
Drawings from Photos
Hubert Hua Kian Teo
Computer Science dept.

Stanford University
hteo@stanford.edu

Gael Colas
Aeronautics and Astronautics dept.

Stanford University
colasg@stanford.edu

Andrew Deng
Electrical Engineering dept.

Stanford University
andrewde@stanford.edu

Abstract—Many digital artists specialize in producing stylized,
non-photo-realistic (NPR) digital paint drawings. These lovingly-
created drawings can be very expressive and incorporate unique
aesthetic decisions that become part of the artist’s style. Our goal
is a form of image translation: to produce NPR drawings from
real-world photographs.

I. INTRODUCTION

Graphic manipulation software such as Adobe Photoshop
provide built-in ”filters” to apply effects on images. Some of
these are dedicated to achieving the effect of NPR digital
paint drawings. However, they are not easily customizable
and require a decent amount of user tuning and manipulation
to produce a desirable result. Our project aims at building
a ”Photo2Drawing” pipeline to automatically achieve image
translation from photos to drawings. Pipeline components are
build using Digital Image Processing techniques. The pipeline
can be decomposed in two main parts: getting the contour
edges of the drawing and applying the colors. We extended our
deterministic image translation method to a more customizable
method that allows extensive artistic control over the result.
For each pipeline components, we identified hyperparameters
that we gathered into meaningful user-oriented customization
axis. Finally, we provide a Graphical User Interface (GUI) to
dynamically tweak the result along these axes.

II. DATASET

Due to time constraints, we restricted ourselves to photos
of faces. These are also a good choice for translation to
digital paintings because portraits are a common subject for
digital paintings. The advantage of using only face pictures
is that the images have similar contents and are more easily
comparable. In addition, they still offer a lot of diversity in
many aspects: image quality, variety of colors, lighting and
background. Moreover, image translation on face images is an
important sub-task considering the current “selfie” trend. For
example, the mobile application Snapchat provides users with
a wide variety of filters to apply on their selfies. Our method
could be one of them.

We used the ‘Labeled Faces in the Wild’ Face dataset
[1]. This dataset was generated by scraping the Internet for
celebrities face photos. It is composed of 13,000 celebrities
face photographs. All the images have been resized to the
same size: 250× 250 RGB pixels.

III. PREVIOUS WORK ON NPR COMPONENTS

There has been previous work on each of the intermediate
goals of our ”Photo2Drawing” pipeline: line-sketch genera-
tion, region of interest selection, color generation and final
blending. This section aims both at presenting these state-of-
the-art methods and explaining how they fit in our pipeline.
We believe that a pleasing result can be obtained by producing
several NPR components from a source image and blending
them together.

A. Line-sketch generation

The first component of our pipeline aims to automatically
generate a line drawing of the image, representing what an
artist would do to outline the edges and fine details of the
photo.

1) Canny edge detection
Gradient-based edge detection offers a simple method
to extract a line drawing from a photograph. We used
the Canny edge detector. This algorithm produces bi-
nary representations of the lines in the photographs.
By changing the detection threshold, the amount of
detected edges can be tuned. Effectively this changes
the granularity of the line-sketch. Finally our component
dilates the edges with a structuring element. The size
of the structuring element can be adjusted to match
the preference of the user: a bigger structuring element
means thicker edges.

2) Line-integral convolution (LIC)
We also considered line-integral convolution methods
[2] [3] because they promise to provide more control
over the result.
These methods produce a pencil sketch image by sepa-
rately choosing the directions of the pencil strokes, and
where the strokes are placed. The local direction of the
strokes is determined by a vector field, and the stroke
placement is determined by a black and white noise
image, where each black pixel on the white background
represents a stroke. LIC then moves a particle backwards
and forwards in the vector field starting from each pixel
position, samples the noise image at equal intervals over
that streamline, and convolves those samples with a
kernel to produce the final pixel color. The effect of
this is to smear each black pixel along the vector field’s
direction, producing a result not unlike pencil strokes.



(a) Region labels used for
vector field processing.

(b) Streamlines in the result-
ing vector field.

(c) Noise image used in con-
volution.

(d) Result obtained by con-
volving the noise result.

Fig. 1: LIC-based pencil sketch generation pipeline

In our implementation, we used a variant of the method
from [2] to extract vector fields and produce noise
images. First, image gradients are computed and rotated
by 90 degrees, and then flipped so that all vectors point
to the right. The rotation and flipping ensure that the
vectors will be parallel to any preexisting striped region.
Next, we segment the image into connected regions
based on the watershed method, merging 8-connected
pixels together in the order of lowest euclidean distance
in Lab space. For each region, we then snap all vectors
to the mean vector direction if the variance in their
direction is above a certain threshold. This produces
many regions with vectors pointing in roughly the same
direction. For speed, we used FastLIC [4] for the con-
volution. See Fig. 1 for an illustration of the overall
process.

B. Regions of interest identification

The next component considered was to identify regions
of interest. These regions could be used to allow for more
control in the other pipeline steps. Examples of strategies
taking advantage of the region of interests would be to only
extract line sketches from regions of interest or only use colors
from regions of interest to generate the final colors. Finally if
the faces had been well identified by this method we could
have used this component to get rid of the background.

We experimented with saliency-based masks for automatic
region identification. Based on existing work using saliency
maps for spot coloring [5] [6], the idea was to extract the
saliency values for each pixel in the image as a measure of

how visually important each pixel was and use binarization
with some post-processing to form contiguous regions.

Saliency values were computed using the color L2-distance
between pixel colors. To avoid excessive computation, color
values were quantized into 12 values for each channel. Quan-
tization in the RGB-space yielded better results. The corre-
sponding 3D-color histogram of dimensions 12×12×12 was
formed of to count the occurrence of each distinct quantized
color. Saliency was computed for every discretized color with
nonzero count as:

S(C) =
∑
Ck∈C

nk‖C − Ck‖2 (1)

where C is the set of all of the quantized colors and nk is
the count in the color histogram bin for color Ck. Finally the
saliency values were normalized to be between 0 and 1.

Replacing each color pixel with its associated saliency pro-
duced a grayscale image called a saliency map. Otsu’s method
was used to binarize the map into foreground and background.
The idea was that visually distinct regions would have high
salency scores. Finally the binarization process produced both
small noise pixels as well as holes, so morphological image
processing was applied to eliminate these flaws in the mask.

The parameters tuned for this experiment include the quan-
tization factor and the binarization threshold. It was found
that increasing the quantization factor resulted in significantly
longer computation time (cubic increase in number of bins),
and decreasing it resulted in larger regions that failed to
capture boundary details between some of the more similar
regions. An axis quantization in 12 bins was found to be a
good trade-off. Finally the binarization threshold was com-
puted using Otsu’s method by default. However, it can also be
fixed by the user for customization purpose. For the majority
of photos in the dataset it was found that choosing a base
threshold of 0.4 achieved good results.

C. Color generation

1) LAB-space k-means clustering A simple method to
select the colors of the output drawing is to perform
clustering on the pixels colors. K-means clustering was
used to compute the clusters. The clusters were then
used as a fixed color palette to re-render the photograph:
each color pixel in the input image was replaced by the
closest cluster. This allows us to effectively reduce the
number of colors used while preserving the overall color
information of the input. Finally, customizable transfor-
mations allow us to exaggerate or minimize color dif-
ferences. In particular, we can apply a γ transformation
to the the maximum LAB-channel of the color cluster
with the power hyperparameter γ ≤ 1 to amplify/subdue
color differences.

2) Color from region segmentation The goal is to ensure
that different regions of the images are assigned different
colors, to preserve the structure content of the input.
The idea is to use a region segmentation algorithm to
identify what are the different regions of the image. Then



for each region, assign the mean color value to every
belonging pixels. The averaging was done in the LAB-
space that better accounts for human color perception.
As in the previous method, the power hyperparameter
γ ≤ 1 can be changed to amplify color differences.
Let’s describe the region segmentation algorithm in
more details. First, opening-closing by reconstruction
is performed on the grayscale version of the input
image to sharpen the transitions between regions. Then
a Sobel gradient-based edge detector is applied to detect
the region edges. Finally, region labeling is run on
the complement binary image to identify the distinct
regions. Fig. 2 shows the region segmentation steps on
an example. The threshold of the edge detector can
be modified by the user. A smaller threshold implies
that more edges thus more regions will be detected.
The output image will have more colors and be more
detailed.

D. Blending

To get the final drawing output, the line sketch is applied on
the generated colors. The pixels lying on the line sketch are
replaced with gray pixels. The color of the line sketch can be
chosen by the user. Finally to give some depth to the drawing,
we apply an element-wise product between the drawing and
the grayscale version of the input image.

IV. ANALYSIS

This section explains how we chose the NPR components
of our final model.

A. Line-sketch generation

We found that the only meaningful control over the line
sketch result was the pencil stroke length. Tuning the threshold
at which a region’s vectors are snapped to the same mean
vector does not change the result much. We eventually chose
a threshold of 0.5. Larger and smaller values simply result in
less interesting and overly messy vector fields, respectively.

To select the appropriate line length, we generated LIC
results for all line lengths from 2 to 20 pixels. Then, we
selected a line length of 12 for the final result, as it offered
a good balance between long and perceivable strokes having
fine details that are not overly smeared.

B. Region of interest selection

The saliency computation is purely based on color distances.
This made the results often unsuitable for the purposes of
generating appropriately styled drawings. For example, if a
person’s face had a similar color as most of the background
pixels, it would be identified as visually unremarkable. For the
system’s use case it was desired that faces should be always
selected as regions of interest, so this region identification
scheme was not used in the final pipeline.

Another characteristic of the saliency method for region
identification that made it unsuitable for the final product
was the end result of the morphological image processing

techniques. Even after experimenting with multiple different
structuring element types, the regions produced were often
misshapen in some way that would impact the appearance
negatively if it were used in the pipeline.

C. Color generation

Performing the k-means clustering in the RGB-space led to
visually unpleasing results. The first defect was that a lot of the
output clustered images had a ’brownish aspect’. Indeed, due
to the space taken by the face in the image, a lot of the pixels
had brown colors. This was also seen when the background
had one predominant color. The second defect was that RGB-
clustering led to ’bleeding colors’ issues. Some regions that
appear as distinct on the input were assigned to the same RGB-
cluster.

Performing the k-means clustering in the LAB-space solved
some of these issues. The overall result is more pleasing for a
human viewer. We observed more vivid colors assigned to each
regions: the color centroids are more perceptually separated.
Indeed, the color distances in the LAB-space corresponds more
closely to the difference in colors perceived by humans. This
can be seen easily on Fig. 5: the red tie of the input is assigned
to the same red cluster as the red background in the LAB-
clustering. In the RGB-clustering it was instead assigned to
the same gray cluster as the suit.

V. MODELS

A. Baseline

NPR components:
• Line-sketch generation: Canny edge detector;
• Color generation: LAB-space k-means clustering.
Fig. 6 illustrates the baseline pipeline steps on an example.

B. Final model

NPR components:
• Line-sketch generation: Line-integral convolution;
• Color generation: Color from region segmentation.

VI. CUSTOMIZATION AXES

We provided the user with tuned hyperparameter presets.
But he is also able to control the result by selecting parameters:
tweaking knobs that change the components parameters. To
make this easy to use, we gathered the hyperparameters into 2
meaningful axis: realism and amount of details. This axis are
tweaked in a Graphical User Interface (GUI) we implemented,
see Fig. 7.

A. Controlling realism

The user can control the realism of the result (how close
to the input it is) by choosing the parameter λr in the ’screen
blending’ between the pipeline output imdraw and the initial
image imrgb. The screen blending output image is given by
the following formula:

imout = 1− (1− λrimrgb)(1− (1− λr)imdraw)



Fig. 2: Color region segmentation steps on an example

Fig. 3: An example of the region identification failing to
identify a person’s face

Fig. 4: An example of the output of the saliency region
identification system showing the ugly jagged boundaries of
some of the regions

Fig. 5: From left to right: original image, RGB-clustering,
LAB-clustering

Fig. 6: From left to right: original image, edge detection, LAB-
clustering, blending, blending after depth information

Fig. 7: GUI for interactive user modification

B. Controlling detail

Similarly, the user can control the amount of details in the
output result by tweaking the following parameters:

• The edge detection threshold: smaller threshold means
more edges and also more regions detected

• The density and length of lines in the LIC component



Fig. 8: From left to right: original image, baseline output, final
model output, Photoshop filter output

VII. EVALUATION

The quality of the drawings produced by our system could
only be judged subjectively. To evaluate our performance, we
set aside a test set of 20 images and generated output for each
image using our pipeline. We then selected a preset filter in
Adobe Photoshop that looked comparable to our result, and
applied this filter to all the test images. We decided on the
”smudge stick filter” as the best candidate. From these images,
we randomly selected 10 output images from our final pipeline
and 10 processed with the Photoshop style filter. Fig. 8 shows
the output from our two models compared to the Photoshop
filter output. Finally we built a user survey were we asked 12
people to rank the resulting images. Each image was evaluated
on 2 scales from 1 to 5 (5 being best), Beauty and Realism.

TABLE I: Survey Results

Pipeline Beauty Realism
Photo2Drawing 2.225 1.8818

Photoshop 3.05 3.5417

From the results, it is apparent that the result of our pipeline
was not judged favorably compared to the Photoshop filters.
However, neither filter result was very good according to our
respondents, since none of the ratings are close to 5.

VIII. CONCLUSION & FUTURE WORK

Since we were regrettably unable to include the automatic
region segmentation method as part of our pipeline, future
work would likely include exploring other approaches to
improve the system. One approach that could be tried to
improve the contrast between high saliency regions and low
saliency regions is to combine saliencies computed using
color and intensity with a singular value decomposition and
dynamic mode decomposition based scheme [7]. Other meth-
ods that could bypass the crudeness of the binarization &
morphological image processing-based approach to identify
regions include deep-learning methods [8]. These could help
by both improving region identification robustness as well as
reducing the artifacts that can result from traditional region
identification techniques.

We could also stand to improve the pencil sketch drawing
result by allowing the user to manually edit the vector field.
This could help in reducing the number of swirling artifacts
due to the turbulent vector fields generated from noisy images.
We could also experiment with using noise images that are not
just black pixels but instead splats from pre-measured pencil
dots, which could add a layer of realism to the drawing.

Github link: https://github.com/ColasGael/photo2drawing

WORK BREAKDOWN

Gael Colas implemented the following NPR components:
line-sketch from edge detection, color generation from LAB-
clustering and color generation from region segmentation.
He also build the framework of the drawing pipeline and
implemented the GUI. Andrew Deng performed experiments
on using saliency in the LAB color space for automatic
identification of visually distinct regions. He also built the
evaluation survey. Hubert Teo implemented the FastLIC line
integral convolution method and experimented with tuning
the vector field extraction process, as well as the optimum
convolution kernel length.

REFERENCES

[1] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition
in unconstrained environments. Technical Report 07-49, University of
Massachusetts, Amherst, October 2007.

[2] Xiaoyang Mao, Yoshinori Nagasaka, and Atsumi Imamiya. Automatic
generation of pencil drawing using lic. In ACM SIGGRAPH 2002
Conference Abstracts and Applications, SIGGRAPH ’02, pages 149–149,
New York, NY, USA, 2002. ACM.

[3] Xingyu Gao, Jingye Zhou, Zhenyu Chen, and Yiqiang Chen. Automatic
generation of pencil sketch for 2d images. pages 1018–1021, 01 2010.

[4] Detlev Stalling and Hans-Christian Hege. Fast and resolution independent
line integral convolution. In Proceedings of the 22Nd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,
pages 249–256, New York, NY, USA, 1995. ACM.

[5] Paul L. Rosin and Yu-Kun Lai. Non-photorealistic rendering with spot
colour. In Proceedings of the Symposium on Computational Aesthetics,
CAE ’13, pages 67–75, New York, NY, USA, 2013. ACM.

[6] Ming-Ming Cheng, Guo-Xin Zhang, Niloy Jyoti Mitra, Xiaolei Huang,
and Shimin Hu. Global contrast based salient region detection. CVPR
2011, pages 409–416, 2011.

[7] Akshay Gadi Patil and Shanmuganathan Raman. Automatic content-
aware non-photorealistic rendering of images. CoRR, abs/1604.01962,
2016.

[8] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection by multi-
context deep learning. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1265–1274, June 2015.


