next up previous
Next: LOT Experimental Results Up: EE368b Final Report Performance Previous: Introduction

The Lapped Orthogonal Transform

The LOT is constructed by designing a unitary transform the size of the entire one dimensional signal in consideration. The transform will be characterized by a single overlapping rectangular matrix. To be more specific, the transform matrix will have the form:

displaymath230

The tex2html_wrap_inline240 and tex2html_wrap_inline242 matrices are different to handle the beginning and end of the signal, and are not of large interest, since they have no influence on the asymptotic distortion of a reconstructed signal, as the signal becomes large in size.

Let the input signal be a column vector x, with transform output y. The relationship is then

gather10

where the tex2html_wrap_inline248 represents complex conjugate transposition. Suppose that we are examining a 512 by 512 image, and want to transform a column. Taking tex2html_wrap_inline250 to be an 8 by 16 matrix, would input blocks of size 16 and output blocks of size 8. Thus, the block that a DCT would input, is also inputed, along with 4 extra data points on each adjacent side of the block. Thus the transform stores the same amount of data as a block DCT, but takes neighboring blocks into consideration. Conversely, synthesis consists of combining the 8 basis vectors of length 16 linearly to obtain a portion of the block (the neighbors contribution is used to fill in the rest). It is the overlapping that will help alleviate the blocking effects, since the block boundaries no longer exist in synthesis.

Imposing the condition that T be a unitary transformation, leads to some conditions that must be satisfied by tex2html_wrap_inline250 . The columns of tex2html_wrap_inline250 , which represent the synthesis basis functions, must be orthogonal. In matrix notation,

displaymath231

and because of the overlap, functions of neighboring blocks must also be orthogonal. This becomes

displaymath232

where W is the shift matrix, defined by

displaymath233

Suppose tex2html_wrap_inline250 satisfies the conditions above, then for any unitary Z, it is easy to show that tex2html_wrap_inline264 also satisfies those conditions. Thus, for a fixed tex2html_wrap_inline250 , we can choose Z to diagonalize the output autocorrelation matrix

displaymath234

Assuming a first order Markov model, choosing a matrix Z to diagonalize tex2html_wrap_inline272 is optimal in terms of energy compactification of the transform coefficients.




next up previous
Next: LOT Experimental Results Up: EE368b Final Report Performance Previous: Introduction

Daniel Veiner
Wed Nov 29 20:06:15 PST 2000