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“Randomness is too important to be left to chance* ”

*R. Conveyo, Oak Ridge National Laboratory MR RL

MR Imaging

• No radiation non toxic 
• Flexible contrast
• Arbitrary imaging 

plane
• Many applications

MR RL

Cons…

• Inherent slow data collection
– Limits spatial resolution
– Limits temporal resolution
– Artifact in the image

• Possible solution:
Faster imaging by reducing data
(by exploiting redundancies)

1 cardiovascularultrasound.com 
2 siemensehealthcare.com MR RL

Redundancy I: Phased Array

Multiple receive channels
redundant data
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Parallel Imaging

Multiple receive channels
reduced data - Parallel Imaging
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et. al., 1999
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Redundancy II: Compression

Most images are compressible
Standard approach: First collect, then compress

Lossless or 
visually lossless 

compression
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Compressed Sensing

Instead: Compressed Sensing (CS)
First Compress, then reconstruct.

Lossless or 
visually lossless 

compression
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Candes et al. 
IEEE TIF ’06
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Parallel Imaging + Compressed Sensing

Synergy: multiple receivers + compressibility
Faster imaging, or better images.
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Outline

• Compressed review of 
– compressed sensing
– parallel imaging

• parallel imaging + CS
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A Surprising Experiment

recon

standard

sensing

Compressed

Randomly throw away
84% of samples

Transform

Fourier

Candes, Romberg and Tao; 2004
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Implications…

Randomly throw away
66% of samples

•  MRI data are obtained in the frequency domain

•  Potential for significant scan time reduction

transform

Fourier

recon

standard

sensing

compressed
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Sparsity

N pixels

waveletFinite differences

K << N 
coefficients

Text
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Sparsity is everywhere
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Alanine

LactatePyruvate and
Pyruvate-H2O

Angiography Dynamic imagingSpectroscopy

Already sparse!
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Compressibility

DCT

Wavelet

Finite 
differences

20%

Threshold

Threshold

Threshold

10% 5%Sparse transform

MR RLSparse MRI

N N

Traditional Sensing

• x∈ℜN is a signal 
• Make N linear projections

xy

=

Φ

sensing matrix

NxN

A “good” sensing matrix is orthogonal

Φ*      Φ    =      I

MR RLSparse MRI

sensing matrix

Compressed Sensing   (Candes, Romber, Tao 2006; Donoho 2006)

• x∈ℜN is a K-sparse signal (K<<N)
• Make M (K<M<<N) incoherent linear projections

x

=

Φ

MxN
K

sensing matrix

A “good” compressed sensing matrix is incoherent 
i.e, approximately orthogonal

Φ*      Φ    ≈      I

Incoherency can preserve information

M

y



MR RLSparse MRI

CS recovery

• Given y = Φx
find   x

• But there’s hope, x is sparse!

Under-determined

=

Φ xy

MR RLSparse MRI

CS recovery

• Given y = Φx
find   x

• But there’s hope, x is sparse!

minimize ||x||1 

s.t. y = Φx

need M ≈ K log(N) <<N

Solved by linear-programming

Under-determined

MR RLSparse MRI

Geometric Interpretation

domain of sparse signals l1-ball l2-ball

MR RLSparse MRI

Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix

MR RLSparse MRI

Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix

MR RLSparse MRI

• Can such sensing system exist in practice?

• Randomly undersampled Fourier is incoherent

Φ*    Φ             ≈               I

Practicality of CS

=

•   MRI samples in the Fourier domain!

MR RL

• Compressible signals. (K<<N significant 
coefficients)

• Incoherent measurements.  
i.e., incoherent aliasing in the transform domain 
(randomly under-sampled k-space).

• Recovery by solving a non-linear convex 
optimization.

Compressed Sensing

Ingredients:
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Intuitive example of CS

MR RL

Intuitive example of CS

iFFT

Nyquistsampling

MR RL

Intuitive example of CS

iFFT

sub-Nyquistequispaced

MR RL

Intuitive example of CS

iFFT

sub-Nyquist

Ambiguity
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Intuitive example of CS

iFFT

sub-Nyquistrandom

MR RL

Intuitive example of CS

iFFT

sub-Nyquist
Looks like 

“random noise”

MR RL

Intuitive example of CS

iFFT

sub-Nyquist
But it’s not

noise!

MR RL

Intuitive example of CS

iFFT

Recovery

Example inspired by Donoho et. Al, 2007
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Random
Under-
Sampling

Incoherent
aliasing 

Finite 
differences

Iterative non-
linear recon. 

enforcing sparsity

Data 
Consistency

“Random Noise”
Caused by aliasing 

Iterative non-
linear recon. 

enforcing sparsity

Iterative non-
linear recon. 

enforcing sparsity

Recovered
Coefficients

Final
Result

Sparse Reconstruction

MR RL

• Solve: min             || Ψ  m||1

   s.t.    ||Fum-y||2 ≤ ε
Enforces Data 

Consistency

Sparse Reconstruction

Enforces
Sparsity

.

compressed sensing MRI MR RL35

MRI - a natural CS hardware

Gradients
modify phase

of pixels

RF coil receives 
liner combination 

of pixels

User controls 
gradient 

waveforms

Incoherent 
k-space sampling

Exploits 
sparsity

compressed sensing MRI MR RL36

MRI - a natural CS hardware

Gradients
modify phase

of pixels

RF coil receives 
liner combination 

of pixels

User controls 
gradient 

waveforms

Incoherent 
k-space sampling

Exploits 
sparsity
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*Robert R. Coveyou, Oak Ridge National 

Laboratory

Incoherent Sampling

“Randomness is too important to be 
left to chance”*

• Metric of incoherency
– Point Spread Function (PSF)
– Transform Point Spread Function (TPSF)

• Practical incoherent sampling schemes.

√

4 − 1

1282
= 0.013

MR RLSparse MRI

• Natural measure of incoherence
• Good analytic lower-bound estimate
• Criteria: peak side-lobe

Point Spread Function (PSF)

√

4 − 1

128
= 0.15

sampling
FFT IFFT

σ =

√

p − 1

D

undersampling

problem
size

MR RLSparse MRI

The wavelet transform

• Wavelets are band pass filters

• Wavelet coefficients have both spatial and spectral 
information

high freq.
low freq.

frequencyspace

MR RLSparse MRI

Transform Point Spread Function (TPSF)
• Transform incoherency?
• Transform Spread Function (TPSF)

– Similar analytic indicator

– Look at peak side-lobe

Wavelet
domain

Image
domain

k-space
domain

IDWT FFT

FDWT IFFT

Random
 sam

pling

σ =

√

p − 1

D
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• k-space is not uniform
• Coarse-scale - not sparse
• Coherent low-res aliasing

• Correct with variable 
density
– Equalizes aliasing

– Improve incoherence

– Faster convergence

Variable density sampling

σ =

√

p − 1

D

MR RLSparse MRI

Simulation

• 3 intensities
• 3 feature sizes
• Size: 100x100 
• 5.75% pixels
• 4.25% finite-differences

Target: recon. artifacts with 
random under-sampling.

MR RLSparse MRI

CS
(var-dens random)

Simulation

x8

x12

x20

Low-Res CS
(uniform random)

k-space

compressed sensing MRI MR RL44

Practical Incoherent Sampling Schemes
• “Pure random” sampling is impractical in MRI.

• Instead, design “effectively random” sampling.
– Incoherent PSF/TPSF.
– Efficient for hardware and application
– Robust

• Tailor trajectory for application (Cartesian, 
spiral…) 

• Randomly perturb to be “effectively random”.
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Cartesian incoherent sampling

Cartesian sampling:

Incoherent Cartesian sampling:

2DFT

Multi-slice 3DFT

Hybrid space

compressed sensing MRI MR RL46

Single-slice 2DFT
Zero-fill CS-wavelet

Large concentrated interference

1D spread

compressed sensing MRI MR RL47

Multi-slice vs Single-slice

compressed sensing MRI MR RL48

Multi-slice vs Single-slice
Multi-sliceSingle-slice
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Multi-slice FSE brain

• Head scans are the most 
common MRI exams. 

• Most brain scans are multi-
slice.

• Use 80/192 phase-encodes
x2.4

MR RLSparse MRI

Multi-slice Brain Imaging

Full data low-res zero-fill w/dc CS

• Scan reduction: x2.4
• Transform: wavelet

compressed sensing MRI MR RL51

Multi-slice vs 3D

MR RLSparse MRI

3DFT Angiography

Low res Zero-filling w/dc CS

x 1

x 5

x 8

x 10

x 20

Accel
.
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3D Angiography - 1st Pass
x5 Low res x5 Zero-filling 

w/dc
x5 CSx1 original

 Data courtesy of Marcus Alley 

MR RLSparse MRI

Flow independent angiography

• Hi-res ↑ sparsity

• T2 Prep pulses ↑ 
sparsity

Transform: finite-
differences (TV)

x1,    4-preps x4,      22-preps

x1,    1.4x1.4 mm2 x4,    0.7x0.7 mm2

Cukur et al, ISMRM’08 

MR RLSparse MRI 55

3DFT Brain
• Scan time reduction: 2.4

• Transform: wavelet

original zf w/dc CS wavelet

MR RLSparse MRI

Non-cartesian sampling

• More degrees of 
freedom.

• Not as incoherent as 
random 2D sampling 
- But very close!

k-space PSF c-section



MR RLSparse MRI

Non Cartesian CS
Santos, et. al, MRM 55:371-379 (2006) 

CSgridding

block, et. al, MRM 57:1086-1098 (2007) 

Lustig, et. al, ISMRM ‘05
gridding

CS

MR RLSparse MRI

k-t SPARSE: Dynamic Imaging

• Smooth& periodic signals have a sparse representation.

frequency

time

sp
ac

e

MR RLSparse MRI

Dynamic Incoherent Sampling

• Random line ordering randomly samples k-t space.
• PSF is incoherent

t
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f

y

f

Sampling PSF

kx

t

ky

kx

MR RLSparse MRI

RT-dynamic cardiac

• Sparse in temporal 
frequency

• Aim for better 
temporal resolution

Sliding window k-t SPARSE

True objectk-t SPARSESliding window
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Spectroscopic Imaging

• Different metabolites, 
different spectrum

• Want spatial localization 
of metabolic activity

• 4D signal
• Very sparse
• Often low-SNR 

spectra

MR RLSparse MRI

Hyperpolarization

• Hyperpolarization ⇒ 

>10,000 boost in signal
• Returns to equilibrium in 

~1.5min
• Image metabolizm:

Pyruvate ⇔ Alanin

Pyruvate ⇔ Lactate

• Elevated lactate 
indicates cancer

M

0 time (s)

Lactate

Pyruvate

Imaging window 1800

MR RLSparse MRI

Hyperpolarized 13C spectroscopy
Combination of
• Abundant SNR
• Extreme sparsity

• 4D signal
• Strict encoding time

• Novel blipped EPSI
• Random 3D sampling

Hu et al, JMR 2008 
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Compressed Sensing:
1. Sparsity/compressibility
2. Incoherent Sampling (random k-space)
3. Non-Linear reconstruction.



MR RL

Parallel Imaging

MR RL

Parallel Imaging Methods
Sensitivity Encoding 

(SENSE)
- Inverse problem 
- Explicit sensitivity maps
- Optimal noise performance
- Reconstructs 1 image
- Less robust in practice

Pruessmann
et. al., 1999

Griswold
et. al., 2002

Autocalibrating 
(GRAPPA)

- Interpolation formulation
- Implicit sensitivity info.
- Not optimal
- Reconstructs individual coil 

images
- Robust in practice

• Generalized sampling theory
• k-space vs. coil sampling domain
• Involves noise amplification

MR RL

Parallel Imaging as Interpolation

coil

ky

kz

MR RL

Noise Amplification - g factor

• Sensitivities 
not orthogonal

• Noise is 
amplified

• Worse when 
acceleration 
close to #coils

6

0
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GRAPPA/ARC

MR RL

GRAPPA/ARC

MR RL

GRAPPA/ARC

MR RL

Parallel Imaging
1. Multiple Channels
2. Acceleration limited by noise amplification
3. Rule of thumb: acceleration = 1/2 #coils
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Parallel Imaging + 
Compressed Sensing

MR RL

Tools

• New incoherent sampling

• New reconstruction

• Joint sparsity of multiple coil images

MR RL

Sampling with parallel imaging

• Coil information is local in k-space
• Uniform sampling is not incoherent
• Random sampling has too many “holes”

MR RL

Incoherent Sampling

• Coil information is local in k-space
• Uniform sampling is not random
• Random sampling has too many “holes”
• Poisson-disk sampling is uniform and random
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Poisson-disk Sampling

x2x2

x4x4

x2.2x4.3

PSF

• Incoherent
• Fractional accelration
• Unisotropic acceleration
• Can reconstruct with 

traditional GRAPPA

MR RL

Poison Vs random Vs uniform

• 100 scans
• GRAPPA/ARC 

recon.

3

0

noise

error

MR RL

Poisson-disk Sampling

MR RL

Reconstruction

• SPIR-iT: 
iTerative Self-consistent Parallel Imaging Reconstruction

SPIR-iTARC/GRAPPA
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SPIR-iT

• Autocalibrating
• Only 1 calibration kernel
• Iterative
• Optimal data consistency
• Arbitrary trajectories
• Natural fit with CS

MR RL

SPIR-iT: Iteration I

MR RL

SPIR-iT: Iteration II

MR RL

SPIR-iT: Iteration III
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SPIR-iT equation

Calibration consistency

Gx = x
Acquisition consistency

xacq = y

MR RL

SPIR-iT vs ARC/GRAPPA

ARC

SPIR-iT

Error Noise amplification

• statistics from a 100 
scans

• x3 1D acceleration

• 4 coils

6

0
6

0
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SPIR-iT with CS

minimize ||Gx-x||2 + || ΨF-1x||1

s.t.          xacq = y

MR RL

SPIR-iT with L1 Wavelet

• 6 yo

• x4 acceleration

• noise reduction

ARC SPIR-iT
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SPIR-iT with Wavelet CS

• 4 yo, free breathing, 11 Sec • x2x2 poisson disc
ARC SPIR-iT

MR RL

SPIR-iT with Wavelet CS
ARC SPIR-iT

MR RL

SPIR-iT with Wavelet CS

• x5 acceleration
• 8 coils
• denoised
• Subtle features 

preserved

MR RL

Summary 

• Both compressed sensing and 
parallel imaging offer high 
accelerations.

• Both have limitation.
• But, when joined.... synergy!
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• Anja Brau (ASL west)

• Kevin King (ASL)

MR RL

Resources

• SparseMRI V0.2: matlab code, examples 
http://www.stanford.edu/~mlustig/SparseMRI.html

• Rice University CS page: papers, tutorials, codes, ….
http://www.dsp.ece.rice.edu/cs/

• IEEE Signal Processing Magazine, special issue on compressive 
sampling 2008;25(2)

• Blog: 
http://nuit-blanche.blogspot.com/

!Thank youהברהדות


