

 1

Abstract
We design and test an automated low-cost scanner for

producing three-dimensional models of sub-meter scale
objects with millimeter-scale resolution. We mount
stereo camera pairs on an aluminum scanning arc
controlled by a stepper motor. These camera pairs
acquire image pairs of a centered object as the motor
rotates the aluminum arc, performing a scan. By first
calibrating these pairs of low-cost internet-protocol
cameras, we can convert the pixel disparity between
image pairs to depth. We process these calibrated depth
maps to reduce noise and remove holes. We then
generate aligned point clouds from each of these
calibrated depth maps and merge them. By further
processing the merged point cloud, we generate a color-
correct 3D object model with millimeter-scale
resolution.

1. Introduction

1.1. Motivation
Our primary motivation is to develop a low-cost and

fully automated three-dimensional (3D) scanner for
producing 3D models of sub-meter scale objects with
millimeter resolution. Current 3D scanning technologies
are high-cost and not entirely automated [1,2]. Our final
3D scan could then be converted to the appropriate file
format for existing 3D printer technologies. Ultimately,
our device would allow rapid and accurate scanning and
printing of any appropriately size object.

1.2. Related Software
In this project, we will use existing software to

interface with, collect, and process image data from
commercially available hardware. We will be using the
MATLAB Computer Vision Toolbox for calibrating
images and generating point clouds from stereo pairs of
ELP Megapixel Mini™ IP cameras [3-7]. We will
collect data from these cameras using the open source
ONVIF device manager and iSpy surveillance software
[8,9]. The scanning arc will be controlled using the TIC
stepped motor controller and software [10].

1.3. Related Depth Mapping Systems
The depth mapping capabilities of our system are

comparable to those of the Intel® RealSense™ D435

depth camera seen in Figure 1 [11]. This commercially
available camera uses active infrared stereo vision. It
generates infrared laser light, projects it onto the scene,
and uses the infrared-sensitive stereo cameras to
determine depth. It also records visible light data which
can be overlaid onto the depth map. This device outputs
a 1280 x 720 pixel resolution depth map in real time
[11].

In contrast, our proposed design uses only the visible
light data recorded from pairs of stereo cameras. By
thoroughly calibrating these camera pairs, we can
convert the pixel disparity between left and right images
to depth. This reduces cost by eliminating the need for
infrared laser sources and detectors. Our static depth
maps are 1280 x 720 pixels.

Figure 1: Intel® RealSense™ Depth Camera.

1.4. Related 3D Scanning Systems
Our envisioned final product is similar to stereo

scanning technology already on the market. The David
Visions HP 3D-scanner in Stanford’s Product
Realization Laboratory (PRL) is one such example (Fig.
2) [1,2]. This scanner projects an array of known light
patterns onto an object surface. The 3D structure of the
surface is then determined using the distortion in the
patterns. This technology can achieve sub-millimeter
resolution, but costs upwards of four thousand US
dollars [2]. This resolution is below our target
millimeter-scale resolution, but we can reduce costs by
using only IP camera pairs for data collection. This 3D
scanner is also not entirely automated, as the object must
be rotated manually to yield a full scan. Our scanner
autonomously moves about the object to reduce the
work load on the user.

3D Scanning with a Calibrated Stereo Camera Array

Simón Lorenzo
Stanford University

Department of Electrical Engineering
slorenzo@stanford.edu

Kevin Johnson
Stanford University

Department of Electrical Engineering
Kmjohnso@stanford.edu

 2

Figure 2: David Vision HP 3D Scanner.

2. Methods
We combine existing hardware and software

techniques in novel configurations to create our
functioning 3D scanner. We begin by describing the
hardware setup of the constructed scanner. Afterwards,
we outline the high-level software process used to both
calibrate the cameras and generate depth maps from
stereo image pairs. Finally, we describe the image
processing used to remove noise and fill holes in both
the generated two-dimensional (2D) and 3D data sets.

2.1. Hardware
The high-level hardware system is described in the

block diagram of Figure 3. A central computer with
graphical user interface (GUI) interfaces with the
stepper motor and the power over ethernet (POE)
switch. The POE switch provides power to each of the
IP camera pairs and allows data acquisition by the
computer through a local network. Each camera was
assigned an IP address through ONVIF Device manager
[192.168.1.100 – 192.168.1.107] [8]. An external LED
strip was added to help illuminate the scanning bed. A
power supply located in the scanner base provides the
necessary power for all elements.

Figure 3: High-Level hardware system design. A single
central computer with graphical user interface (GUI)
controls the IP camera pairs, scanner arc motion, and
scene illumination.

The scanner consists of several hardware
components: the IP cameras, aluminum scanning arc,
aluminum stage, POE switch, motor control driver,

motor with gearbox, 3D printed motor mount, 3D
printed aluminum to motor shaft interfaces, and a
computer (Fig. 4). The IP stereo camera pairs are first
mounted to an aluminum arc (Fig. 5). The aluminum arc
was custom made in the PRL by putting it through a
metal rod bender. The arc is free to rotate via D-shaft
rods which are attached to the scanner’s frame through
pillow bearings. One of these D-shafts is coupled and
up-shafted to and rotated by the stepper motor during
the scan (Fig. 6). The computer controls the stepper
motor using a Tic stepper motor controller chip [10].
The rotation occurs about the object of interest which is
placed on the center of the scan bed (Fig. 4). The central
computer acquires image data from each of the IP
cameras via ethernet cables through the POE switch
enclosed in the server rack mount hardware. A
Cyberpower surge protector with an industrial grade
metal housing was used to power the system through a
wall outlet 120V / 20A.

Figure 4: Rendered CAD Model of 3D Scanner.

Figure 5: Mounted Stereo Camera Pair.

Figure 6: Stepper Motor.

 3

2.2. Software
The software used for the scanner falls into two main

categories: software for interfacing with the hardware
interfacing, and software for processing the images.

Several software packages are used to interface with
the scanner hardware. The Tic stepper motor controller
chip comes with GUI software to control the motor
rotation range and speed [10]. The ONFIV device
manager is used by the computer to detect and assign IP
addresses to the IP cameras [8]. ISpy home security
software is used to view the real-time camera data and
trigger imaging throughout the scan [9]. These images
are saved on the computer for later processing.

The image processing was performed in MATLAB
using both the Computer Vision toolbox [3] and
additional disparity map processing functions [12]. A
high-level overview of the 3D scanning process along
with descriptions of the denoising and hole filling
algorithms are provided below.

2.2.1 High-Level Software Overview

The camera calibration and three-dimensional (3D)
point cloud generation are outlined in the high-level
software block diagram of Figure 7.

Figure 7: High-level software design: a) We calibrate
pairs of stereo cameras to provide the camera intrinsic
and extrinsic data necessary to create depth maps. b)
We capture stereo pair images of both an object and a
small checkerboard. We then compute and process the
disparity map for each of the image pairs and generate
a 3D point cloud using the calibration data. These point
clouds are then aligned using the small checkerboard
and merged.

The pairs of stereo cameras mounted onto the

aluminum arc (Fig. 5) are calibrated using a reference
checkerboard pattern of known square size (Fig. 7a).
This determines the camera intrinsic and extrinsic
parameters. Extrinsic camera data describes the 3D
transform from the world coordinate system to the
camera coordinate system. Intrinsic camera data
describes the transform from the 3D camera coordinate
system to the 2D image plane. Intrinsic data accounts for

camera focal length, distortion, and image skew due to
viewing angle.

To generate a merged 3D point cloud of an object of
interest, we begin by taking stereo image pairs of the
object during the scan (Fig. 7b). We compute the pixel
disparity between these images by using a block search
algorithm. This algorithm searches for similar regions
between left and right images to determine their lateral
pixel shift, or disparity. Disparity is dependent on the
distance from the stereo camera pair. Closer objects
have a larger disparity than farther objects. This
disparity map is processed to reduce noise and fill holes
using the methods detailed in the following section [12].

We then use the calibration data from Figure 7a) to
convert this pixel disparity to a distance in mm. This
strategy yields a partial point cloud for each disparity
map. We combine the point clouds from different
viewing angles to fully reconstruct the object. To
determine the extrinsic transforms necessary to align
these point clouds, we use the detect checkerboard
function on a fixed alignment checkerboard next to the
object of interest. Finally, the result of the autonomous
scan is a merged 3D point cloud.

2.2.2 Disparity Map Processing

In order to improve the quality of the merged 3D
point cloud, the disparity maps used to generate each
individual point cloud went through two processing
steps (Fig 8). First, the rectified stereo image pairs were
put through a gaussian filter with a sigma of 3. This
value was found through multiple trial and error runs
with visual inspection. We further enhanced the results
by pre-processing the disparity maps with a gaussian
filter [12]. To remove unwanted holes, each disparity
map was fed into a hole-filling function. This process is
detailed in Figure 8.

Figure 8: Software system diagram denoting pre and
post processing steps used to remove holes and smooth
out disparity maps.

2.2.3 Point Cloud Spatial Noise Removal

To further improve the quality of the final merged
point cloud, we reduced unwanted spatial noise using

 4

the process described in Figure 9. We implemented a
voxel density noise removal algorithm to visualize,
mark and remove unwanted spatial noise. To help
visualize the algorithm in real time, we color valid and
invalid regions green and red respectively. The pseudo-
code for the algorithm is detailed in Algorithm 1.

Figure 9: Software flowchart of point cloud spatial
noise removal algorithm.

We first assume that lower density regions of the
point clouds are noise. This is typically valid for any
scanned solid object. We then establish the voxel size,
dividing up the 3D point cloud into cubes. We create an
empty point cloud to hold new point cloud data. Next,
we count the number of points within each voxel region
of interest (ROI) in the original point cloud. A user-
defined count threshold determines validity. If the count
is greater than the threshold, the points included within
that voxel are merged into the new point cloud. If the
count is less than the threshold, the points are discarded.
This algorithm can be implemented on either the partial
point clouds or the fully merged point cloud. However,
it is computationally more efficient to run the algorithm
on the final merged cloud.
__
Point Cloud Voxel Noise Removal Algorithm
__

1: Define voxel size
2: Define voxel threshold size
3: Define Voxel Step in X, Y and Z
4. Create empty point cloud to hold new data
5: For 0 : ZVoxelStep : Point Cloud X limits

For 0 : YVoxelStep : Point Cloud Y limits
For 0 : XVoxelStep : Point Cloud Z limits

6: Define roi in terms of X, Y and Z limits

7: Find all points within voxel
8: Count data points within voxel
9: if point cloud count < threshold
10: Mark as invalid
11: Color all points within voxel red

else
12: Mark as valid

 13: Color all points within voxel green
 14: Merge into new point cloud

End
End

End
Algorithm 1: Pseudo code for the voxel noise

removal algorithm.

3. Results
Below, we provide the graphical results of the

hardware and software scanning processes described
above. We begin with the calibration process, present
the initial and processed 2D data, and conclude with the
processed 3D data from the partial and merged point
clouds.

3.1. Calibration
We used a 10 x 9 asymmetric black and white

checkerboard with 18 mm square size to calibrate the
camera pairs in the spatial region of interest (Fig. 8).
Due to the sharp pixel intensity gradient, the corners of
this pattern are easily localized by a detect-checkerboard
function. The detected corners can be visualized by the
red circles in Figure 10.

Figure 10: Calibration checkerboard with detected
corners.

 A thorough calibration over the spatial region of
interest is necessary to reliably convert pixel disparity to
distance. We image the checkerboard over multiple scan
angles and object heights. A visualization of the
detected checkerboards for a single angular sweep is
shown in Figure 11. The extrinsic visualization from a
full calibration sweep requires additional board heights
(Fig. 12).

 5

Figure 11: Visualization of the calibration
checkerboard and camera positions during a scan.

Figure 12: Visualization of the calibration
checkerboards and cameras during a full calibration.
Note that overlaid angular scan data for 4 board height
positions is shown.

3.2. 2D Scan Data
We perform a scan of an object by acquiring stereo

pair images from different viewing angles during a
single mechanical arc sweep. Sample object stereo pair
images acquired at two sweep angles are shown in
Figure 13. A detected alignment checkboard is also
shown in each image. The sample objects scanned and
shown in this report are a roll of duct tape, a coffee mug,
and a pair of laser safety goggles. These are difficult
objects to image due to their smooth untextured
surfaces.

Figure 13: Sample scanner stereo image pairs of the
duct tape roll, the coffee mug, and the laser goggles. The
detected checkerboard is used to determine the
orientation of the selected images.

The disparity algorithm provided in the MATLAB

Computer Vision toolbox uses a block-search method
for locating objects in each image pair. The disparity
maps of Figure 14 are visualizations of the pixel
disparity between stereo images. We depict two viewing
angles for each object. This disparity estimation
algorithm is simple and yields patchy but still
recognizable objects. As expected, close object surfaces
show a larger pixel disparity (Fig. 14).

 6

Figure 14: Samples of disparity maps for two different
angles during scans of the duct tape roll, the coffee mug,
and the laser goggles.

These disparity maps can be improved significantly

using the hole-filling algorithm described in section
2.2.2. Figure 15 shows a sample implementation of the
algorithm on a disparity map of each object. Most holes
and gaps in the map are entirely filled.

Figure 15: Input disparity maps (left) and output final
disparity maps after processing (right)

3.3 3D Scan Data
Using the extrinsic and intrinsic camera data from the

calibration run, we convert the processed disparity maps
into point clouds. Sample point clouds from two
viewing angles for each object are shown in Figure 16.
The clouds on the left are from side-on images of the
objects. The clouds on the right are from top-down
images of the objects. This is reflected in the surface
data on each object.

These clouds are aligned and transformed using the
small checkerboard depicted in each image (Fig. 13).
Here, we are only using the extrinsic data, not
performing a new calibration run. Though the point
clouds were initially rotated assuming a static camera,
we can easily undo the spatial transform to reflect a
static object located at the grid origin (Fig. 13).

Figure 16: Samples of point clouds for two different
angles during scans of the duct tape roll, the coffee mug,
and the laser goggles. All are aligned with each other
using the small neighboring checkerboard. Point clouds
on the left are from side-on images, and point clouds on
the right are from top-down images.

Due to the partial nature of each point cloud, we
combine them all to generate a full 3D map of each
object. We show the merged result of combining several
point clouds in Figure 17. Note that many of the holes
are filled with data from different viewing angles.

 7

Figure 17: Merged point clouds of the duct tape roll, the
coffee mug, and the laser safety goggles. Combining the
partial point clouds of Figure 16, filled in the holes and
completed the object.

3.4 Denoised 3D Scan Data
To remove any additional spatial noise in the 3D point

clouds of Figure 17, we implement the voxel denoising
algorithm from section 2.2.3. This is also useful for
removing any valid scan data outside the region of
interest. An example of the voxel denoising algorithm at
work is shown in Figure 19.

Figure 19: Single Point Cloud (Top Left), valid (green)
and invalid (red) single point cloud (Top right) and a
reconstructed single point cloud with noise removed
(Bottom)

Figure 20: Merged point clouds before and after the
voxel denoising algorithm.

Figure 20 shows the results from using the voxel

denoising algorithm on the fully merged point clouds.
The new reconstructed point cloud shows no sign of the
small spatial noise clusters.

4. Analysis and Discussion
The effectiveness of this scanner can be judged

through analysis of the calibration and alignment
method, the disparity map processing, the resulting 3D
scan dimensions, and the scan color.

4.1. Pixel Disparity
Both the camera calibration and point cloud

alignment methods rely on the recognition of
checkerboards in the image. The reprojection errors
represent the accuracy of the detect checkerboard
function implemented for each stereo pair image. These
errors describe how well the calculated transformed
checkerboard aligns with the actual corners detected in
the images. Values under 1 pixel represent effectively
errorless images. All reprojection errors for the
calibration and alignment images in this paper were sub-
pixel. This is therefore, not a dominant source of error
in the scan.

Figure 21: Reprojection errors for sample calibration
data. All errors are less than one pixel.

4.2. Noise and Hole Processing
The original disparity maps suffer from spatial noise

and holes (Fig. 14). For relatively smooth surfaces the
simple disparity algorithm has difficulty in tracking
objects between images. This explains the holes in
Figure 14. However, the hole-filling algorithm
successfully addresses this issue (Fig. 15).

The voxel noise removal algorithm effectively
discards both spatial noise data and points outside the
region of interest (Fig. 20). For generating a 3D print
file, this method could be used to subtract the stage and
platform.

 8

4.3. Scan Dimensions
The resulting dimensions of each 3D scan are also an

effective evaluation method for performance. Measured
key features for each object are compared with the same
features in the resulting scans of Figure 17 (Table 1).
Beyond preserving the qualitative object shapes, the
differences for all features of all objects are sub-
centimeter. This achieves the project goal of imaging
sub-meter scale objects with millimeter resolution.

Table 1: Dimensions of key object features: measured
versus scanned

4.4. Scan Color
The color of each object is preserved well spatially.

Larger colored areas of the duct tape, coffee mug, laser
goggles, and background are in place. Smaller colored
feature patterns including text on the coffee mug and
silver writing on the goggles are also still legible.

4.5. Comparison to Previous Work
Our 3D scanner achieves reliable millimeter

resolution over an entire merged 3D point cloud. This
resolution is comparable to that of the Intel®
RealSense™ Depth Camera (Fig. 1) over the distance of
interest. However, we successfully automate the
scanning and merge the point clouds into a full 3D
model. The RealSense™ only provides depth data from
a single viewing angle.

Our scanner shows improvement over the HP David
Visions scanner through improved automation and
reduced cost but suffers from reduced resolution. We do
not achieve the same sub-mm resolution. However, the
overall cost of our prototype is below $600 US dollars.
The HP David visions scanner costs above $4k, so we
succeed in providing a more economical alternative.

5. Future Work
Future implementation of this work may focus on

further automation, GUI integration, and improved

disparity map processing. For sufficiently denoised 3D
scans, we may also advance to 3D printing the results.

While the scans themselves are automated, the data
processing is not automatically triggered upon scan
completion. We have to access a local version of
MATLAB for data processing. We are also currently
using two separate GUIs for stepper motor control and
imaging. It should also be possible to combine these two
separate processes. Ultimately, the entire process will be
fully autonomous, controlled through a single button
click, and integrated into one GUI. This will produce a
high-resolution STL file for rapid 3D printed
prototyping.

References
[1] Stanford University. (2018). 3D Scanning. Stanford

Product Realization Lab. Retrieved from
https://productrealization.stanford.edu/resources/process
es/3d-scanning.

[2] David Group. (2019). 3D Scanner Introduction. David
and HP Company. Retrieved from https://www.david-
3d.com/en/support/david4/introduction.

[3] The MathWorks Inc. (2019). Computer Vision Systems
Toolbox. MathWorks. Retrieved from
https://www.mathworks.com/products/computer-
vision.html.

[4] Zhang, Z. “A Flexible New Technique for Camera
Calibration”. IEEE Transactions on Pattern Analysis and
Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330–
1334.

[5] Heikkila, J, and O. Silven. “A Four-step Camera
Calibration Procedure with Implicit Image Correction”,
IEEE International Conference on Computer Vision and
Pattern Recognition, 1997.

[6] G. Bradski and A. Kaehler, "Learning OpenCV :
Computer Vision with the OpenCV Library," O'Reilly,
Sebastopol, CA, 2008.

[7] Amazon. (2019). ELP 1280720p 1.0 Megapixel Mini IP
Camera, Mini Hidden Network Camera. Amazon.
Retrieved from https://www.amazon.com/ELP-
1280720p-Megapixel-Camera-
Network/dp/B00KA4M4WS.

[8] Slashdot Media. (2019). ONVIF Device Manager.
SOURCEFORGE. Retrieved from
https://sourceforge.net/projects/onvifdm/.

[9] DeveloperInABox. (2019). Open Source Video
Surveillance Software. ISPYCONNECT. Retrieved from
https://www.ispyconnect.com/.

[10] Pololu Corporation, (2019). Tic Stepper Motor
Controllers. Pololu. Retrieved from
https://www.pololu.com/category/212/tic-stepper-
motom-controllers.

[11] Intel. (2019). Intel RealSense Technology. Intel Software
Developer Zone. Retrieved from
https://software.intel.com/en-us/realsense.

[12] Aditya, K.p., V. Reddy, H.Ramasangu., “Enhancement
Technique for Improving the Reliability of Disparity
Map under Low Light Condition.” Procedia Technology,
vol 14, 2014

