
1EE369C Fall 2020-21
Medical Image Reconstruction

EE369C: Assignment 2 Solutions

Due Thursday, Oct 1

Introduction This assignment introduces the basic operations in a gridding reconstruction algo-
rithm.

The data set for this assignment is a simulated phantom using a small spiral acquisition with
6 interleaves of 1536 samples. This is a typical trajectory for real-time cardiac imaging. With a
repetition time TR of 24 ms, this produces a new image every 144 ms, at a rate of 7 images/s. The
k-space trajectory, pre-weighting function, and simulated data are in the file:

http://www.stanford.edu/class/ee369c/data/rt_spiral_03.mat

The complex k-space data is in the matlab variable d, and the pre-weighting function is in the
matlab variable w. The k-space trajectory (kx, ky) is stored as k = kx+ i ∗ ky in the complex matlab
variable k. k is scaled relative to a ±kmax of ±0.5. The k-space trajectory doesn’t actually reach
±kmax, but is scaled to produce the right field-of-view when reconstructed as a 128x128 image.

We will start with a complete gridding routine that does all of the things we talked about
in class. Then we’ll go through the various parameters and look at what they do. The gridding
routine is gridkb.m which is available at

http://www.stanford.edu/class/ee369c/mfiles/gridkb.m

The call for the function is

% function m = gridkb(d,k,w,n,osf,kw,opt)
%
% d -- k-space data
% k -- k-trajectory, scaled -0.5 to 0.5
% w -- k-space weighting
% n -- image size (m will be osf*n X osf*n)
% osf -- oversampling factor (usually between 1 and 2)
% wg -- full kernel width in oversampled grid samples (usually 3 to 7)
% opt -- ’k-space’, ’image’, defaults it ’image’ if not specified
%
% m -- gridded k-space data
% p -- gridding kernel, optional
%
% Uses optimum Kaiser-Bessel window for a given
% oversampling factor and kernel size
% Now uses Phil’s numbers

You give it the data d, the k-space trajectory k, and your estimate of the precompensation function
w. You also specify the reconstruction parameters including the reconstruction size n, the over-
sampling factor osf (the returned image will be of size osf*n, you have to extract the middle n×
n part yourself), and the kernel size kw. It will return the gridded k-space data be default, or the
reconstructed, deappodized image if you specify the ’image’ option.

Given your parameter choices for oversampling factor and kernel width, it chooses the opti-
mum kernel based on the Beatty paper.



2

1. Effects of Reconstruction Parameters. For this problem will take the gridkb.m routine, and
show what the effects of some of the parameters are. The goal is that you would be able to recog-
nize these artifacts if you saw them in your own work.

a) Simple Reconstruction This example shows the effect of a minimum (1X) field of view,
along with a very simple interpolation. Reconstruct an image with a 128×128 size, an oversam-
pling factor osf of 1, a kernel width kw of 2 (effectively linear interpolation). The call would be

>> ima = gridkb(d,k,w,128,1,2,’image’);

Display your result. Use the imshow command,

>> imshow(abs(ima),[]);

where the [] argument tells imshow to automatically set the image range. You can set this yourself
if you’d like to whatever minimum and maximum values you’d like. For example, to set the range
to 0 to 64, use [0 64].

Solution The result is below:

Significant aliasing is apparent.

b) Oversampling Many of the problems in the previous reconstruction can be greatly re-
duced just by sampling on a finer grid, even with a very simple interpolation kernel. Repeat the
above, but use an oversampling factor osf of 2. Display your result. This should look better. Note
that we only care about the middle 128×128, the rest of the field of view contains aliased energy
that was folded back into the image in (a).

Solution The reconstruction for the 2X FOV, and the central 1X FOV shown in below:
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This looks much better!

c) Reduced Oversampling The problem with the 2X oversampling from part (b) is that it
takes much more memory, and FFT time. If we increase the kernel size, we can reduce the oversam-
pling ratio greatly, and still produce a high fidelity reconstruction. If we choose an oversampling
factor osf of 1.25, how big should we choose the kernel to limit the error to 0.1%? Reconstruct the
data with this kernel size and oversampling factor, and display the result.

Solution The reconstruction of the full 1.25X FOV and the central 1X FOV are shown in Fig. ??.
This used a kernel size of 5, from the Beatty paper plot.

d) Deappodization The gridkb.m function does the deappodization when you return an
image. This isn’t done if you return the k-space data. Reconstruct the k-space data yourself to see
what effect the deappodization has for the previous case (c).

>> kd = gridkb(d,k,w,128,1.25,5,’k-space’);
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>> imd = fftshift(fft2(fftshift(kd)));

where I’ve arbitrarily set the kernel size to 5. You should use your result from (c). Display this
reconstruction, and compare it to the previous one.

Solution Reconstruction without (left) and with (right) deapodization. There is a lot of apodiza-
tion to fix with a 1.25X oversampling factor.

2. Density Correction Estimation with Voronoi Diagrams For this problem, we will use a vari-
able density spiral data set of a simulated phantom. This has twice the sampling density near the
origin. The data is in var dens.mat, also in the data subdirectory. This contains the k-space
trajectory k, and the complex data d. The acquisition has 2048 points per spiral interleave, and
6 interleaves. The image matrix size is 128 by 128. Use a 2X grid for the reconstruction, and the
kernel width of 5 samples.

a) No Density Correction First, reconstruct the data with unity weighting (set all the values
of w to one). Display the reconstructed image with no density compensation.

b) Voronoi Density Correction Next, use the voronoidens.m routine from the mfiles
subdirectory to estimate the density on the data points using the Voronoi diagram. This routine
returns the area associated with each sample, which is the weighting function (i.e. 1/density). You
also need to devise a method for assigning reasonable values to the k-space samples at the edge
of the sampled region, since the voronoidens.m routine returns areas of NaN for these samples.

Display the resulting density compensated image. Note that the backround inside the circular
ring of the phantom has a DC level of 20% of the peak, and is not zero (i.e., this is not an artifact!).

Note: There are a few streaks in the reconstruction of this data set that may not go away. These
are subtle, but still noticeable.

Solution: The reconstruction with and without the Voronoi compensation are shown below:
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The density at the end was held at the last reasonable value before it blew up, which was 1e-4.


