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Abstract—Shape segmentation or recovery is an essential task
in image processing, especially in remote sensing imagery. Due to
the complicated imaging conditions, satellite or natural images
are usually noisy and blurred, which makes it challenging to
recognize the actual shapes of ground objects. In this project, we
aim at recovering shapes of natural and remote sensing objects
(e.g. aircraft) based on an MCMC sampling algorithm and opera-
tions learned from the class. We found that the MCMC sampling
algorithm often generates artifacts which impact the quality of
shape recovery. We propose a post-processing algorithm that
recovers the shape without artifacts. According to the test on
objects with different noise levels and real-world radar objects,
we demonstrate the effectiveness of our method.

Index Terms—Shape recovery, radar images, morphological
image processing.

I. INTRODUCTION

Shape modeling is one of the essential tasks in image
processing. [1], [2]. Accurate characterization of object shape
provides plenty of information for object detection [3], scene
understanding [4] and object tracking [5]. Typically, there are
two paradigms for modeling object shapes. The first paradigm
is object segmentation [6], which aims at separating the
contour of the object from its background. By doing this, we
can distinguish different objects in a scene by marking it with
different colors. This paradigm has promising potentials in
autonomous driving industry [7]. Another paradigm is called
object detection [8], which draws bounding boxes for each
object in the scene and mark it with different labels. By doing
this, we are able to recognize even tiny objects in a large scene.
And bounding boxes generated by object detection algorithms
are widely used as the initial states for object tracking [5].
Both two paradigms process, model and visualize the shape
of objects and show promising results with strong potential
applications in industry.

Recently, deep models, especially convolutional neural net-
works [9], achieve great success in object modeling [10]–[13].
For image segmentation, fully connected networks (FCN) [10]
shows promising results compared to other models. Instead
of segmenting by pixel, FCN takes tiles as input and out-
put segmentation map in an end to end way. Unlike other
deep models that contain fully connected layers or shortcuts.
FCN only use convolutional layers in its network structure,
which may benefit the efficiency of parallel computation. For
object detection, YOLO [13] is one of the state-of-the-art
object detection models. YOLO uses an innovative one-stage
architecture. Unlike traditional deep object detection models,
instead of using two networks for object localization and

classification, YOLO divides the image into small subblocks
and predict the object classes of each small blocks. Finally,
YOLO fit the detected blocks with different bounding boxes.
Due to its simplified but effective structure, YOLO is widely
applied in real-time object related image systems.

However, deep models have their own shortcomings to over-
come in both effectiveness and efficiency. First, deep models,
especially deep convolutional neural networks, are effective
in circumstances where a large number of training samples
are given for training and fine-tuning. Although images are
easy to collect, it is a challenging and time-consuming work
for us to annotate enough amount of training samples for a
customized object related task. Also, in some cases, we have
a relatively strong prior or background knowledge on the shape
of the object. At this time, even fine-tuning on deep models
seem less efficient. Second, it may be challenging for deep
discriminative models to perform object modeling on noisy
and incomplete data. The popularity of adversarial examples
[14] tell us that even a small change in the shape or texture of
the object can lead to totally different predictions. Therefore,
image processing methods that can compliment deep models
on the characterization of object shapes may have promising
potential application.

To tackle this issue, [15] proposed an MCMC shape sam-
pling method for shape recovery on incomplete objects. They
first constructed a strong shape prior by making 10 training
objects, each corresponds to a certain type of shape. Then,
they consider that training shapes as a high-dimensional prior.
Given a new image with the incomplete shape in it, they cal-
culate the posterior probability of the incomplete shape given
the shape priors. The shape prior to the largest probability
will be assigned to recover the incomplete shape. Finally, the
MCMC sampling algorithm performs sampling on each pixel
to calculate the probability of this pixel being the shape. The
pixels with probability above the threshold will be marked in
the image.

In this work, we aim at recovering shapes of objects on
low-quality images or images that some part of objects is
missing. We apply the code given by [15], [16] for incomplete
images. However, we find that there are holes and noise points
in the final output of object shapes, which indicates that the
MCMC algorithms alone may not be effective enough for the
shape recovery in noisy or incomplete images. To tackle this
issue, we propose a post-processing pipeline to remove the ar-
tifacts produced by the MCMC sampling algorithm and output
promising object shapes. Our contribution is summarized as:



Fig. 1. An overview of the proposed method, shape priors come from visualizing the mat file of [16]

• Propose an image processing scheme that can recover the
shape of objects with less noise from noisy or incomplete
images.

• Find the problem of MCMC shape recovery algorithm
[15] that it generates holes and artifacts in the output
shapes. Propose a post-processing method to remove the
artifacts.

• Perform our shape recovery algorithm on the different
level of noise and real-world incomplete objects imagery
obtained by Radar. Empirically demonstrate effective-
ness.

The organization of this paper is as below: the next section
we will introduce the algorithms we use in this work. In
Section 3, we perform experiments on two datasets using our
proposed methods. Section 4 concludes the paper.

II. METHOD

A. Overview

The overview of our method is demonstrated in Figure 1.
Given an object image with is incomplete and noisy, we first
perform the MCMC shape sampling algorithm described in
[15] to draw a raw shape prediction. 10 training shapes are
added as priors into the MCMC sampling algorithm. After
MCMC shape sampling, as described above, there are small

regions or artifacts generated by their implementation. To
tackle this issue, we add a post-processing algorithm after that
to get the final output.

B. Shape Recovery

The MCMC shape sampling algorithm proposed by [15]
contains three major steps. First, the algorithm chooses a
random class listed in the training set. In other words, choose
a shape in the training matrix, where each columns corre-
sponding to a training aircraft. Then, the algorithm calculates
the posterior probability of the test set given the shape priors
and try to sample the edge points. After, the transition ratio
of Metropolis-Hastings Sampling is calculated. If the ratio is
bigger than a threshold, the algorithm chooses another shape
and do sampling. For each iteration, the MCMC sampling
algorithm does it iteratively. After a certain time of iterations,
the shape will become stable. Finally, the stable shape will be
used as the output.

Generally, the MCMC sampling algorithm considers the
image of objects as a high-dimensional distribution. The main
problem behind this is that it may not take the relationship of
each pixel to its neighbors into consideration. In this sense, it
may generate noise points or small holes as shown in Figure 2.
Therefore, we think it is promising if we add morphological



Fig. 2. The output of MCMC shape sampling [15], [16]. We can see from
the results that there are some holes in the predicted left wing of the aircraft.

operations as post-processing for this task. As learned from
class, morphological operations contain a lot of operations
that take the neighbor of each pixel into consideration, which
captures the texture information for better performance. For
implementation of MCMC samping algorithm, we use work
described in [16] for validation that [15] do have problems
that requires post-processing.

C. Post-processing

The ideal output image should contain one unified target
shape with clean edges and without holes and noises. Nonethe-
less, the output shape from the model has many arbitrary
and small holes in the missing wing section (see Figure 2).
Region-removal and other techniques were applied to recover
the original complete shape of the flight.

A region is defined as a set of pixels that are connected,
and different types of connections could happen among pixels.
An 8-connected region considers pixels as connected if either
their edges or corners are touched. A 4-connected region only
counts pixels that connected through edges. Small 8-connected
regions in the foreground and background were first removed.
Large 4-connected regions were changed into outlines.

Due to the edge extraction process, extra lines were fre-
quently produced in the middle of the flight shape. In order to
remove these middle lines, for each row in which the distance
between the leftmost pixel and the rightmost pixel exceeds a
certain amount, only the leftmost pixel and the rightmost pixel
are kept in order to have a clean outline.

III. EXPERIMENTS

A. Overview

In this section, we conduct two major experiments on shape
recovery. The first experiment is an extension of paper [15].
As shown in the paper, the MCMC sampling algorithm can
recover the shape of the object such as aircraft in incomplete
images. However, there is no demonstration on the MCMC
sampling algorithm’s effectiveness in recovering shapes from
noisy and incomplete images. In our work, we extract the
noise from real Synthetic aperture radar (SAR) images and
add it on the original aircraft images presented in [15]. Then
we perform the proposed scheme to obtain the recovery. The

second experiment is with more practical usage. We obtain a
big tile of Synthetic aperture radar (SAR) images with about
30 aircraft in it. We crop some of the aircraft and aim to
recover the shape from noisy and blurred SAR imagery.

B. Dataset

Two datasets, the aircraft dataset, and the SAR remote
sensing dataset were used in the current project. The aircraft
dataset includes artificially generated binary aircraft images
as shown in Figure 4. In the dataset, we have a training set
and a test set. The training set has 10 flight instances and
each instance represents a unique flight shape category. The
test set has another 10 flight images with the missing left
wing. To predict the shape of a particular test flight, all 10
training flights were used. This procedure ensured the model
to learn from a diverse set of possible flight shapes and to
make the prediction on a new flight instance with missing
components. In our experiment, for each test image, we add
the noise extracted from the background of a SAR imagery.
With this procedure, we are able to see if our proposed scheme
can recover shapes with different noise levels.

Synthetic aperture radar (SAR) has been widely used for
Earth remote sensing due to its capability of penetration, high-
resolution imaging and the ability to acquire rich information
about targets. The SAR dataset contains 30 aircraft images
obtained from radarsat 2 satellite. All aircrafts have the same
shapes. An example image is shown in Figure 4. We construct
one shape prior to the optics imagery from DigitalGlobe of one
of the 30 aircrafts and try to recover the shape of the SAR
aircrafts from this shape prior.

C. Noise Extraction

To test how robust the model is in noisy backgrounds, we
modified the aircraft dataset by extracting noises from the SAR
dataset and adding to the test images. The modified aircraft
test images are shown in Figure 7. Given a true SAR image
from radarsat 2, we focus on the dark area. As presented in
homework, we extract the dark region to model the SAR noise.
After that, we add 64× 64 noise tile to the test aircraft set as
1-time noise. We can also multiply the noise by 2 or 3 times
and added to the test aircraft set. Therefore, we can test our
method’s robustness in a different level of noise. The aircraft
shapes with noise added are also shown in Figure 7.

D. Shape Prior Construction for SAR aircrafts

To test the performance of our model on shape recovery
of SAR aircrafts, we obtain the corresponding Google Earth
optics imagery of same location to build the shape priors to
each aircraft. We first perform canny edge detection on the
optics imagery to get the edge of objects. The detection results
are shown in the Figure 5. Then we crop one of the plane at
SAR image (shown in Figure 6), and its corresponding shape
by canny as a prior pair. We perform erode and dilate on the
edge detected to get the same type of priors as aircraft dataset.
The final pair of prior is shown in Figure 8.



Fig. 3. The post-processing pipeline.

Fig. 4. (a)An example input image from the aircraft dataset. (b) An example
input image from the SAR dataset.

Fig. 5. The results of objects in optics imagery after Canny edge detection.

E. Results

In this section, we present the results of two experiments.
In both experiments, the training set and test set are separated.

• Train on 10 shape priors. Then try to recover the shape
of an aircraft from an incomplete image. Different levels
of noise from SAR images are added.

Fig. 6. The original SAR imagery of the same location with 5

• Train on 10 shape priors with 9 from aircraft dataset and
one is SAR shape prior constructed as Figure 8. Try to
recover the shape of an aircraft from its SAR imagery.

The best results of the first experiment are presented in
Figure 9. We can see that our method is able to recover the
shape of the aircraft with less holes. Although there are outputs
of our method deviate from the actual shape, compared to the
MCMC shape sampling algorithm [15], we provide a more
precise shape description. The problem of mismatch of shapes
may come from the wrong shape priors provided my MCMC
algorithm.

The best result of the second experiment are presented
in Figure 10. The left is the recovery result of us and the
right is the ground truth. We can see that the orientation is
still different and there are noise points inside or outside the
shape. Because both the training and test set are aligned, this
orientation may come from the moderate deviation of MCMC
sampling algorithm. The recovery result is generally not as
good as aircraft dataset as SAR is really a hard task.

For the processing method, we implement the data pre-
processing, augmentation, shape prior construction and post-



Fig. 7. The top image shows noise extracted from an example image in the SAR dataset. The bottom shows two input shapes after adding 1 level and 2
level noise.

Fig. 8. The shape prior constructed based on the edge detected in the optics
imagery.

Fig. 9. The resulting output shape from input images with noise level 1.

Fig. 10. The resulting of SAR aircraft object. Left is our prediction while
the right is the ground truth generated by optics image.

processing algorithm. We use the code from [15], [16] for
MCMC shape sampling. The whole experiments are imple-
mented on Windows Machine with MATLAB.

IV. CONCLUSION AND FUTURE WORK

Shape recovery from incomplete and noisy imagery is a
challenging task in image processing. In this work, we intro-
duce an image processing paradigm for recovering the shape
of aircraft from its incomplete and noisy imagery. We first
find the problem of a state-of-the-art shape recovery algorithm



[15] that it generates holes and noise in the output. Then,
we propose a series of post-processing method to produce a
good final output. On the other hand, we test the algorithm
on the noisy radar imaging environment. We find that our
algorithm can recover the shape of aircraft in a good way.
A further experiment on real-world SAR object recovery
also demonstrates the effectiveness of the proposed method,
especially post-processing algorithm. The future work will
be focused on extending this method for shape recovery on
objects with different orientations.
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