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Abstract—Detecting drowsiness has many important applica-
tions, particularly in driver safety. Blink duration and heart
rate variability are two important metrics that can be used
to determine how drowsy someone is, and can be determined
using image processing techniques. In order to determine blink
duration, training images of open and closed eyes are used to
generate a fisherimage using Fisher linear discriminant analysis.
This fisherimage can then be used to determine whether the eyes
are open or closed at a given time, allowing for determination
of blink duration. In order to determine heart rate variability,
two methods were used to determine the blood volume pulse,
independent component analysis and chrominance based. Eye
detection yielded very good results, with 71% to 97% accuracy
in classifiying open/closed eyes. Heart rate estimates were a little
less accurate, with a mean error of roughly 16 BPM for the ICA
method and 13 BPM for the chrominance based method. Overall,
these results show that detecting drowsiness using simple RGB
cameras is very promising.

Index Terms—eye tracking, remote ppg, independent compo-
nent analysis, fisher LDA, chrominance, openCV

I. BACKGROUND

Driving while fatigued is very similar to driving while
intoxicated, as drowsy drivers exhibit much of the same
behaviors as intoxicated drivers: slow reaction times, inability
to concentrate, and bad awareness of their surroundings. A
study by the AAA Foundation for Traffic Safety found that
21% of fatal crashes involved a drowsy driver [1]. The problem
is particularly bad as it can be difficult for drivers to recognize
signs of fatigue in themselves.

However, there are several physiological signs that can be
used to determine if a driver is drowsy. One such sign is,
unsurprisingly, trouble keeping eyes open. By tracking whether
the eyes are open or closed, the blink duration can be found,
which can then be used to determine how much trouble
the driver is having to stay awake. Another characteristic is
heart rate variability, which is the variation in time between
heartbeats. Drowsy and non-drowsy people exhibit different
heart rate variability metrics [2]. With this in mind, our goal
is not to actually build a drowsiness detector but to explore the
possibility of creating one using a simple RGB camera like
the ones found in smart phones and laptops.

II. RELATED WORKS

There has been sufficient work done in measuring a person’s
heart rate and gaze using simple cameras like the ones avail-
able on most modern phones and laptops [3] [4]. While these
studies did not explicitly explore drowsiness detection we

believe that the methods described in these papers would prove
useful for drowsiness detection. Heart rate detection using
footage of the frontal face has been accomplished through
a variety of methods using the change in average color over
time [5], [6]. By detecting heart rate it stands to reason that
we could then determine heart rate variability. Likewise there
has been many different methods established for tracking eye
movement using frontal face footage [4]. Although we are not
interested in actual gaze detection we believe the fundamentals
of segmenting the eyes found in these papers could be applied
to our task of segmenting the eyes and then determining
whether it is open or closed.

III. PREPROCESSING

All of our algorithms work in real time and work on a frame
by frame basis for a video either from a webcam or a video
file. First, the face is identified with the Viola-Jones object
detection algorithm using pretrained cascade classifiers from
the OpenCV toolbox [7]. This step outputs coordinates for the
bounding box for the face, which is then used to crop the
frame to only include the face.

Further processing is needed on these cropped frames to
extract regions of interest for both the eye detection and heart
rate detection algorithms. In order to segment the eyes, another
cascade classifier pretrained for eyes is used on the cropped
frame to determine bounding boxes for the eyes. For the heart
rate detection algorithm, two different region of interests were
computed and evaluated, all facial skin and only cheeks. The
facial skin was found by masking the image in the HSV
colorspace. We ultimately discarded the HSV mask since we
found that it excluded darker skin tones while potentially
accepting some of the background making it ineffective, as
seen in Figure 2. The cheeks were found by proportionally
selecting two boxes from the bounding box of the face.

IV. EYE DETECTION

A. Training

1) Fisher LDA: To determine blink rate and blink duration,
it was necessary to determine if eyes were open or closed. Be-
cause of the binary nature of this problem, and the predictable
differences between open and closed eyes, a fisherimage was
obtained from training data to classify the eyes.



(a) Frame cropped to include only detected face.

(b) Face masked with HSV skin mask.

(c) Face with bounding boxes for the cheeks.

Fig. 1: Results from the preprocessing step.

2) Data Collection: The training data for the first user
consisted of approximately 100 images of closed eyes and
100 images of open eyes. To collect the data, 20 images were
taken at a time, at a sampling rate determined by the frame
rate of the webcam. This was repeated 5 times for each class
at different locations, illuminations, and distances from the
camera.

3) Data Pre-Processing: Before performing linear discrim-
inant analysis, the images were pre-processed to account for
variations in illumination and alignment. First, global his-
togram equalization was applied to the images to enhance the
contrast, which was especially important for images acquired
in dim lighting. Next, two alignment protocols were executed.
In both cases, the minimum MSE was used as the alignment
criterion, and the algorithm was coarse-to-fine with step sizes
of 2 and 1. The objective of the first alignment was to obtain
a single image that could be used as a template for all future
alignments. This process involved aligning each open eye to
a single open eye, followed by aligning each closed eye to
a single closed eye, and averaging across all images. This
meaneye was then used for all future alignments, including
training. Finally, once images were aligned, a 30x30 cropped

(a) Frame cropped to detected face.

(b) Face masked with HSV skin mask.

Fig. 2: Example of the skin mask working improperly.

region was extracted from the center of the image to ensure
the sizes of the eyes were consistent.

4) Linear Discriminant Analysis: The top 100 eigenimages
were computed from the training data using the Srirovich and
Kirby algorithm. Fisher linear discriminant analysis was used
to compute fisherimages from the eigenimages. Only the first
fisherimage was used for analysis. Once the fisherimage was
obtained, the training data was projected onto the fisherface
and an appropriate threshold was chosen for future classifica-
tion.

B. Testing

To test the eye classification performance, 200 consecutive
frames were obtained for the user in a new setting. A chart
listing positives, negatives, false positives, and false negatives
was obtained (positive = closed, negative = open).

C. Variations in User Appearance

The previous methods were performed on one user. But the
fisherimage obtained from the training data of one user is less
likely to perform as well on other users, especially if the users
vary significantly in skin tone. Below, user 1 refers to a User
of a light skin tone, and User 2 refers to a user of a dark
skin tone. The first test involved applying the fisherimage of
user 1 on testing data from user 2. The second test involved
combining training data for User 1 and User 2 to generate a
new fisherimage, and then using this to classify eye images
from both users.

D. Calculating Blink Duration

While the program is running, the blink duration of the
previous blink is calculated in real time. This information is
displayed in the command line, along with the blink status



(binary, open or closed). One post-processing step was used
to help eliminate false negatives, which was important when
calculating blink duration. If one or two consecutive negatives
(open) were discovered between any two positives (closed), the
negatives were corrected to positives. This is valid because
blinks typically do not happen in rapid succession, and if
they do, it is appropriate to consider them one continuous
blink since the eyes are not open for long enough to collect
information.

V. HEART RATE DETECTION

As the heart pumps blood through the body, the volume
of blood flowing through the blood vessels changes. This
variation in blood volume is visible in color, and by monitoring
the RGB signal, the blood volume pulse can be determined,
from which the heart rate and other related metrics can be
found.

Two different methods were used to estimate the blood
volume pulse, independent component analysis (ICA) and
chrominance-based. These two methods used a shared
pipeline, as there were some similar steps. Using the region
of interest found in the preprocessing step, the average red,
green, and blue values are calculated and stored, generating a
time series signal for the color channels.

A. Independent Component Analysis Method

ICA is a method that tries to find an optimal linear transform
to turn n input signals into n statistically independent output
signals. In practice, many papers showed that performing
ICA on the three normalized color channels of a person’s
skin yielded one output signal that corresponded to blood
volume pulse [5] [3]. Equation 1 shows how the red channel
was normalized with the green and blue channels following
the same procedure. Equation 2 demonstrates the relationship
between input x(t) and output s(t) and the unmixing matrix
W that ICA solves for. Figure 3 also illustrates what ICA
accomplishes. While ther reference paper used the JADE
algorithm, we used FastICA from the scikit toolbox since we
could find no functional difference [5].

rnorm = (r − µr)/σr (1)

s(t) =Wx(t) (2)

First, we use FastICA on the normalized red, green, and blue
signals to determine an unmixing matrix that will be saved and
used for all future videos and webcam footage. This process
can be thought of as using ICA to train our unmixing matrix.
While we initially ran FastICA multiple times to determine a
new unmixing matrix every few iterations we decided it was
better to come up with a single unmixing matrix to keep results
consistent between different sources. Another reason was by
keeping one matrix we did not have to dynamically decide
which of the three signals corresponded to blood volume pulse
each time.

Fig. 3: Color Channels Transformed into Indpendent Signals

However this approach makes the choice of one of the three
output signals as blood volume pulse even more important.
Unfortunately none of the signals seemed analogous to blood
volume pulse by visual inspection so we chose the signal by
taking the FFT of each of the three signals and looking at the
dominant frequency. We only looked at frequencies between
0.67 Hz and 3 Hz which correspond to a range of reason-
able heartbeats between 40 bpm and 180 bpm respectively.
Using the ECG data of the subject in the video we picked
signal whose dominant frequency had sufficient magnitude
and whose frequency was closest to the heart rate of 71.25
bpm calculated from the ECG. The output of the matrix that
corresponded to this signal is the one used to estimate blood
volume pulse and heart rate.

Once the linear transform was settled upon we used it in our
script to estimate blood volume pulse from the color channel
time series signals. Ten seconds worth of color channel data
is analyzed at a time. The heart rate is estimated by taking the
FFT of the blood volume pulse and looking at the dominant
frequency between 0.67 Hz and 3 Hz and then multiplying the
frequency by 60 to turn Hz to bpm. We did originally try using
bandpass filtering in the process to emphasize the frequencies
of interest but found that there was no appreciable increase in
performance.

B. Chrominance Based Method

Haan et al. proposed a chrominance based method to
calculate heart rate, as an alternative to blind-source separa-
tion methods, like independent component analysis [6]. They
reason that this method is more robust to motion. Two types of
reflections are captured by a camera as light reflects off of skin:
specular and diffuse. The specular reflection is related only
to the light source, and not to any physiolocal characteristics,
while the diffuse reflection is light that has been scattered from
the blood vessels, and thus contains the information needed to
determine the blood volume pulse.

The authors propose that by assuming a standardized skin
tone, which they found to be similar across all skin types,
temporally normalized RGB can be projected into the plane



Fig. 4: Signal showing the blood volume pulse in the time
domain. The peak to peak time appears to be roughly 60
frames, for a video recorded at 60 fps, corresponding to a
heart rate of 60 BPM.

orthogonal to the specular reflection component, generating
two chrominance signals, X and Y . These signals are band-
pass filtered, using a Butterworth bandpass filter of order 3 for
frequencies 0.67-3 Hz, and then used to compute the blood
volume pulse, S. Equations 3-6 summarize the computations.

X = 3R− 2G (3)

Y = 1.5R+G− 1.5B (4)

α =
σ(Xfiltered)

σ(Yfiltered)
(5)

S = Xfiltered − αYfiltered (6)

The FFT of the blood volume pulse is computed, and the
heart rate is then determined by the dominant frequency in the
range 0.67 - 3 Hz.

Figure 4 shows what the signals looks like in the time
domain, while figure 5 shows the signal in the frequency
domain.

VI. EVALUATION

We evaluated our eye detection and heart rate detection
algorithms on a dataset of videos, as well as on healthy
participants with a wide range of skin types. The dataset
used is MAHNOB-HCI, which contains videos of participants
watching video clips and their physiological data, including
ECG signals, from which a ground truth for the heart rate can
be determined [8].

A. Eye Detection

1) Eye Classification- Training: Figure 6 shows the fisher-
image, and figure 7 shows the projections of the training data
onto the fisherimage for User 1.

Fig. 5: The signal in the frequency domain, showing a peak
at roughly 60 beats per minute.

Fig. 6: Fisherimage

2) Eye Classification- Testing: Table I shows User 1 testing
results for blink classification of 200 images. A total of 12
blinks occurred, lasting 1-8 frames.

3) Variations in User Appearance: Applying the fisher-
image of User 1 on testing data from User 2 gave very
poor results for both open and closed eyes. It was quickly
determined that a fisherimage trained exclusively for User
1 would not be useful for User 2. Therefore, we combined
training data for User 1 and 2 and trained a new fisherimage.
The histogram of the projections of the training data on the
fisherimage is shown in Figure 9.

Table II shows User 1 testing results for blink classification
of 200 images. A total of 11 blinks occurred, lasting 1-8

Truth Correctly Classified Incorrectly Classified
Closed 40 0
Open 158 2

TABLE I: Testing results for blink classification of User 1
with 200 images.



Fig. 7: Training data projections on fisherface obtained from
User 1 training data

(a) Sample Testing Image - Open

(b) Sample Testing Image - Closed

Fig. 9: Training data projections on fisherface obtained from
data from User 1 and User 2

Truth Correctly Classified Incorrectly Classified
Closed 35 6
Open 159 0

TABLE II: Testing results for blink classification of User 1
with 200 images, without correcting for false negatives.

Truth Correctly Classified Incorrectly Classified
Closed 41 0
Open 159 0

TABLE III: Testing results for blink classification of User 1
with 200 images, after correcting for false negatives.

frames.
Table III shows User 1 testing results for blink classification

of 200 images, after correcting for false negatives using the
data post-processing step mentioned in section IV-D.

Table IV shows User 2 testing results for blink classification
of 200 images. A total of 9 blinks occurred, lasting 1-10
frames. For the 58 incorrectly labeled eyes, the OpenCV
pretrained classifier did not detect either eye in 48 cases, and
did not detect more than one eye in the other 10 cases.

B. Heart Rate Detection

In order to evaluate our heart rate detection methods we
compared the reported heart rate over time to the ground truth
heart rate. For videos in the dataset we used the heart rate
calculated from the ECG data as the ground truth and for
webcam footage we used a PPG sensor on a smartphone to
determine the ground truth. We calculate the heart rate to be
the median of the recorded heart rates for 30 seconds of data.
Table V summarizes our findings.

The mean error for the ICA method is around 16 BPM,
while for the chrominance method is around 13 BPM. These
numbers are thrown off by a relatively inaccurate trial, the one
with a ground truth of 120 BPM. Excluding this bad trial, the
mean error drops to 10 BPM for ICA and 8 BPM for ICA.

Truth Correctly Classified Incorrectly Classified
Closed 3 58
Open 139 0

TABLE IV: Testing results for blink classification of User 2
with 200 images.

Truth ICA Chrominance
Median Standard Deviation Median Standard Deviation

Participants
82 71 30 78 22
50 54 5.08 58 2.86
48 72 29 69 21

120 65 22 76 26
Videos

71 67 25 73 30
71 64 26 80 42
73 65 3.21 77 19

TABLE V: Median and standard deviation of heart rate in
beats per minute for the ICA and chrominance methods.



VII. DISCUSSION

A. Eye Detection

The initial training for User 1 showed that the fisherimage
separated the training data very effectively and would provide
at least a good starting point for distinguishing between open
and closed eyes.

User 1 testing was 99% accurate. The two false positives for
closed eyes can be explained by the bounding box around the
eye. It was observed that as the eyelid opened, the pretrained
classifier gave a bounding box that was much smaller around
one of the eyes, which may have caused the false negative.
Since this occurred while the eye was opening, it caused the
blink duration to be slightly overestimated.

User 1 testing was still 97% accurate when using the
fisherimage obtained from users 1 and 2. This is significant
because User 1 had light skin and User 2 had dark skin.
The 6 false negatives were removed by the post-processing
step when calculating blink duration (see methods), so there
were no true errors. This indicates that it is possible to
perform the classification task for multiple users using the
same fisherimage. This would be important if multiple drivers
shared the same vehicle.

User 2 testing was only 71% accurate, but this can be
attributed to problems with the pretrained classifier. In 48/58
cases no eyes were detected, and only one eye was detected
in the remaining 10. In addition, the neck was detected as an
extra face in almost every image, the closed eyes that were
detected had unreliable size and position, and some of the
bounding boxes overlapped. Since the program runs in real
time, it is necessary to detect eyes for each frame, so if an
eye is not detected correctly, the algorithm does not have a
chance to correctly classify the image. This was much more
a problem for User 2 than User 1. The pretrained classifier
is extremely poor at detecting closed eyes in users with dark
skin under certain lighting conditions, which is a limitation in
the tools used for this process, rather than the algorithm itself.
Labeling an image with no eyes as closed would improve the
accuracy of the testing results, but would not be valid in a real
drowsiness detector, so that method was not considered.

Overall, the accuracy of the detecting blinks and estimating
blink duration is very good, especially for lighter skinned
users. Blink duration is able to be calculated from the al-
gorithm; typical blinks last 200-600 milliseconds. For darker
skinned users, limitations in the accuracy of the bounding
boxes obtained from OpenCV prevented closed eyes from
being detected reliably.

B. Heart Rate Detection

The results were relatively good, with only one bad trial.
Although not perfect, our methods were able to get quite close
to the truth. For most trials, the measured heart rate varied
quite a bit, as seen by the standard deviation. In order to
mitigate the effects of these outliers, we used the median as
the measure of central tendency. The two methods, ICA and
chrominance, try to reduce the effects of noise, however, they

are not perfect, and thus result in some times where the true
blood volume pulse is not detected. In addition, the videos
from the dataset are compressed, which has been found to
significantly degrade the signal-to-noise ratio for the blood
volume pulse [9]. We found it very difficult to figure out
how to improve the accuracy of our algorithm, as it isn’t very
easy to isolate sources of noise. Instead, we found ourselves
iterating on tweaking various values and testing performance
in order to gain better results.

VIII. CONCLUSION

Overall, this project proved more difficult than we antici-
pated. The accuracy of eye detection is excellent under certain
conditions and users, but in some conditions it is limited
by the pretrained OpenCV classifiers, especially for darker
skinned users. Exploring alternate methods to obtain bounding
boxes around the eyes would be a future improvement. With
additional training and refinement it could serve as a great
detector of ocular indicators of drowsiness, especially blink
duration.

Although we lack knowledge of the underlying biophysical
characteristics, we were able to implement a relatively good
heart rate monitor. The performance was less accurate than
reported in other papers, despite following their procedures,
likely due to the fact that our evaluation was not performed in a
very controlled environment. For our application of monitoring
drivers, the environment is not very controlled, and therefore
we tried to obtain results that would be in line with real world
results. The estimated heart rate varied wildly every once in a
while, which means that heart rate variability metrics are likely
to not be very accurate. However, the fact that we were able
to even get a ballpark estimate of the heart rate from a simple
RGB camera is a great feat, in and of itself. This project is a
first step towards a proper drowsiness detector, and the fact we
were able to run everything in real time is very encouraging
and suggests that with refinement of our algorithms we could
design a more reliable drowsiness detector.
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APPENDIX

Bradley Barnhard worked on eye detection.
Kartik Prabhu worked on heart rate detection using chromi-

nance based method and heart rate preprocessing.
Arun Seetharaman worked on heart rate detection using

independent component analysis and heart rate preprocessing.


