
 

Single Image Reflection Removal 

Gaurav Agrawal  

Department of Electrical Engineering 

Stanford University 

gaagrawa@stanford.edu 

Ishani Parekh  

Department of Electrical Engineering 

Stanford University 

ishanip@stanford.edu

Abstract—Undesirable reflections can occur in photographs 

taken across partially reflective surfaces such as glass windows. 

Robust and efficient algorithms that can remove reflections given 

only a single image is an open area of research. In this report, we 

discuss and evaluate two published reflection removal approaches. 

We compare the runtime performance and quality of these 

approaches on a published dataset as well as on images captured 

by us with our smartphones. With the goal of enabling reflection 

removal on smartphones, we propose a modified method to reduce 

runtime of one of the algorithms with minimal effect on image 

quality. 

I. INTRODUCTION 

When a photograph is captured through a partially reflective 
surface such as a glass window, undesirable reflections may 
occur. It is not always possible for the photographer to avoid the 
glass window between camera and the scene of interest. 
Examples include shots taken from inside a building, from 
inside a train, in a museum, or through an airplane’s window. 

A variety of approaches have been proposed in literature to 
solve this problem. Some approaches make use of additional 
information than just the image itself. This additional 
information may take the form of additional images from 
different viewpoints, under different polarizations, different 
illumination conditions, different focal lengths etc. For example, 
professional photographers often use polarized lenses to reduce 
the effect of reflections. But these multi-image or multi-mode 
methods are not suitable for images downloaded from the 
internet, or for an image taken from a typical mobile camera. In 
this report, we do not discuss these approaches further. 

Methods that aim to remove reflections given only a single 
image are referred to as Single Image Reflection Removal 
(SIRR) methods. As shown in Figure 1, SIRR problem can be 
formulated as a layer separation problem 𝐼 = 𝑇 + 𝑅, where 𝐼 is 
the input image, 𝑇 is the transmission component, and 𝑅 is the 
reflection component. Lacking any further information, this 
problem is ill-posed since there are twice as many unknowns 
(i.e. 𝑇, 𝑅) as there are knowns (i.e. 𝐼). 

In order to constrain the solution space, some approaches 
(e.g. [5]) leverage user annotations for additional hints. 
However, considering the effort and time required for 
annotation, this may not be the preferred approach for a typical 
smartphone consumer. In rest of this report, such approaches are 
not discussed further. 

In many successful approaches, additional assumptions are 
made on statistics of 𝑇  and 𝑅  informed by the statistics of 
natural images or the physics of reflection. For example, studies 
(e.g. [6]) have shown that gradients of natural images tend to be 

sparse, which means the histogram of gradients has a peak at 
zero, which then falls off faster than the gaussian, and has a long 
tail. This sparsity prior has also been used to solve other ill posed 
problems (e.g. image deblurring). 

Rest of this report is organized as follows. In section II, we 
discuss two published approaches for SIRR. In section III, the 
quality and runtime of these approaches is evaluated. In section 
IV, we consider feasibility of SIRR on images captured by 
smartphone users and propose a way to speed up one of the 
methods. 

II. RELATED WORK 

The SIRR algorithms proposed in [1] and [2] are used as 
baseline in this report. In this section we describe them in some 
detail. 

A. Relative Smoothness ([1]) 

Objects that are part of reflection layer are often not in focus, 
while the objects being photographed are usually in focus. 
Figure 2 shows two example images with out-of-focus 
reflection. In such situations, the contribution of 𝑅  to overall 
image is relatively smooth because reflection image gets 
convolved with the depth-of-field kernel ℎ. 

𝐼 = 𝑇 + 𝑅 = 𝑇 + (𝑅′ ∗ ℎ) 

The smoothing of 𝑅 creates asymmetry between statistics of 
gradients of 𝑇 and 𝑅. This can be modeled as follows. 

𝑃𝑇(𝑥) ∝ 𝑚𝑎𝑥{𝑒𝑥𝑝(−
𝑥2

𝜎𝑇
2), 𝜀} 

𝑃𝑅(𝑥) ∝ 𝑒𝑥𝑝(−
𝑥2

𝜎𝑅
2) 

Here 𝑥  is the gradient value, while 𝑃𝑇  and 𝑃𝑅 are the 
probability distributions of gradients for transmission and 
reflection layers respectively. The 𝜀 parameter adds a long tail 
to the gradient of transmission layer, as needed for sparsity. 

Gradient 𝑥 for 𝑇 is estimated using horizontal and vertical 
derivative filters 𝑓1  and 𝑓2 while gradient for 𝑅  is estimated 
using Laplacian filter 𝑓3. 

Figure 1: SIRR Problem 



𝑓1 = [−1 1]      𝑓2 = [−1 1]𝑇        𝑓3 = [
0 1 0
1 −4 1
0 1 0

] 

Assuming independence of per-pixel gradients, and 
independence of outputs of derivative filters, the likelihood of 𝑇 
and 𝑅 layers can be written as: 

P(𝑇)  = ∏ 𝑃𝑇(𝑓1  ∗  𝑇)𝑖 ⋅  𝑃𝑇(𝑓2  ∗  𝑇)𝑖

𝑖

 

P(𝑅)  = ∏ 𝑃𝑅(𝑓3  ∗  𝑅)𝑖

𝑖

 

Here 𝑖 is the pixel index. The layer separation problem can 
now be formulated as one of maximizing P(𝑇, 𝑅) , the joint 
probability of 𝑇  and 𝑅 . Further, assuming independence of 𝑇 
and 𝑅, P(𝑇, 𝑅) = P(𝑇) ⋅ P(𝑅). Maximizing this probability is 
equivalent to minimizing the negative log probability. Thus, the 
objective function can be written as follows. 

𝑚𝑖𝑛
𝑇, 𝑅

∑ −𝑙𝑜𝑔 𝑃𝑇(𝑓1  ∗  𝑇)𝑖 − 𝑙𝑜𝑔 𝑃𝑇(𝑓2  ∗  𝑇)𝑖  

𝑖
− 𝑙𝑜𝑔 𝑃𝑅(𝑓3  ∗  𝑅)𝑖 

Recognizing that 𝑅 = 𝐼 − 𝑇 and substituting  𝑃𝑇  and 𝑃𝑅, the 
objective function can be written as follows. 

𝑚𝑖𝑛
𝑇

∑ 𝜌(𝑓1  ∗  𝑇)𝑖 − 𝜌(𝑓2  ∗  𝑇)𝑖  − (𝑓3  ∗  (𝐼 − 𝑇))𝑖
2

𝑖

 ⋅ 𝜆 

Here 𝜆 is the relative strength of smoothness, and 𝜌(𝑥) is 
defined as follows with parameter 𝑘 representing the strength of 
tail of gradient distribution. 

𝜌(𝑥)  = 𝑚𝑖𝑛 {
𝑥2

𝑘
, 1} 

Since probabilities are defined on gradients, pixel values of 
𝑇  need to be bounded to recover meaningful layers. This is 
achieved by imposing a constraint that 0 ≤ 𝑇 ≤ 𝐼. 

The objective function is non-convex due to 𝜌(𝑥) . It is 
optimized using half-quadratic separation method. In this 
method, auxiliary per-pixel and per-filter variables 𝑔𝑖  are 
introduced along with a parameter 𝛽  the value of which is 
iteratively increased. The reformulation is such that as 𝛽 → ∞, 
the solution of reformulated problem approaches the solution of 
original problem. In each iteration, two subproblems are solved. 
The first subproblem updates 𝑔𝑖  assuming T is constant, while 
the second subproblem updates T assuming 𝑔𝑖 is constant. 

In order to satisfy 0 ≤ 𝑇 ≤ 𝐼, at the end of each iteration a 
normalization step is performed that brings pixel values of 
current solution into a meaningful range. This is achieved by 
solving a least-squared optimization problem using gradient 
descent.  

 At the start of the first iteration, 𝑇  is initialized to 𝐼 . In 
practice, the algorithm converges in less than 5 iterations of half-
quadratic separation method. 

B. Ghosting Cues ([2]) 

Due to thickness of glass, shifted double reflections can 
occur, which may result in ghosted reflection component in the 
captured image. Figure 3 shows an example image where 
ghosting of reflected text is very prominent. Ghosting can be 
modeled by convolution of reflection layer with ghosting kernel 
𝑘. 

𝐼 = 𝑇 + 𝑅 ∗ 𝑘 

Ghosting kernel 𝑘  includes a spatial shift 𝒅𝑘  and an 
attenuation factor 𝑐𝑘 . 𝒅𝑘  is estimated by using 2-D auto-
correlation map of Laplacian of input image ∇2I . Ghosting  
creates a local maximum in this autocorrelation map which is 
detected to estimate 𝒅𝑘. 

To estimate 𝑐𝑘, first key points are detected via Harris corner 
detection. In the vicinity of each key point, a 5x5 contrast 
normalized patch is compared with its associated patch at 𝒅𝑘 
shift. 𝑐𝑘  for this patch is estimated as the ratio of standard 
deviation of pixel intensities in each patch. Overall 𝑐𝑘  is 
estimated by taking weighted sum of per-key-point 𝑐𝑘, weighted 

by  𝑒−𝛼 ∙ ‖𝑝1−𝑝2‖2
 where  ‖𝑝1 − 𝑝2‖ is the L2 norm of difference 

between corresponding patches. 

Once 𝑘  is estimated, the objective is to minimize the 
following L2 error function. 

“Book” 

Figure 3: “Apples” mage with ghosted reflection 

Figure 2: Images with smooth reflection 

“SIR2 Toys” 



𝑚𝑖𝑛
𝑇, 𝑅

   ‖𝐼 − 𝑇 − 𝑅 ∗ 𝑘‖2 

However, to constrain this problem, priors need to be applied 
on gradients of T and R. In this approach, 8x8 patch-based priors 
based on Gaussian Mixture Models (GMM) [4] are used. The 
modified objective function becomes: 

𝑚𝑖𝑛
𝑇, 𝑅

   ‖𝐼 − 𝑇 − 𝑅 ∗ 𝑘‖2 − ∑ 𝑙𝑜𝑔 (𝐺𝑀𝑀(𝑃𝑖𝑇)

𝑖

)  

− ∑ 𝑙𝑜𝑔 (𝐺𝑀𝑀(𝑃𝑖𝑅)

𝑖

) 

Here 𝑖  iterates over all overlapping 8x8 patches, and 𝑃𝑖𝑇 

represents the 𝑖𝑡ℎ  patch of 𝑇. 𝐺𝑀𝑀(𝑝) returns the probability 
of 8x8 patch 𝑝 under GMM prior from [5]. Additionally, non-
negativity constraints are added on pixel value of   𝑇  and 𝑅 ,     
0 ≤ 𝑇, 𝑅 ≤ 1. 

The objective function is non-convex due to GMM prior. It 
is optimized using half-quadratic separation method where 
auxiliary variables are introduced for each patch 𝑃𝑖𝑇 and 𝑃𝑖𝑅 
along with a parameter 𝛽  which is iteratively increased. The 
reformulation is such that as 𝛽 → ∞ , the solution of 
reformulated problem approaches the solution of original 
problem. The first subproblem considers the auxiliary variables 
fixed and solves for of  𝑇 and 𝑅. This is a quadratic problem and 
is solved using L-BFGS in order to handle range constraints   on 
pixel values. The second subproblem considers  𝑇 and 𝑅 fixed 
and solves for auxiliary variables under GMM prior. This 
subproblem is solved iteratively using the approach in [4]. 

Before the first iteration, 𝑇  and 𝑅  are initialized using a 
sparsity inducing model with convex objective function. The 
algorithm is run for 25 iterations of half-quadratic separation 
method. 

C. Comparison 

From here on, we refer to the “Relative Smoothness” 
approach of [1] as LB14 and the “Ghosting Cues” approach of 
[2] as SK15. 

Looking at the similarities between LB14 and SK15, both 
methods make assumptions about the statistical properties of 
gradients of  𝑇  and 𝑅 . Also, both methods formulate the 
problem as constrained optimization problem and solve it using 
iterative methods. Despite these similarities, there are important 
differences. Firstly, LB14 uses a per-pixel gradient prior that is 
assumed independent between pixels, while SK15 uses an 8x8 
patch prior modeled as GMM. 

Secondly, the physical mechanism that creates asymmetry 
between 𝑇 and 𝑅 is different. LB14 considers 𝑅 to be smoother 
than 𝑇, which will be the case if reflection is out of focus. The 
blurring kernel is never explicitly estimated but is rather 
modeled with a hyper-parameter in objective function. SK15, on 
the other hand, assumes 𝑅 to contain noticeable ghosting, which 
will be the case if there is double reflection that is sufficiently 
shifted spatially and is sufficiently strong in amplitude. 
Moreover, for the ghosting to be strong, the reflected objects will 
need to be in reasonable focus. In SK15, the ghosting kernel is 
explicitly estimated before iterative optimization is done. 

III. EVALUATION 

A. Datasets 

For evaluation, images from following data sets are used. 

1) Images from References: The “Book” and “Apples” 

images are used by LB14 and SK15 respectively, and we use 

them to reproduce and cross validate the results. 

2) SIR
2
: This dataset has been made available by NTU [3] 

for evaluating single image reflection removal algorithms. For 

every example image in this dataset, corresponding ground 

truth transmission and reflection images are also provided. All 

the images were captured with a DSLR camera with varying 

exposure times, aperture sizes and glass thickness. This allows 

reproduction of various algorithmic assumptions. For example, 

using a thicker glass in between the camera and the scene 

produces more prominent double reflections, while varying 

aperture sizes allows creating out-of-focus or smooth 

reflections. 

3) 12M pixel mobile images: The images in above datasets 

are relatively small in size (<0.5M pixel). For this project, we 

collected a number of 12M pixel images using our smartphone 

cameras under various reflection scenarios, and used a subset 

of them for evaluation of speed and quality. 

LB14 (T) LB14 (R) 

SK15 (T) SK15 (R) 

Figure 4: Results of LB14 and SK15 on the “Book” image 



B. Results on reference images 

While smoothness and ghosting are both plausible to have in 
reflections, due to physical mechanisms that lead to those effects 
it appears unlikely that reflection in a given image can be both 
smooth and exhibit strong ghosting. We test this by running 
reference images from LB14 and SK15 on the two algorithms. 
We use reference MATLAB code available from the authors of 
LB14 and SK15. 

Figure 4 shows the result of these two algorithms on the 
“Book” image from Figure 1. The reflection in this image is 
smooth and therefore LB14 can get good separation of T and R 
layers. In contrast, since there is no significant ghosting in this 
image, SK15 is not able to separate the reflection in R 
component. 

Figure 5 shows the result of these two algorithms on the 
“Apples” image from Figure 2. The reflection in this image is 
sharp with significant ghosting. Therefore, SK15 can get good 
separation of T and R layers. In contrast, since the reflection is 

not smooth in this image, LB14 is not able to separate the 
reflection in R component. 

These results suggest that these state-of-the-art algorithms 
are not general enough to be effective in removing a broad class 
of reflections. 

C. Run time 

It took SK15 more than an hour in MATLAB to produce the 
result shown in Figure 5 on a Linux machine with 12-core Intel 
Xeon E5-1650 @ 3.60GHz. Given that the “Apples” image is 
only 400 x 540 pixels, this suggests that it may not be practical 
to run SK15 on 12M pixel images. 

To evaluate run time, we selected 9 images from SIR
2
 

dataset, scaled each image in MATLAB and measured run time. 
The results are shown in Figure 6. We make following 
observations from these charts. 

1) The run time of algorithms is sensitive to the content of 
image, not just the size of image. Even for the same image size, 

Figure 5: Results of LB14 and SK15 on the “Apples” image 

LB14 (T) 

SK15 (R) 

LB14 (R) 

SK15 (T) 



run times on different images show large variation. This is 
because portions of these algorithms take a variable number of 
iterations to converge. 

2) SK15 is orders of magnitude slower than LB14 (note 
different X-axis in the two charts). The initialization step in 
SK15 itself runs longer than LB15. Also, while not shown in the 
charts, SK15 is very memory intensive. Even on the small 
“Apples” image, it used 20GB of memory. For larger images, 
our workstation quickly ran out of memory. 

IV. SUITABILITY FOR LARGE IMAGES 

Based on evaluation results described in previous section, 
we recognize following challenges to efficiently remove 
reflections from multi-megapixel images taken on mobile phone 
cameras. 

1) SK15 takes too long to run and consume too much 
memory even on <0.5M pixel images. LB14 is much faster, but 
still took up to 9 minutes to run on a 12M pixel image. 

2) Run time of algorithms is data dependent, and therefore 
hard to bound. 

3) The visual quality of results is good under suitable type of 
reflections, but not under different kinds of reflections. 

In rest of this report, we consider heuristics to come up with 
a fast reflection removal method suitable for large images. 

A. Speedup Approaches 

Because LB14 is much faster than SK15, we did not consider 
SK15 further. Instead we attempted to tweak LB14 to make it 
run faster. We considered following ideas. 

1) Run LB14 on the downsized version of full-res image, 
detect image regions with large reflections, and then run LB14 
on selected crops of full-res image. See Figure 7. 

2) Run LB14 on the downsized version of full-res image, 
upscale the R layer, and subtract it from full-res image to 
estimate full-res T layer. See Figure 7. 

3) Tweak the hyper parameters of LB14 such that we run 
fewer iterations or relax convergence criterion. 

Approach 1) relies on the fact that in most images, reflection 
artifacts will be present only in a small part of image. Therefore, 
if we can detect which regions of image are corrupted by 
reflection, reflection removal can be run only on those patches, 
this speeding up the algorithm. However, this approach did not 

Figure 6: Run time of LB14 and SK15 on scaled SIR2 images 

Figure 7: Approaches to speed up LB14 on larger images 



work well because in LB14, the R component also extracts the 
smooth parts of T layer. Therefore, a simple thresholding / local 
peak-detection-based approach did not reliably detect the 
patches where actual reflection was present. 

Approach 2) relies on the realization that since R component 
is smooth, if we extract it from downsized image, and then 
upsize it, it can serve as an approximation to full-res R 
component. 

For approach 3), we reduced the number of iterations, and 
relaxed the convergence criterion for the renormalization step of 
LB14. 

B. Results 

We report results from approaches 2) and 3) described in 
previous section as they produced good quality of results, while 
also speeding up the algorithm. 

Table 1 shows run times on 6 images captured with our 
mobile phones. Each image is 12M pixel in size. Images with 
smooth reflections were selected since that is required by LB14 
for good reflection removal. Run time was measured in 
MATLAB on a Linux machine with 12-core Intel Xeon E5-1650 
@ 3.60GHz. 

TABLE I.  RUN TIME OF SIRR ON 12M PIXEL IMAGES 

Image 

Run Time (sec) 

LB14 

Baseline 

LB14 + 

Parameter 

Tuning 

LB14 + 

Resize 

LB14 + Both 

Optimizations 

Boat 61 9 16 3 

Cardash 150 75 33 16 

Fort 45 12 11 4 

Trees 214 71 47 5 

XKCD 489 44 97 11 

Whiteboard 493 48 97 12 

 
  The baseline LB14 algorithm takes up to 8 minutes to run. 

Combining approaches 2) and 3), the modified algorithm runs 
within 16 seconds. That is a speedup of around 30x for the worst 
case run time. 

 SIRR results on “Whiteboard” image are shown in Figure 8. 
The first image is the input image with reflection, the next image 
is produced by LB14 in 8 minutes, and the last image is 
produced after our modifications and runs in 12 seconds. For this 
image, there is almost no degradation in image quality. Metrics 
like Structure Index and Normalized Cross Correlation report 
the speeded up output images to have large similarity score 
(>0.99) vs. baseline result. 

Results on other mobile images are included in appendix as 
part of supplemental material. 

V. CONCLUSIONS 

In this project, we evaluated two recent SIRR algorithms 
with the goal of removing reflections in images captured by 
typical smartphone cameras. While the algorithms perform well 
when corresponding assumptions on reflection layer are 

“Whiteboard” Input Image 

T Layer from modified LB14 

Figure 8: Results on 12M Pixel “Whiteboard” image 

“Whiteboard” Input Image “Whiteboard” Input Image 

T Layer from LB14 



satisfied, we found the assumptions are often not true in many 
practical reflection scenarios. Secondly, SIRR algorithms are 
very compute intensive and do not appear suitable to run in real 
time within the compute budget of mobile phones. We proposed 
a simple heuristic modification that speeded up SIRR by up to 
30x on 12M pixel images with results very similar to baseline. 

We conclude that the quest for fast and robust SIRR 
algorithms capable of running on large images is far from over, 
and many opportunities exist for further research. 

ACKNOWLEDGMENT 

The authors would like to thank Prof. Bernd Girod, Jean-
Baptiste Boin and Jayant Thatte for stimulating lectures, 
problem sessions and homework assignments. 

We would also like to thank authors of [3] for allowing 

download and use of SIR
2
 dataset for this project. 

REFERENCES 

[1] Y. Li and M. S. Brown. Single image layer separation using relative 
smoothness. The IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2014. 

[2] Y. C. Shih, D. Krishnan, F. Durand, and W. T. Freeman. Reflection 
removal using ghosting cues. The IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 2015, pp. 3193-3201 

[3] Renjie Wan, Boxin Shi, Ling-Yu Duan, Ah-Hwee Tan, Alex C. Kot. 
Benchmarking Single-Image Reflection Removal Algorithms. The IEEE 
International Conference on Computer Vision (ICCV), 2017, pp. 3922-
3930 

[4] Zoran, Daniel, and Yair Weiss. "From learning models of natural image 
patches to whole image restoration." 2011 International Conference on 
Computer Vision. IEEE, 2011. 

[5] Levin, Anat, and Yair Weiss. "User assisted separation of reflections from 
a single image using a sparsity prior." IEEE Transactions on Pattern 
Analysis and Machine Intelligence 29.9 (2007): 1647-1654. 

[6] B.A. Olshausen and D. J. Field. Emergence of simple-cell receptive field 
properties by learning a sparse code for natural images. Nature, 381:607–
608, 1996.

 

  



APPENDIX 
 

CONTRIBUTIONS 

Both the authors worked closely and shared work involving all parts of this project. The idea of this project topic came from 
Ishani. She also collected mobile image dataset used in this project. Gaurav implemented the MATLAB code for evaluation of 
algorithms and proposed approaches to speed up SIRR. 

SUPPLEMENTAL IMAGES 

  

                                                                     

Top Row: Reference “Book” image, T from LB14, R from LB14 
Bottom Row: T from SK15, R from SK15 



 

 

  

  

  

Top Row: Reference “Apple” image. Middle Row: T and R from SK15 
Bottom Row: T and R from LB14 



 

 

 

 

 

 

Top Row: Synthetic image for SK15 evaluation. 
Middle Row: T layer from SK15, Bottom Row: R layer from SK15 



 

 

 
 

Top Row: Example image from SIR2 dataset. 
Middle Row: T layer from LB14, Bottom Row: R layer from LB14 



 

 

 

 
 

Top Row: Example image from SIR2 dataset. 
Middle Row: T layer from LB14, Bottom Row: R layer from LB14 



 
 

 

Top Row: “Trees” image with reflection. 
Bottom Row: Output image with our implementation. 



 

 
 

Top Row: “XKCD” image with reflection. 
Bottom Row: Output image with our implementation. 



 

 

Top Row: “Fort” image with reflection. 
Bottom Row: Output image with our implementation. 



 

 

 

 

 

 

Left Image: “Cardash” image with reflection. 
Right Image: Output image with our implementation. 



 

 
 

 

Top Image: “Whiteboard” image with reflection. 
Bottom Image: Output image with our implementation. 



 

 
 

Top Image: “Boat” image with reflection. 
Bottom Image: Output image with our implementation. Note slight color change. 


