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Abstract— This paper presents a shopping cart item tracker.  

It uses background subtraction to detect the keyframes. To extract 

the foreground pixels in the keyframe, a double-threshold image 

subtraction technique has been proposed. It allows the threshold 

of image subtraction to be less strictly defined. The subtracted 

image is then matched to one of the 50 different items with Scale-

invariant Feature Transform (SIFT). Linear Discriminant 

Analysis (LDA) is also used to recognize if the user puts in or takes 

out an item. The algorithm has been verified with two videos with 

9 randomly selected items.  

Keywords—image subtraction, background subtraction, LDA, 

SIFT  

I. INTRODUCTION  

Consumers often forget what the items they put in the 
shopping cart, so they have to check if all the items in the 
shopping cart are correct, which can be very time-consuming 
when there are too many items. Although unmanned shopping 
store can resolve this problem, they have not been popularized 
as it needs a large number of sensors and cameras to track the 
motion of the customers and the products. Technical-wise, a 
store like Amazon Go cannot support more than 20 people 
shopping simultaneously, at least by 2017 [1]. 

Therefore, it is necessary to develop an application to track 
the customer's shopping cart item record in real time. The user 
can put the phone on top of the shopping cart to capture the item 
he puts in or takes out. He should also hold the item for about 
half a second and make sure that the front view of the item is 
facing the camera. This paper presents the implementation of 
this application, which involves with keyframe detection, 
background subtraction, feature matching, and action 
recognition. It also proposes a novel simple image subtraction 
technique for static single object extraction.  

The paper is organized as follows. Section II presents the 
initial setup and an overview of the algorithm. Section III 
describes how to identify the keyframes from the video with 
background subtraction. Section IV proposed a novel simple 
image subtraction technique for static single-object extraction. 
Section V shows the SIFT matching result. Section VI presents 
a simple chromaticity-based action recognition method that 
uses LDA as the classifier. Section VII describes the test setup 
and result. Section VIII includes the conclusion and potential 
improvement.  

II. INITIAL SETUP & ALGORITHM OVERVIEW 

Fifty different items are collected as samples and resized to 
300x300 for feature matching. The descriptors of each item are 
precomputed with Scale Invariant Feature Transform (SIFT). 
The smartphone is placed on top of the shopping cart to capture 
the items user puts in or takes out. Each frame captured by the 

camera is resized to 400x800 to accommodate different screen 
resolution.   

Then Gaussian-mixture model (GMM) background 
subtraction is used to detect 3 keyframes: background, entering, 
and foreground. Background frame is the frame before the user 
puts in or takes out an item. Entering frame is the frame when 
the user’s hand enters the scene. Foreground frame is the frame 
when the user holds the item in the cart.  

Then the foreground frame is subtracted by the background 
frame to extract the foreground pixels for feature matching. The 
entering frame is also subtracted by the background frame for 
action recognition with Linear Discriminant Analysis (LDA), 
which identifies if the user is putting in or taking out an item, 
as shown in figure 1.  

 

Figure 1: Flow chart of the algorithm for item tracker 

III. KEYFRAME DETECTION 

Background subtraction with Gaussian mixture model has 
been very popular in visual surveillance. This technique 
identifies the intruding object as the foreground and models its 
probability with a Gaussian mixture model. It was first 
proposed by Fridman and Russell in 1997 [2], and later on 
widely popular and improved. This implementation uses the 
technique proposed by Zivkovic[3] to detect the keyframes.  

For the background subtraction with Gaussian mixture 
model, the probability that each pixel at time t within a period 
of 𝑇 classified as the foreground (FG) or background (BG) is 
expressed by Gaussian mixture model with M components:  

 

    𝑝(𝑥⃑𝑡|𝑋𝑇 , 𝐹𝐺 + 𝐵𝐺) = ∑ 𝜋𝑚𝑁(𝑥⃑𝑡; 𝜇𝑚, 𝜎𝑚
2 𝐼)         (1)𝑀

𝑚=1   

𝜋𝑚 ←  𝜋𝑚 + 𝛼(𝑜𝑚
𝑡 − 𝜋𝑚)                           (2) 

 

where N denotes the Gaussian distribution,  𝛼 =
1

𝑇
, . 𝑜𝑚

𝑡  is set to 

1 if the newly joined pixel matches closely with others, which 
leads to larger 𝜋𝑚  value, or set to 0. So the background 
probability can be approximated by the sum of B largest 
clusters:  



 

𝑝(𝑥⃑𝑡|𝑋𝑇 , 𝐵𝐺) = ∑ 𝜋𝑚𝑁(𝑥⃑𝑡; 𝜇𝑚, 𝜎𝑚
2 𝐼) 𝐵

𝑚=1 (3)

 
Usually, the intruding foreground pixel has a small weight 

πm, but if they remain stable or close to each other long enough, 
they will be updated as the background pixels as its 
corresponding πm will be large. So the foreground pixels will 
not immediately become background pixels. The application 
will use this property to find the foreground frame. 

As shown in figure 2, the frames have no foreground pixels 
before the user’s hand enters the scene, so these frames are the 
background frames. The user's hand entering the scene causes 
a change in some of the pixels, which become foreground 
pixels. When its counts are higher than a threshold, this frames 
is identified as the entering frame. When the user holds the item 
in front of the camera long enough, the foreground pixels will 
become background pixels. The user's hand leaving the scene 
also increases the foreground pixel count. So the frame that 
corresponds to the local minimum in foreground pixel count is 
identified as the foreground frame. This frame captures the 
scene that the user is holding the item. The amount of time the 
user needs to hold is determined by the number of frames 𝑓 it 
takes for a foreground pixel to be identified as a background 
pixel, as approximated in the following equation: 

                                            𝑓 =
log(1 − 𝑐𝑓)

log (1 −
1
𝑇

)
                                (4) 

 
where 𝑐𝑓 is a threshold for the sum of the weights. The longer 

the 𝑇, the more frames are needed to change a foreground pixel 
to background pixel.  

      Closing morphological operator also removes the small 
foreground regions due to small changes in light caused by 
other people walking around or the user himself to suppress this 
noise. Based on the above equation (4), although evaluating 
pixels in a shorter duration allows the users to hold the item 
shortly, too short a time can also lead to false detection, such as 
the user is putting the item in too slowly. Therefore, this 
application requires the user to hold the item for about 0.5 
seconds.  

      Therefore, only three frames need to be saved for further 
processing. The background and foreground frame can be 
found by tracking only the frame with minimum foreground 
pixel count within a window period.  This significantly reduces 
the run-time memory requirement.  

 

 

(a) Foreground pixel count when the user puts in or takes out 
an item 

 

 

(b) Each double peak indicates the user is putting in or taking 
out an item 

Figure 2. Foreground pixel count for the keyframes.  

IV. IMAGE SUBTRACTION 

The foreground frame is then subtracted with the 
background frame to extract the pixels of the item.  However, 
there are mainly two problems. First, when the user holds the 
item in front of the camera, it blocks some of the light, thus 
forming a shadow nearby.  If there is an item right at the shadow 
region, the feature matching may match the item in the shadow 
region rather than the item user holds. Second, due to different 
illumination, different item color, it is difficult to find a single 
threshold that separates the item from the background. 

A. Shadow Removal 

Shadow detection with the chromaticity-based method 
proposed by Cucchiara[4] has achieved about 80% accuracy in 
the indoor environment[5]. This method first converts the 
image from RGB color space to HSV color space, as the HSV 
color space separates chromaticity from luminosity. The 
shadow formed in the foreground frame usually has a much 
lower value than the background, but only small color variation, 
so it uses the ratio rather than the difference of the value. The 



shadow also has less impact on the hue, and it lowers the 
saturation. Therefore, if a pixel satisfies the following 
conditions then it will be classified as shadow: 

                              |𝐻𝑓𝑔 − 𝐻𝑏𝑔| ≤ 𝜏𝐻                                        (5) 

 
                   𝑆𝑓𝑔 − 𝑆𝑏𝑔 ≤ 𝜏𝑠                                          (6) 

                 𝛽1 ≤ (
𝑉𝑓𝑔

𝑉𝑏𝑔
) ≤ 𝛽2                                         (7) 

 

where Hfg, 𝐻𝑏𝑔 denotes the hue of foreground and background 

pixel. Sfg, 𝑆𝑏𝑔 denotes the saturation of the foreground and the 

background pixel. Vfg, 𝑉𝑏𝑔 denotes the value of the foreground 

and the background pixel. Threshold τH, 𝜏𝑠, 𝛽1, 𝛽2  are 
optimized for shopping mallthe  environment.  

As shown in figure 3, this algorithm detects most of the 
shadow nearby. Although it misclassifies some of the pixels on 
the item as shadow and does not identify all the shadow pixels, 
this application requires only the approximate region of the 
shadow rather than the exact pixel location. The small 
misclassified region can be removed or filled by the 
morphological operator such as opening and closing. 

 

(a) Background frame 

 

(b) Foreground frame: arm and item causes shadow nearby 

 

(c) Shadow Detection 

 

(d) Without shadow removal 

 

(e) With Shadow Removal 

Figure 3. Shadow Detection and removal 

 

B. Double Threshold Image Subtraction 

However, the pixels of the text on the item still cannot be 
fully classified as foreground pixels, so the threshold needs to 
be lowered, but lowering the threshold will lead to other 
unwanted regions to be identified as foreground. Due to the 
different illumination and item color, it is difficult to find one 
threshold for all conditions.  Therefore, this paper proposes a 
double threshold method to resolve this problem.  

Since the top part of the foreground has clothes and the 
bottom part has the item, their color, and the illumination are 
usually different, so the picture is first divided into two parts 
and processed independently. 

The threshold value is the fraction of the maximum square 
of the Euclidean distance of the foreground and background 
pixels in the HSV color space. The two thresholds are: 



                      𝑡ℎℎ = max(∆𝐻2 + ∆𝑆2 + ∆𝑉2) 𝑘ℎ                      (8) 

                       𝑡ℎ𝑙 = max(∆𝐻2 + ∆𝑆2 + ∆𝑉2) 𝑘𝑙                     (9) 

where 𝑡ℎℎ , 𝑡ℎ𝑙  denotes the high and low threshold. 𝑘ℎ, 𝑘𝑙 <
1 𝑎𝑛𝑑 𝑘ℎ > 𝑘𝑙 . As shown in figure 4, it first uses a high 
threshold to find the approximate location of the item, so only 
a part of the item is identified as foreground.  Open and close 
morphological operator are also used to remove and fill the 
small region. Then, it applies a low threshold, so the entire item 
region is classified as foreground, and keep only the foreground 
region identified by the low threshold that has a strong 
connection with the region identified by the high threshold. By 
strong connection, it means that the regions identified by high 
threshold and low threshold share at least twenty percent of the 
pixels. So only the regions expanded from the foreground 
region identified by the high threshold can be identified as 
foreground. This allows the second threshold to be much lower 
and less strictly defined.  

Even with a high threshold, there can still be some 
misidentified region. To resolve this problem, this method uses 
large open and close morphological operators to remove and fill 
the small region and connects the foreground regions that are 
close to each other. Then it keeps only the largest foreground 
region.  This will remove other foreground regions identified 
by the high threshold that cannot find a connection with the 
largest foreground region, as shown in figure 4. This allows the 
first threshold to be set in a more relaxed way.  

 

(a) High threshold with shadow removal: Even with a high 
threshold, there is still an unwanted foreground region at 

lower left corner.  

 

(b) Low threshold with shadow removal: more unwanted 
region and the shadow region nearby has been removed by 

closing.  

 

(c) Remove the region that does not expand from the high 
threshold foreground. Then select the largest region.  

Figure 4. Double threshold image subtraction 

 

Figure 5. Flow chart for double threshold image subtraction  



V. FEATURE MATCHING 

The keypoints and descriptors of the extracted foreground 
are then calculated with Scale-invariant Feature Transform 
(SIFT) proposed by Lowe in 1999[6]. The descriptors are 
matched to the pre-computed descriptors of 50 different items 
with k-nearest neighbors algorithm.  

Ratio test proposed by Lowe [7] is used to determine if a 
match is correct, which takes the ratio between the closest and 
the next closest match. Since the background in the sample 
image has not been removed, it is likely to match the key points 
in the background of the sample image that has part of the 
shopping cart rather than the item itself, especially if some 
region of the shopping cart is classified as foreground during 
image subtraction. Therefore, a lower ratio of 0.7 rather than 
0.8 in the paper is applied to reject more incorrect matches, 
although it also discards more correct matches as illustrated in 
figure 6 from Lowe’s paper [2]. 

Minimum 10 good matched points are needed to be 
considered as a match. As shown in figure 7, many of the good-
matched keypoints are around the text, so the items that do not 
have much text feature will be more difficult to match. If there 
is no match, the item will not be shown on the shopping cart 
list. In the future, it should allow the user to enter the 
information about the item when it cannot find a good match, 
so the item list can be updated.   

 

 

Figure 6. from [7].  PDF of the correct match and incorrect 
match vs ratio of distance. As ratio becomes larger, more 
correct matches and incorrect matches will be included. 

.  

 

Figure 7. SIFT matching: only the good matches are shown 

VI. ACTION RECOGNITION 

It is important to recognize if the user is putting in or taking 
out an item. Traditional action recognition typically involves 
action representation and action classification. The dynamic 
human motion is encoded into a single image and then 
classified by support vector machine, k-nearest neighbors, a bag 
of the word, etc. [8]. However, in this application, since it only 
needs to recognize two types of actions, and we assume that the 
clothes typically have a different color from the item, it is 
possible to apply Linear Discriminant Analysis (LDA) to 
distinguish the color difference and identify the activity.  

As shown in figure 8, at the foreground frame, the user's 
clothes are on top of the image, and the item is at the bottom of 
the image. Therefore, Linear Discriminant Analysis (LDA) can 
use the RGB values of the foreground pixels of the two parts to 
calculates the eigenvector. It first labels the RGB values of the 
foreground pixels at the top to be clothes and the bottom to be 
the item. The middle part is ignored as it contains the features 
of clothes, hand, item, and it is also difficult to extract the exact 
blob of these features. Next, the RGB values of the bottom part 
foreground pixels of the entering frame are projected onto the 
eigenvector for classification. When the user takes out the item 
from the shopping cart, the hand and clothes enter the scene 
first. When the user puts an item into the cart, the item enters 
the scene first, so the color of the foreground pixels is mainly 
the item color. Therefore, LDA can classify these two actions 
based on the color difference in the entering frame.  

There are three advantages to this classification method. 
First, although the foreground pixels are blurred by motion in 
the entering frame, in LDA, to calculate eigenvector, the mean 
of each class needs to be calculated first, and then the within-
class and between-class covariance matrix. So the impact of 
motion blur is not severe.  Second, LDA tends to maximize 
class separation, so it can distinguish the item from clothes 
when they have a different color. Third, as the whole process 
takes place at the same location within a few seconds, it is not 
sensitive to illumination changes that may affect the RGB value 
of the item or the clothes.  

 

 

Figure 8. Color data are used to calculate LDA eigenvector. 
Then the foreground pixels of entering frame projects to the 
eigenvector for action recognition.  

 



VII. TEST & RESULT 

A. Test Setup 

The phone is placed on top of the cart. Due to angle, its 

camera can only capture half of the shopping cart, as shown in 

figure 9. So the user needs to hold the item in the front of the 

captured part then he can put the item anywhere he wants. The 

sample images and the video are taken at a different location 

with different illuminations. 

 

 
Figure 9. Test setup: the user needs to place the item in the 

camera capture region first before putting it in other location 

B. Result 

9 different items are randomly selected and put into the 
shopping cart. Some items are placed in the camera captured 
region, and some are placed in the non-captured region. Then a 
few items are randomly selected and taken out. Although the 
RGB difference between the item and the background may 
require a different threshold during image subtraction, and 
other items already in the shopping cart also have a different 
response to the shadow, the algorithm is able to extract the 
foreground pixels and produce the correct match for all the 
items. It is also able to predict if the user is putting in or taking 
out the item correctly. This algorithm has also been verified 
with two videos with different items.  

As illustrated in figure 10, when the user puts in an item, the 
application will add this item into the list shown on the top of 
the scene. If the user takes out an item, that item will be 
removed from the list.  

 

 

Figure 10. User interface: on the top of the frame shows the 

item list of the shopping cart.  

VIII. CONCLUSION 

This paper presents a shopping cart item tracker that uses 
background subtraction with GMM to detect the keyframes. 
The proposed double-threshold image subtraction algorithm 
makes the extraction of foreground pixels for a single object 
image subtraction more robust and more accurately. The paper 
also presents a simple action recognition based on the 
difference in color between the item and the clothes. All of the 
above algorithms have shown a promising result when the user 
puts in or takes out 8 randomly selected items. 

However, there is still much room for improvement, and 
more tests under different illumination, different color of 
clothes are needed to verify the proposed algorithm. The action 
recognition algorithm can also be improved with the data about 
hand significantly, so it does not rely on the difference in color 
between the item and the clothes. 

Currently, the algorithm is implemented on a personal 
computer. In the future, a smartphone application can be 
developed.  

The author of the paper Dian Huang did all the work 
independently.  
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