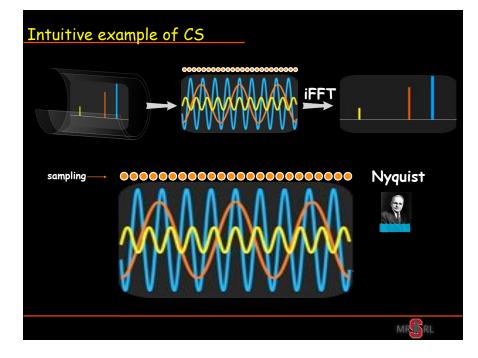
Compressible signals. (K<<N significant coefficients)

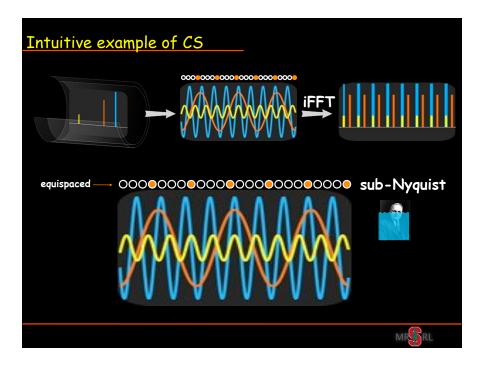
Incoherent measurements.

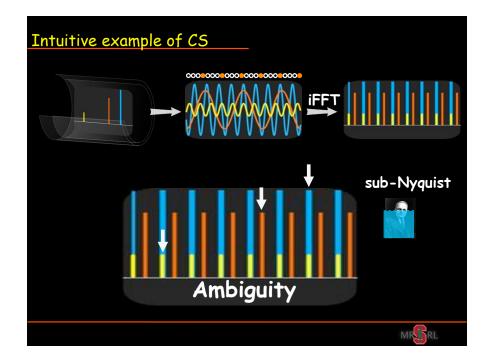
i.e., incoherent aliasing in the transform domain (randomly under-sampled k-space).

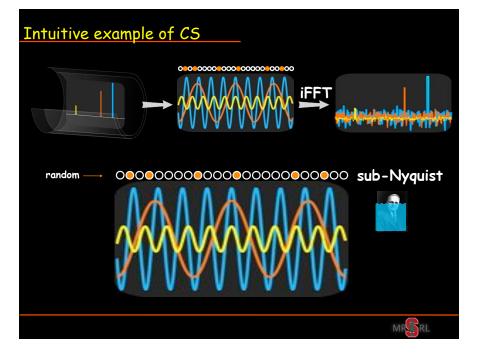
 Recovery by solving a non-linear convex optimization.

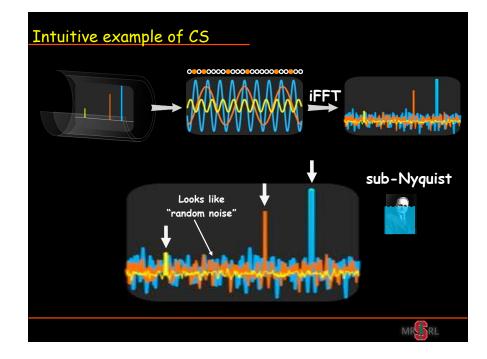


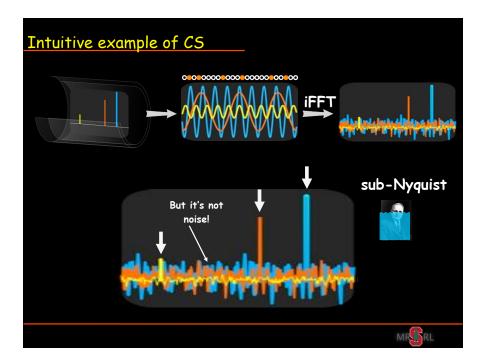


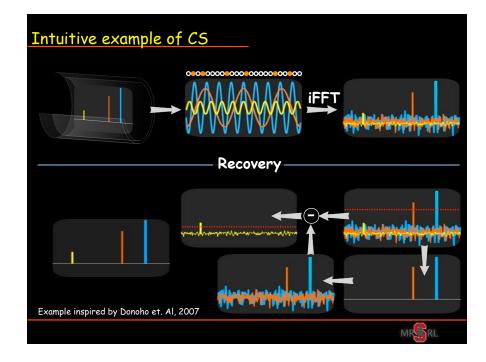


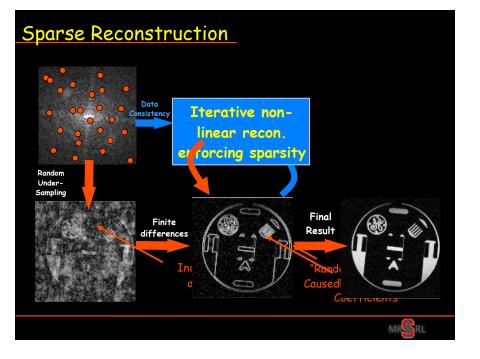




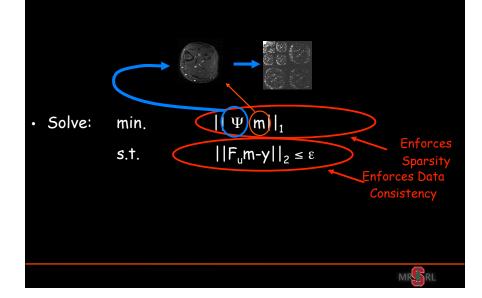


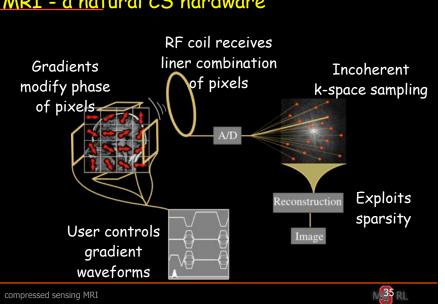


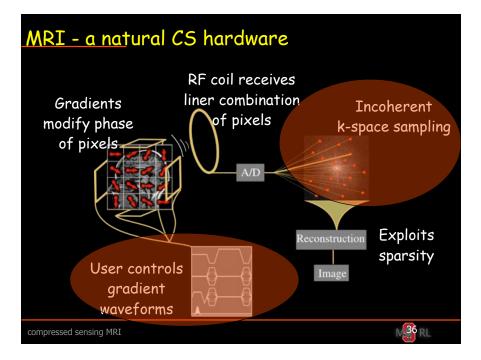




Sparse Reconstruction







MRI - a natural CS hardware

Incoherent Sampling

"Randomness is too important to be left to chance"*

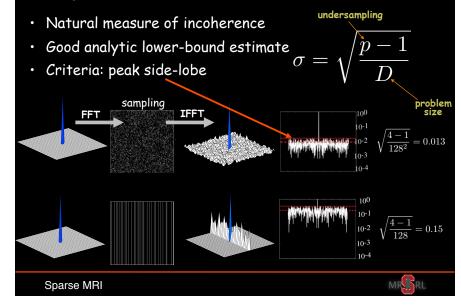
Metric of incoherency

compressed se

- Point Spread Function (PSF)
- Transform Point Spread Function (TPSF)
- Practical incoherent sampling schemes.

	*Robert R. Coveyou, Oak Ridge Nat	ional
nsing MRI	Laboratory	M37 RL

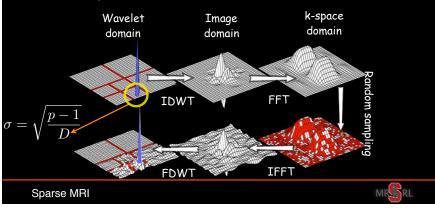
Point Spread Function (PSF)



<text><list-item>

Transform Point Spread Function (TPSF)

- Transform incoherency?
- Transform Spread Function (TPSF)
 - Similar analytic indicator
 - Look at peak side-lobe

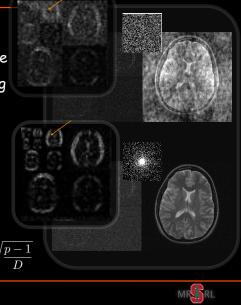


Variable density sampling

- k-space is **not** uniform
- Coarse-scale not sparse
- Coherent low-res aliasing
- Correct with variable density
 - Equalizes aliasing

Sparse MRI

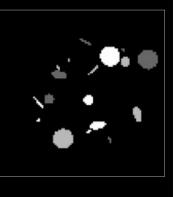
- Improve incoherence
- Faster convergence σ_{-}



Simulation

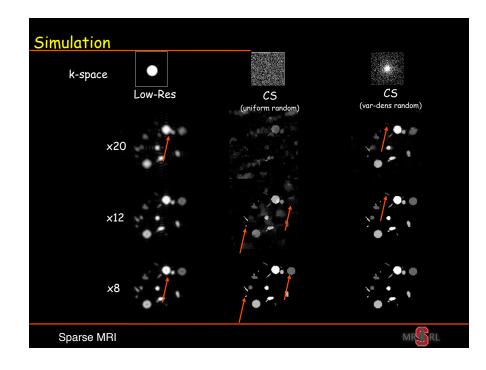
- 3 intensities
- 3 feature sizes
- Size: 100x100
- 5.75% pixels
- 4.25% finite-differences

Target: recon. artifacts with random under-sampling.



MR

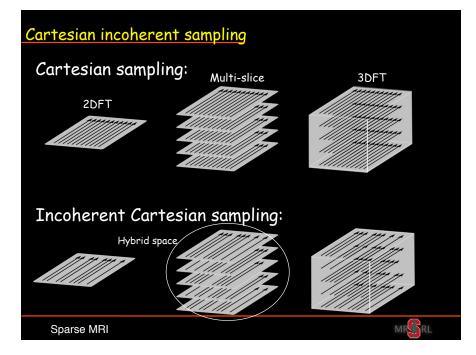
Sparse MRI



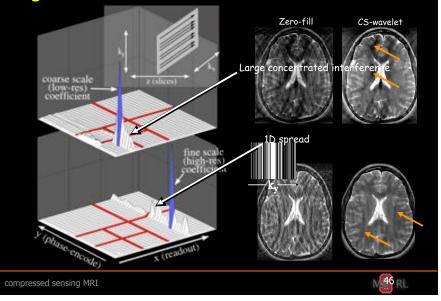
<u>Practical Incoherent Sampling Schemes</u>

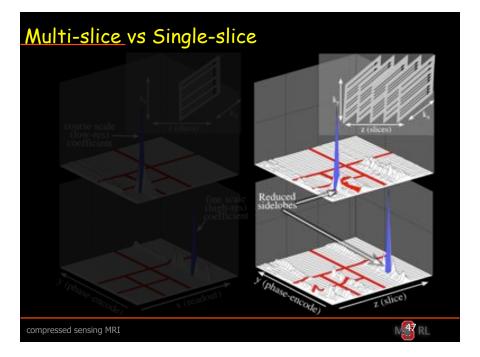
- "Pure random" sampling is impractical in MRI.
- Instead, design "effectively random" sampling.
 - Incoherent PSF/TPSF.
 - Efficient for hardware and application
 - Robust
- Tailor trajectory for application (Cartesian, spiral...)
- Randomly perturb to be "effectively random".

compressed sensing MRI

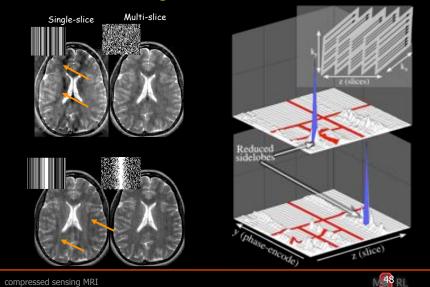


Single-slice 2DFT



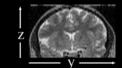


<u>Multi-slice</u> vs Single-slice

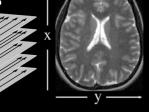


Multi-slice FSE brain

- Head scans are the most common MRI exams.
- Most brain scans are multislice.



• Use 80/192 phase-encodes x2.4

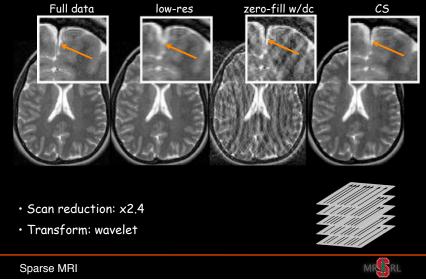


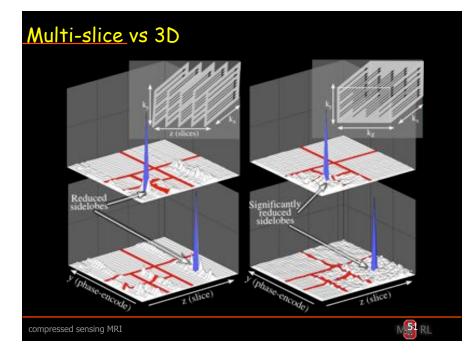
49 RI

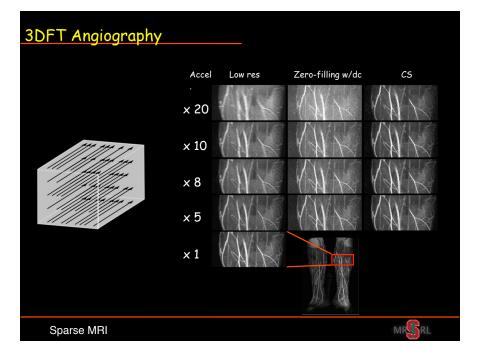
compressed sensing MRI

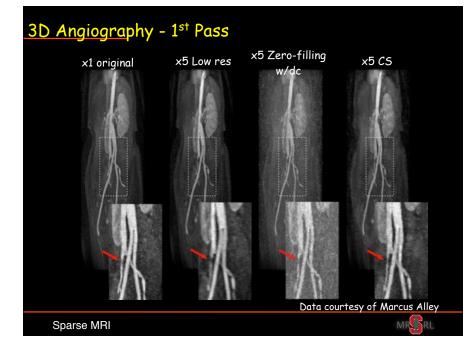
Full data low-res

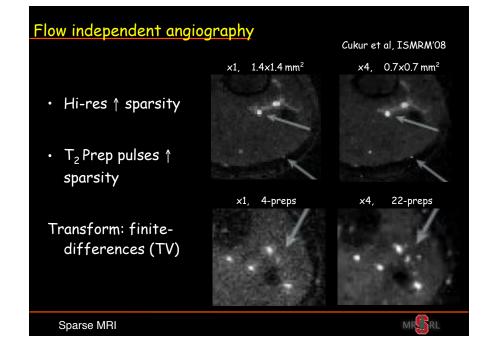
Multi-slice Brain Imaging

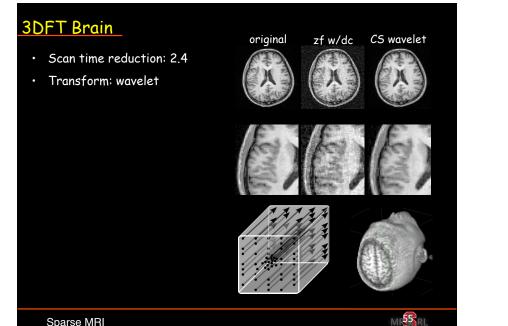






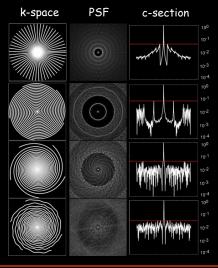






Non-cartesian sampling

- More degrees of freedom.
- Not as incoherent as random 2D sampling
 - But very close!

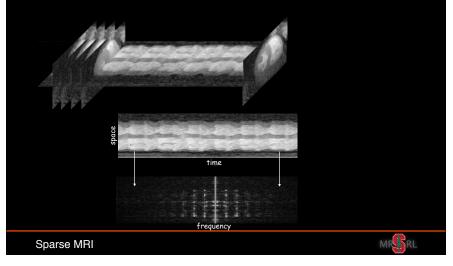


Sparse MRI

Non Cartesian CS	Santos, et. al, MRM 55:371-379 (2006)
Lustig, et. al, ISMRM '05	gridding CS
Gridding CS CS	block, et. al, MRM 57:1086-1098 (2007)
Sparse MRI	MR

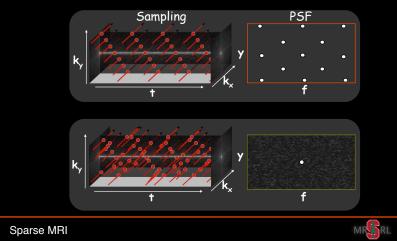
k-t SPARSE: Dynamic Imaging

Smooth& periodic signals have a sparse representation.



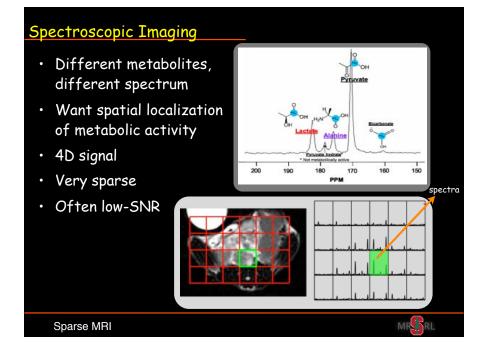
Dynamic Incoherent Sampling

- Random line ordering randomly samples k-t space.
- PSF is incoherent



Sparse in temporal frequency Sliding window k-t SPARSE True object Aim for better temporal resolution Image: Comparison of the temporal resolution Image: Comparison of the temporal resolution Image: Comparison of temporal resolution Sliding window k-t SPARSE Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window k-t SPARSE Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window k-t SPARSE Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window Image: Comparison of temporal resolution Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window Image: Comparison of temporal resolution Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window Image: Comparison of temporal resolution Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window Image: Comparison of temporal resolution Image: Comparison of temporal resolution Image: Comparison of temporal resolution Sliding window Image: Comparison of temporal resolution Image: Comparison of temporal resolution Image: Comparison of temporal resolution </t

Sparse MRI



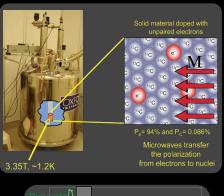
Hyperpolarization

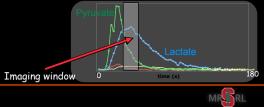
- Hyperpolarization \Rightarrow
 - >10,000 boost in signal
- Returns to equilibrium in ~1.5min
- Image metabolizm:
 Pyruvate ⇔ Alanin

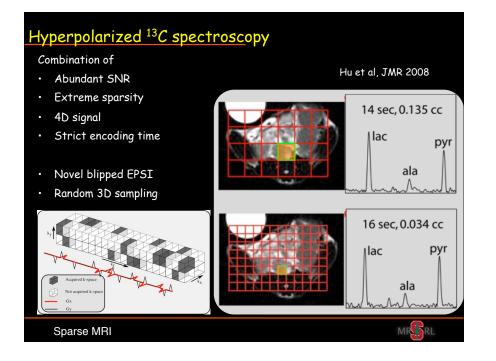
Pyruvate ⇔ Lactate

• Elevated lactate indicates cancer

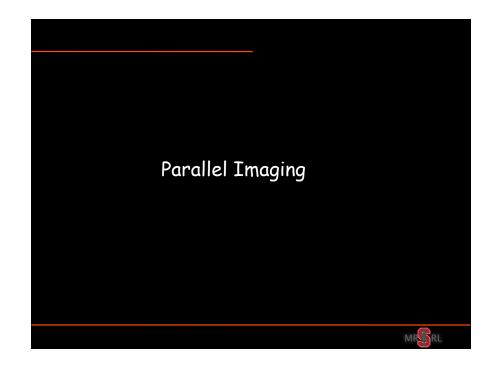
Sparse MRI







Compressed Sensing: 1. Sparsity/compressibility 2. Incoherent Sampling (random k-space) 3. Non-Linear reconstruction.



Parallel Imaging Methods

Sensitivity Encoding (SENSE)

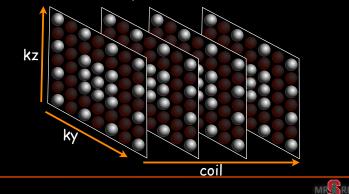
- Inverse problem
- Explicit sensitivity maps
- Optimal noise performance
- Reconstructs 1 image
- Less robust in practice

Autocalibrating (GRAPPA)

- Interpolation formulation
- Implicit sensitivity info.
- Not optimal
- Reconstructs individual coil images
- Robust in practice

Parallel Imaging as Interpolation

- Generalized sampling theory
- k-space vs. coil sampling domain
- Involves noise amplification

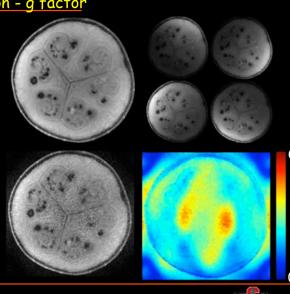


Noise Amplification - g factor

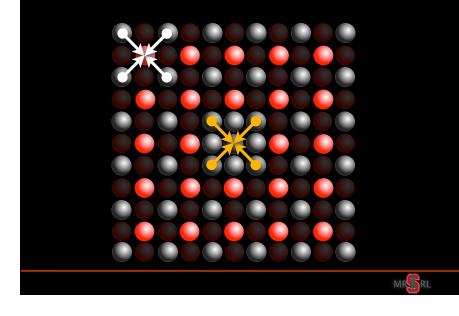
 Sensitivities not orthogonal

Pruessman et. al., 199

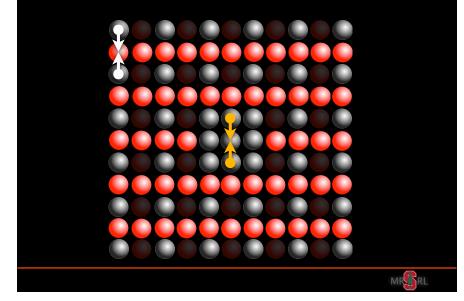
- Noise is amplified
- Worse when acceleration close to #coils

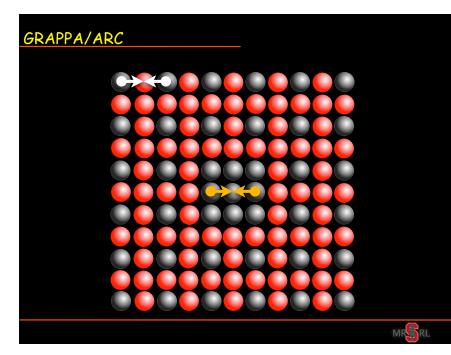


GRAPPA/ARC



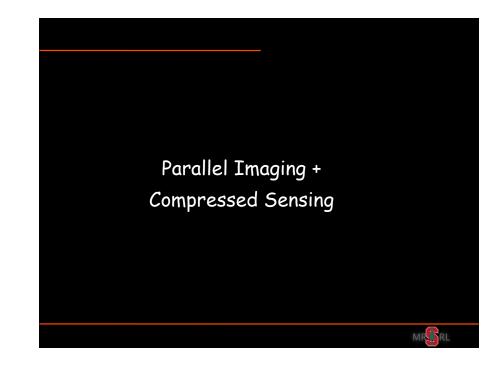
GRAPPA/ARC





Parallel Imaging

- 1. Multiple Channels
- 2. Acceleration limited by noise amplification
- 3. Rule of thumb: acceleration = 1/2 #coils



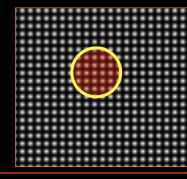
Tools

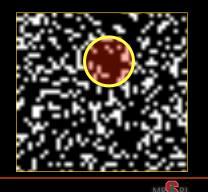
- New incoherent sampling
- New reconstruction
- Joint sparsity of multiple coil images

MR

Sampling with parallel imaging

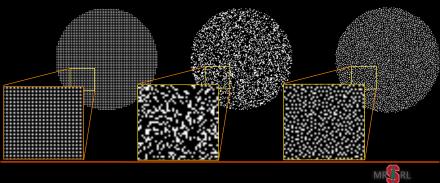
- Coil information is local in k-space
- Uniform sampling is not incoherent
- Random sampling has too many "holes"





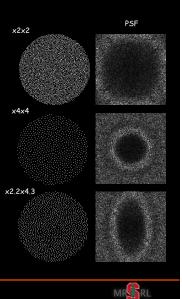
Incoherent Sampling

- Coil information is local in k-space
- Uniform sampling is not random
- Random sampling has too many "holes"
- Poisson-disk sampling is uniform and random

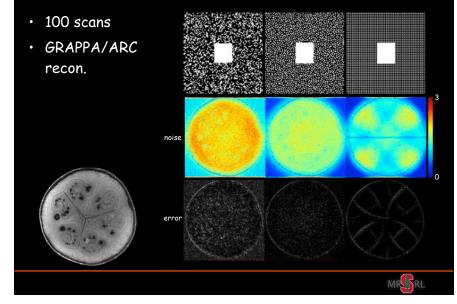


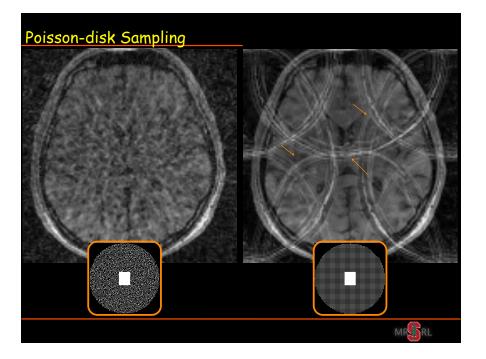
Poisson-disk Sampling

- Incoherent
- Fractional accelration
- Unisotropic acceleration
- Can reconstruct with traditional GRAPPA



Poison Vs random Vs uniform

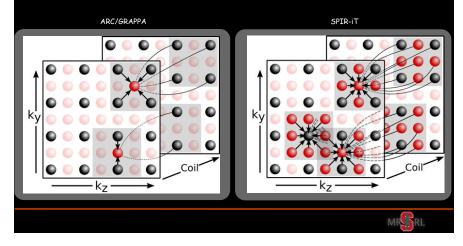




Reconstruction

• SPIR-iT:

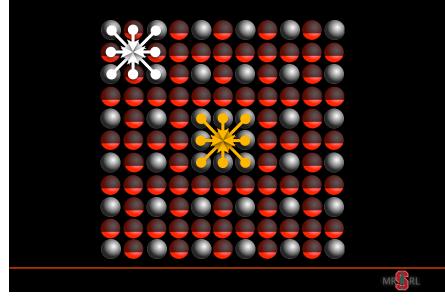
iTerative Self-consistent Parallel Imaging Reconstruction

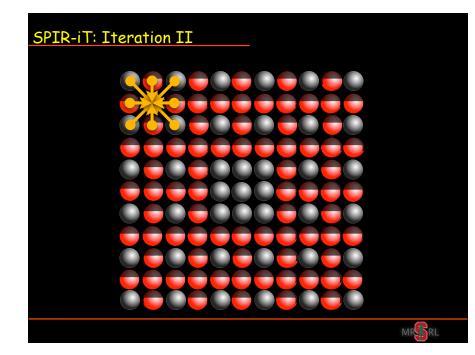


SPIR-iT

- Autocalibrating
- Only 1 calibration kernel
- Iterative
- Optimal data consistency
- Arbitrary trajectories
- Natural fit with CS

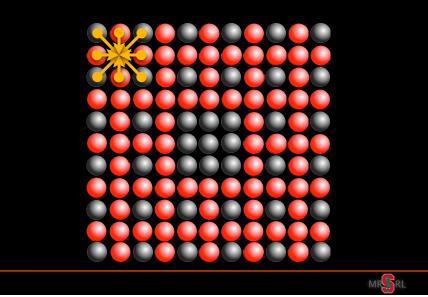
SPIR-iT: Iteration I





MR

SPIR-iT: Iteration III



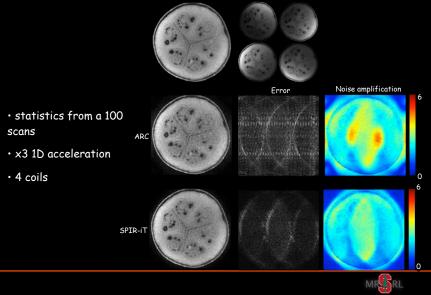
Calibration consistency

Gx = x

Acquisition consistency

 $x_{acq} = y$

SPIR-IT vs ARC/GRAPPA

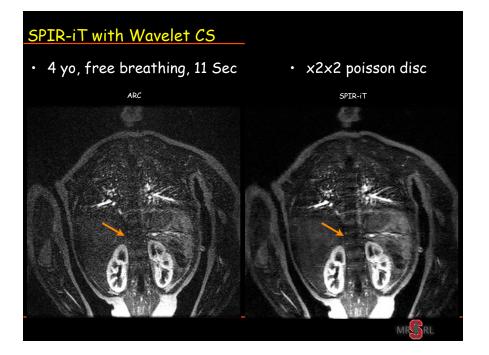


SPIR-iT with CS

minimize $||Gx-x||_2 + ||\Psi F^{-1}x||_1$

s.t. $x_{acq} = y$

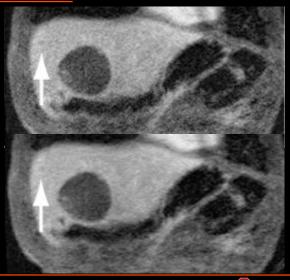
SPIR-iT with L1 Wavelet



<image>

SPIR-iT with Wavelet CS

- x5 acceleration
- 8 coils
- denoised
- Subtle features preserved



Summary

- Both compressed sensing and parallel imaging offer high accelerations.
- Both have limitation.
- But, when joined.... synergy!

Collaborators

Stanford

- John Pauly (EE-MRSRL)
- David Donoho (Statistics)
- Juan Santos (EE-MRSRL)
- Tolga Cukur (EE-MRSRL)
- Seung-Jean Kim (EE-ISL)
- Marc Alley (Radiology)
- Shreyas Vasanawala (LPCH/ Radiology)

- UCSF:
- Simon Hu (UCSF)
- Daniel Vigniron (UCSF)
- GE
- Phil Beatty (ASL west)
- Anja Brau (ASL west)

MR

• Kevin King (ASL)

Resources

- SparseMRI V0.2: matlab code, examples <u>http://www.stanford.edu/~mlustig/SparseMRI.html</u>
- Rice University CS page: papers, tutorials, codes, <u>http://www.dsp.ece.rice.edu/cs/</u>
- IEEE Signal Processing Magazine, special issue on compressive sampling 2008;25(2)
- Blog: <u>http://nuit-blanche.blogspot.com/</u>

Thank you! תודה רבה