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Abstract 
We design and test an automated low-cost scanner for 

producing three-dimensional models of sub-meter scale 
objects with millimeter-scale resolution. We mount 
stereo camera pairs on an aluminum scanning arc 
controlled by a stepper motor. These camera pairs 
acquire image pairs of a centered object as the motor 
rotates the aluminum arc, performing a scan. By first 
calibrating these pairs of low-cost internet-protocol 
cameras, we can convert the pixel disparity between 
image pairs to depth. We process these calibrated depth 
maps to reduce noise and remove holes. We then 
generate aligned point clouds from each of these 
calibrated depth maps and merge them. By further 
processing the merged point cloud, we generate a color-
correct 3D object model with millimeter-scale 
resolution.   

1. Introduction 

1.1. Motivation 
Our primary motivation is to develop a low-cost and 

fully automated three-dimensional (3D) scanner for 
producing 3D models of sub-meter scale objects with 
millimeter resolution. Current 3D scanning technologies 
are high-cost and not entirely automated [1,2]. Our final 
3D scan could then be converted to the appropriate file 
format for existing 3D printer technologies. Ultimately, 
our device would allow rapid and accurate scanning and 
printing of any appropriately size object. 

1.2. Related Software 
In this project, we will use existing software to 

interface with, collect, and process image data from 
commercially available hardware. We will be using the 
MATLAB Computer Vision Toolbox for calibrating 
images and generating point clouds from stereo pairs of 
ELP Megapixel Mini™ IP cameras [3-7]. We will 
collect data from these cameras using the open source 
ONVIF device manager and iSpy surveillance software 
[8,9]. The scanning arc will be controlled using the TIC 
stepped motor controller and software [10].  

1.3. Related Depth Mapping Systems 
The depth mapping capabilities of our system are 

comparable to those of the Intel® RealSense™ D435 

depth camera seen in Figure 1 [11]. This commercially 
available camera uses active infrared stereo vision. It 
generates infrared laser light, projects it onto the scene, 
and uses the infrared-sensitive stereo cameras to 
determine depth. It also records visible light data which 
can be overlaid onto the depth map. This device outputs 
a 1280 x 720 pixel resolution depth map in real time 
[11]. 

In contrast, our proposed design uses only the visible 
light data recorded from pairs of stereo cameras. By 
thoroughly calibrating these camera pairs, we can 
convert the pixel disparity between left and right images 
to depth. This reduces cost by eliminating the need for 
infrared laser sources and detectors. Our static depth 
maps are 1280 x 720  pixels.   

 

 
Figure 1: Intel® RealSense™ Depth Camera. 

1.4. Related 3D Scanning Systems 
Our envisioned final product is similar to stereo 

scanning technology already on the market. The David 
Visions HP 3D-scanner in Stanford’s Product 
Realization Laboratory (PRL) is one such example (Fig. 
2) [1,2]. This scanner projects an array of known light 
patterns onto an object surface. The 3D structure of the 
surface is then determined using the distortion in the 
patterns. This technology can achieve sub-millimeter 
resolution, but costs upwards of four thousand US 
dollars [2]. This resolution is below our target 
millimeter-scale resolution, but we can reduce costs by 
using only IP camera pairs for data collection. This 3D 
scanner is also not entirely automated, as the object must 
be rotated manually to yield a full scan. Our scanner 
autonomously moves about the object to reduce the 
work load on the user.  
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Figure 2: David Vision HP 3D Scanner. 

2. Methods 
We combine existing hardware and software 

techniques in novel configurations to create our 
functioning 3D scanner. We begin by describing the 
hardware setup of the constructed scanner. Afterwards, 
we outline the high-level software process used to both 
calibrate the cameras and generate depth maps from 
stereo image pairs. Finally, we describe the image 
processing used to remove noise and fill holes in both 
the generated two-dimensional (2D) and 3D data sets. 

2.1. Hardware 
The high-level hardware system is described in the 

block diagram of Figure 3. A central computer with 
graphical user interface (GUI) interfaces with the 
stepper motor and the power over ethernet (POE) 
switch. The POE switch provides power to each of the 
IP camera pairs and allows data acquisition by the 
computer through a local network. Each camera was 
assigned an IP address through ONVIF Device manager 
[192.168.1.100 – 192.168.1.107] [8]. An external LED 
strip was added to help illuminate the scanning bed. A 
power supply located in the scanner base provides the 
necessary power for all elements. 

 

 
 
Figure 3: High-Level hardware system design. A single 
central computer with graphical user interface (GUI) 
controls the IP camera pairs, scanner arc motion, and 
scene illumination. 
 

The scanner consists of several hardware 
components: the IP cameras, aluminum scanning arc, 
aluminum stage, POE switch, motor control driver, 

motor with gearbox, 3D printed motor mount, 3D 
printed aluminum to motor shaft interfaces, and a 
computer (Fig. 4). The IP stereo camera pairs are first 
mounted to an aluminum arc (Fig. 5). The aluminum arc 
was custom made in the PRL by putting it through a 
metal rod bender. The arc is free to rotate via D-shaft 
rods which are attached to the scanner’s frame through 
pillow bearings. One of these D-shafts is coupled and 
up-shafted to and rotated by the stepper motor during 
the scan (Fig. 6). The computer controls the stepper 
motor using a Tic stepper motor controller chip [10]. 
The rotation occurs about the object of interest which is 
placed on the center of the scan bed (Fig. 4). The central 
computer acquires image data from each of the IP 
cameras via ethernet cables through the POE switch 
enclosed in the server rack mount hardware. A 
Cyberpower surge protector with an industrial grade 
metal housing was used to power the system through a 
wall outlet 120V / 20A. 

 
Figure 4: Rendered CAD Model of 3D Scanner. 

 
Figure 5: Mounted Stereo Camera Pair. 

 
Figure 6: Stepper Motor. 
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2.2. Software 
The software used for the scanner falls into two main 

categories: software for interfacing with the hardware 
interfacing, and software for processing the images. 

Several software packages are used to interface with 
the scanner hardware. The Tic stepper motor controller 
chip comes with GUI software to control the motor 
rotation range and speed [10]. The ONFIV device 
manager is used by the computer to detect and assign IP 
addresses to the IP cameras [8]. ISpy home security 
software is used to view the real-time camera data and 
trigger imaging throughout the scan [9]. These images 
are saved on the computer for later processing. 

The image processing was performed in MATLAB 
using both the Computer Vision toolbox [3] and 
additional disparity map processing functions [12]. A 
high-level overview of the 3D scanning process along 
with descriptions of the denoising and hole filling 
algorithms are provided below. 

2.2.1 High-Level Software Overview 

The camera calibration and three-dimensional (3D) 
point cloud generation are outlined in the high-level 
software block diagram of Figure 7.  

 
Figure 7: High-level software design: a) We calibrate 
pairs of stereo cameras to provide the camera intrinsic 
and extrinsic data necessary to create depth maps. b) 
We capture stereo pair images of both an object and a 
small checkerboard. We then compute and process the 
disparity map for each of the image pairs and generate 
a 3D point cloud using the calibration data. These point 
clouds are then aligned using the small checkerboard 
and merged. 

 
The pairs of stereo cameras mounted onto the 

aluminum arc (Fig. 5) are calibrated using a reference 
checkerboard pattern of known square size (Fig. 7a). 
This determines the camera intrinsic and extrinsic 
parameters. Extrinsic camera data describes the 3D 
transform from the world coordinate system to the 
camera coordinate system. Intrinsic camera data 
describes the transform from the 3D camera coordinate 
system to the 2D image plane. Intrinsic data accounts for 

camera focal length, distortion, and image skew due to 
viewing angle.  

To generate a merged 3D point cloud of an object of 
interest, we begin by taking stereo image pairs of the 
object during the scan (Fig. 7b). We compute the pixel 
disparity between these images by using a block search 
algorithm. This algorithm searches for similar regions 
between left and right images to determine their lateral 
pixel shift, or disparity. Disparity is dependent on the 
distance from the stereo camera pair. Closer objects 
have a larger disparity than farther objects. This 
disparity map is processed to reduce noise and fill holes 
using the methods detailed in the following section [12]. 

We then use the calibration data from Figure 7a) to 
convert this pixel disparity to a distance in mm. This 
strategy yields a partial point cloud for each disparity 
map. We combine the point clouds from different 
viewing angles to fully reconstruct the object. To 
determine the extrinsic transforms necessary to align 
these point clouds, we use the detect checkerboard 
function on a fixed alignment checkerboard next to the 
object of interest. Finally, the result of the autonomous 
scan is a merged 3D point cloud. 

2.2.2 Disparity Map Processing 

In order to improve the quality of the merged 3D 
point cloud, the disparity maps used to generate each 
individual point cloud went through two processing 
steps (Fig 8). First, the rectified stereo image pairs were 
put through a gaussian filter with a sigma of 3. This 
value was found through multiple trial and error runs 
with visual inspection. We further enhanced the results 
by pre-processing the disparity maps with a gaussian 
filter [12]. To remove unwanted holes, each disparity 
map was fed into a hole-filling function. This process is 
detailed in Figure 8. 

 

 
Figure 8: Software system diagram denoting pre and 
post processing steps used to remove holes and smooth 
out disparity maps. 

2.2.3 Point Cloud Spatial Noise Removal 

To further improve the quality of the final merged 
point cloud, we reduced unwanted spatial noise using 
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the process described in Figure 9. We implemented a 
voxel density noise removal algorithm to visualize, 
mark and remove unwanted spatial noise. To help 
visualize the algorithm in real time, we color valid and 
invalid regions green and red respectively. The pseudo-
code for the algorithm is detailed in Algorithm 1. 
 

 
Figure 9: Software flowchart of point cloud spatial 
noise removal algorithm. 
 

We first assume that lower density regions of the 
point clouds are noise. This is typically valid for any 
scanned solid object. We then establish the voxel size, 
dividing up the 3D point cloud into cubes. We create an 
empty point cloud to hold new point cloud data. Next, 
we count the number of points within each voxel region 
of interest (ROI) in the original point cloud. A user-
defined count threshold determines validity. If the count 
is greater than the threshold, the points included within 
that voxel are merged into the new point cloud. If the 
count is less than the threshold, the points are discarded. 
This algorithm can be implemented on either the partial 
point clouds or the fully merged point cloud. However, 
it is computationally more efficient to run the algorithm 
on the final merged cloud.  
____________________________________________ 
Point Cloud Voxel Noise Removal Algorithm      
____________________________________________ 

1: Define voxel size 
2: Define voxel threshold size 
3: Define Voxel Step in X, Y and Z 
4. Create empty point cloud to hold new data 
5: For 0 : ZVoxelStep : Point Cloud X limits 

For 0 : YVoxelStep : Point Cloud Y limits 
For 0 : XVoxelStep : Point Cloud Z limits 

6:              Define roi in terms of X, Y and Z limits 

7:              Find all points within voxel 
8:             Count data points within voxel 
9:             if point cloud count < threshold 
10:               Mark as invalid 
11:               Color all points within voxel red 

else 
12:               Mark as valid 

    13:               Color all points within voxel green 
    14:               Merge into new point cloud 

End 
End 

End 
Algorithm 1: Pseudo code for the voxel noise 

removal algorithm. 

3. Results 
Below, we provide the graphical results of the 

hardware and software scanning processes described 
above. We begin with the calibration process, present 
the initial and processed 2D data, and conclude with the 
processed 3D data from the partial and merged point 
clouds.  

3.1. Calibration 
We used a 10 x 9 asymmetric black and white 

checkerboard with 18 mm square size to calibrate the 
camera pairs in the spatial region of interest (Fig. 8). 
Due to the sharp pixel intensity gradient, the corners of 
this pattern are easily localized by a detect-checkerboard 
function. The detected corners can be visualized by the 
red circles in Figure 10.  

 
Figure 10: Calibration checkerboard with detected 
corners. 
 
 A thorough calibration over the spatial region of 
interest is necessary to reliably convert pixel disparity to 
distance. We image the checkerboard over multiple scan 
angles and object heights. A visualization of the 
detected checkerboards for a single angular sweep is 
shown in Figure 11. The extrinsic visualization from a 
full calibration sweep requires additional board heights 
(Fig. 12).  
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Figure 11: Visualization of the calibration 
checkerboard and camera positions during a scan. 
 

 
Figure 12: Visualization of the calibration 
checkerboards and cameras during a full calibration. 
Note that overlaid angular scan data for 4 board height 
positions is shown. 

3.2. 2D Scan Data 
We perform a scan of an object by acquiring stereo 

pair images from different viewing angles during a 
single mechanical arc sweep. Sample object stereo pair 
images acquired at two sweep angles are shown in 
Figure 13. A detected alignment checkboard is also 
shown in each image. The sample objects scanned and 
shown in this report are a roll of duct tape, a coffee mug, 
and a pair of laser safety goggles. These are difficult 
objects to image due to their smooth untextured 
surfaces.  

 
Figure 13: Sample scanner stereo image pairs of the 
duct tape roll, the coffee mug, and the laser goggles. The 
detected checkerboard is used to determine the 
orientation of the selected images. 

 
The disparity algorithm provided in the MATLAB 

Computer Vision toolbox uses a block-search method 
for locating objects in each image pair. The disparity 
maps of Figure 14 are visualizations of the pixel 
disparity between stereo images. We depict two viewing 
angles for each object. This disparity estimation 
algorithm is simple and yields patchy but still 
recognizable objects. As expected, close object surfaces 
show a larger pixel disparity (Fig. 14). 
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Figure 14: Samples of disparity maps for two different 
angles during scans of the duct tape roll, the coffee mug, 
and the laser goggles. 

 
These disparity maps can be improved significantly 

using the hole-filling algorithm described in section 
2.2.2. Figure 15 shows a sample implementation of the 
algorithm on a disparity map of each object. Most holes 
and gaps in the map are entirely filled. 

 
Figure 15: Input disparity maps (left) and output final 
disparity maps after processing (right) 

3.3 3D Scan Data 
Using the extrinsic and intrinsic camera data from the 

calibration run, we convert the processed disparity maps 
into point clouds. Sample point clouds from two 
viewing angles for each object are shown in Figure 16. 
The clouds on the left are from side-on images of the 
objects. The clouds on the right are from top-down 
images of the objects. This is reflected in the surface 
data on each object.  

These clouds are aligned and transformed using the 
small checkerboard depicted in each image (Fig. 13). 
Here, we are only using the extrinsic data, not 
performing a new calibration run. Though the point 
clouds were initially rotated assuming a static camera, 
we can easily undo the spatial transform to reflect a 
static object located at the grid origin (Fig. 13). 

 
Figure 16: Samples of point clouds for two different 
angles during scans of the duct tape roll, the coffee mug, 
and the laser goggles. All are aligned with each other 
using the small neighboring checkerboard. Point clouds 
on the left are from side-on images, and point clouds on 
the right are from top-down images. 
 

Due to the partial nature of each point cloud, we 
combine them all to generate a full 3D map of each 
object. We show the merged result of combining several 
point clouds in Figure 17. Note that many of the holes 
are filled with data from different viewing angles.  

 

 



 

 7 

Figure 17: Merged point clouds of the duct tape roll, the 
coffee mug, and the laser safety goggles. Combining the 
partial point clouds of Figure 16, filled in the holes and 
completed the object. 

3.4 Denoised 3D Scan Data 
To remove any additional spatial noise in the 3D point 

clouds of Figure 17, we implement the voxel denoising 
algorithm from section 2.2.3. This is also useful for 
removing any valid scan data outside the region of 
interest. An example of the voxel denoising algorithm at 
work is shown in Figure 19. 

 
Figure 19: Single Point Cloud (Top Left), valid (green) 
and invalid (red) single point cloud (Top right) and a 
reconstructed single point cloud with noise removed 
(Bottom) 

 

Figure 20: Merged point clouds before and after the 
voxel denoising algorithm. 

  
Figure 20 shows the results from using the voxel 

denoising algorithm on the fully merged point clouds. 
The new reconstructed point cloud shows no sign of the 
small spatial noise clusters.  

4. Analysis and Discussion 
The effectiveness of this scanner can be judged 

through analysis of the calibration and alignment 
method, the disparity map processing, the resulting 3D 
scan dimensions, and the scan color. 

4.1. Pixel Disparity 
Both the camera calibration and point cloud 

alignment methods rely on the recognition of 
checkerboards in the image. The reprojection errors 
represent the accuracy of the detect checkerboard 
function implemented for each stereo pair image. These 
errors describe how well the calculated transformed 
checkerboard aligns with the actual corners detected in 
the images. Values under 1 pixel represent effectively 
errorless images. All reprojection errors for the 
calibration and alignment images in this paper were sub-
pixel. This is therefore, not a dominant source of error 
in the scan. 

 
Figure 21: Reprojection errors for sample calibration 
data. All errors are less than one pixel. 

4.2. Noise and Hole Processing 
The original disparity maps suffer from spatial noise 

and holes (Fig. 14). For relatively smooth surfaces the 
simple disparity algorithm has difficulty in tracking 
objects between images. This explains the holes in 
Figure 14. However, the hole-filling algorithm 
successfully addresses this issue (Fig. 15).  

The voxel noise removal algorithm effectively 
discards both spatial noise data and points outside the 
region of interest (Fig. 20). For generating a 3D print 
file, this method could be used to subtract the stage and 
platform. 
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4.3. Scan Dimensions 
The resulting dimensions of each 3D scan are also an 

effective evaluation method for performance. Measured 
key features for each object are compared with the same 
features in the resulting scans of Figure 17 (Table 1). 
Beyond preserving the qualitative object shapes, the 
differences for all features of all objects are sub-
centimeter. This achieves the project goal of imaging 
sub-meter scale objects with millimeter resolution. 

 
Table 1: Dimensions of key object features: measured 
versus scanned 

4.4. Scan Color 
The color of each object is preserved well spatially. 

Larger colored areas of the duct tape, coffee mug, laser 
goggles, and background are in place. Smaller colored 
feature patterns including text on the coffee mug and 
silver writing on the goggles are also still legible.  

4.5. Comparison to Previous Work 
Our 3D scanner achieves reliable millimeter 

resolution over an entire merged 3D point cloud. This 
resolution is comparable to that of the Intel® 
RealSense™ Depth Camera (Fig. 1) over the distance of 
interest. However, we successfully automate the 
scanning and merge the point clouds into a full 3D 
model. The RealSense™ only provides depth data from 
a single viewing angle.  

Our scanner shows improvement over the HP David 
Visions scanner through improved automation and 
reduced cost but suffers from reduced resolution. We do 
not achieve the same sub-mm resolution. However, the 
overall cost of our prototype is below $600 US dollars. 
The HP David visions scanner costs above $4k, so we 
succeed in providing a more economical alternative.  

5. Future Work 
Future implementation of this work may focus on 

further automation, GUI integration, and improved 

disparity map processing. For sufficiently denoised 3D 
scans, we may also advance to 3D printing the results.  

While the scans themselves are automated, the data 
processing is not automatically triggered upon scan 
completion. We have to access a local version of 
MATLAB for data processing. We are also currently 
using two separate GUIs for stepper motor control and 
imaging. It should also be possible to combine these two 
separate processes. Ultimately, the entire process will be 
fully autonomous, controlled through a single button 
click, and integrated into one GUI. This will produce a 
high-resolution STL file for rapid 3D printed 
prototyping. 
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