
Shopping Cart Item Tracker

Dian Huang
dhuang05@stanford.edu

Abstract— This paper presents a shopping cart item tracker.

It uses background subtraction to detect the keyframes. To extract

the foreground pixels in the keyframe, a double-threshold image

subtraction technique has been proposed. It allows the threshold

of image subtraction to be less strictly defined. The subtracted

image is then matched to one of the 50 different items with Scale-

invariant Feature Transform (SIFT). Linear Discriminant

Analysis (LDA) is also used to recognize if the user puts in or takes

out an item. The algorithm has been verified with two videos with

9 randomly selected items.

Keywords—image subtraction, background subtraction, LDA,

SIFT

I. INTRODUCTION

Consumers often forget what the items they put in the
shopping cart, so they have to check if all the items in the
shopping cart are correct, which can be very time-consuming
when there are too many items. Although unmanned shopping
store can resolve this problem, they have not been popularized
as it needs a large number of sensors and cameras to track the
motion of the customers and the products. Technical-wise, a
store like Amazon Go cannot support more than 20 people
shopping simultaneously, at least by 2017 [1].

Therefore, it is necessary to develop an application to track
the customer's shopping cart item record in real time. The user
can put the phone on top of the shopping cart to capture the item
he puts in or takes out. He should also hold the item for about
half a second and make sure that the front view of the item is
facing the camera. This paper presents the implementation of
this application, which involves with keyframe detection,
background subtraction, feature matching, and action
recognition. It also proposes a novel simple image subtraction
technique for static single object extraction.

The paper is organized as follows. Section II presents the
initial setup and an overview of the algorithm. Section III
describes how to identify the keyframes from the video with
background subtraction. Section IV proposed a novel simple
image subtraction technique for static single-object extraction.
Section V shows the SIFT matching result. Section VI presents
a simple chromaticity-based action recognition method that
uses LDA as the classifier. Section VII describes the test setup
and result. Section VIII includes the conclusion and potential
improvement.

II. INITIAL SETUP & ALGORITHM OVERVIEW

Fifty different items are collected as samples and resized to
300x300 for feature matching. The descriptors of each item are
precomputed with Scale Invariant Feature Transform (SIFT).
The smartphone is placed on top of the shopping cart to capture
the items user puts in or takes out. Each frame captured by the

camera is resized to 400x800 to accommodate different screen
resolution.

Then Gaussian-mixture model (GMM) background
subtraction is used to detect 3 keyframes: background, entering,
and foreground. Background frame is the frame before the user
puts in or takes out an item. Entering frame is the frame when
the user’s hand enters the scene. Foreground frame is the frame
when the user holds the item in the cart.

Then the foreground frame is subtracted by the background
frame to extract the foreground pixels for feature matching. The
entering frame is also subtracted by the background frame for
action recognition with Linear Discriminant Analysis (LDA),
which identifies if the user is putting in or taking out an item,
as shown in figure 1.

Figure 1: Flow chart of the algorithm for item tracker

III. KEYFRAME DETECTION

Background subtraction with Gaussian mixture model has
been very popular in visual surveillance. This technique
identifies the intruding object as the foreground and models its
probability with a Gaussian mixture model. It was first
proposed by Fridman and Russell in 1997 [2], and later on
widely popular and improved. This implementation uses the
technique proposed by Zivkovic[3] to detect the keyframes.

For the background subtraction with Gaussian mixture
model, the probability that each pixel at time t within a period
of 𝑇 classified as the foreground (FG) or background (BG) is
expressed by Gaussian mixture model with M components:

 𝑝(𝑥⃑𝑡|𝑋𝑇 , 𝐹𝐺 + 𝐵𝐺) = ∑ 𝜋𝑚𝑁(𝑥⃑𝑡; 𝜇𝑚, 𝜎𝑚
2 𝐼) (1)𝑀

𝑚=1

𝜋𝑚 ← 𝜋𝑚 + 𝛼(𝑜𝑚
𝑡 − 𝜋𝑚) (2)

where N denotes the Gaussian distribution, 𝛼 =
1

𝑇
, . 𝑜𝑚

𝑡 is set to

1 if the newly joined pixel matches closely with others, which
leads to larger 𝜋𝑚 value, or set to 0. So the background
probability can be approximated by the sum of B largest
clusters:

𝑝(𝑥⃑𝑡|𝑋𝑇 , 𝐵𝐺) = ∑ 𝜋𝑚𝑁(𝑥⃑𝑡; 𝜇𝑚, 𝜎𝑚
2 𝐼) 𝐵

𝑚=1 (3)

Usually, the intruding foreground pixel has a small weight

πm, but if they remain stable or close to each other long enough,
they will be updated as the background pixels as its
corresponding πm will be large. So the foreground pixels will
not immediately become background pixels. The application
will use this property to find the foreground frame.

As shown in figure 2, the frames have no foreground pixels
before the user’s hand enters the scene, so these frames are the
background frames. The user's hand entering the scene causes
a change in some of the pixels, which become foreground
pixels. When its counts are higher than a threshold, this frames
is identified as the entering frame. When the user holds the item
in front of the camera long enough, the foreground pixels will
become background pixels. The user's hand leaving the scene
also increases the foreground pixel count. So the frame that
corresponds to the local minimum in foreground pixel count is
identified as the foreground frame. This frame captures the
scene that the user is holding the item. The amount of time the
user needs to hold is determined by the number of frames 𝑓 it
takes for a foreground pixel to be identified as a background
pixel, as approximated in the following equation:

 𝑓 =
log(1 − 𝑐𝑓)

log (1 −
1
𝑇

)
 (4)

where 𝑐𝑓 is a threshold for the sum of the weights. The longer

the 𝑇, the more frames are needed to change a foreground pixel
to background pixel.

 Closing morphological operator also removes the small
foreground regions due to small changes in light caused by
other people walking around or the user himself to suppress this
noise. Based on the above equation (4), although evaluating
pixels in a shorter duration allows the users to hold the item
shortly, too short a time can also lead to false detection, such as
the user is putting the item in too slowly. Therefore, this
application requires the user to hold the item for about 0.5
seconds.

 Therefore, only three frames need to be saved for further
processing. The background and foreground frame can be
found by tracking only the frame with minimum foreground
pixel count within a window period. This significantly reduces
the run-time memory requirement.

(a) Foreground pixel count when the user puts in or takes out
an item

(b) Each double peak indicates the user is putting in or taking
out an item

Figure 2. Foreground pixel count for the keyframes.

IV. IMAGE SUBTRACTION

The foreground frame is then subtracted with the
background frame to extract the pixels of the item. However,
there are mainly two problems. First, when the user holds the
item in front of the camera, it blocks some of the light, thus
forming a shadow nearby. If there is an item right at the shadow
region, the feature matching may match the item in the shadow
region rather than the item user holds. Second, due to different
illumination, different item color, it is difficult to find a single
threshold that separates the item from the background.

A. Shadow Removal

Shadow detection with the chromaticity-based method
proposed by Cucchiara[4] has achieved about 80% accuracy in
the indoor environment[5]. This method first converts the
image from RGB color space to HSV color space, as the HSV
color space separates chromaticity from luminosity. The
shadow formed in the foreground frame usually has a much
lower value than the background, but only small color variation,
so it uses the ratio rather than the difference of the value. The

shadow also has less impact on the hue, and it lowers the
saturation. Therefore, if a pixel satisfies the following
conditions then it will be classified as shadow:

 |𝐻𝑓𝑔 − 𝐻𝑏𝑔| ≤ 𝜏𝐻 (5)

 𝑆𝑓𝑔 − 𝑆𝑏𝑔 ≤ 𝜏𝑠 (6)

 𝛽1 ≤ (
𝑉𝑓𝑔

𝑉𝑏𝑔
) ≤ 𝛽2 (7)

where Hfg, 𝐻𝑏𝑔 denotes the hue of foreground and background

pixel. Sfg, 𝑆𝑏𝑔 denotes the saturation of the foreground and the

background pixel. Vfg, 𝑉𝑏𝑔 denotes the value of the foreground

and the background pixel. Threshold τH, 𝜏𝑠, 𝛽1, 𝛽2 are
optimized for shopping mallthe environment.

As shown in figure 3, this algorithm detects most of the
shadow nearby. Although it misclassifies some of the pixels on
the item as shadow and does not identify all the shadow pixels,
this application requires only the approximate region of the
shadow rather than the exact pixel location. The small
misclassified region can be removed or filled by the
morphological operator such as opening and closing.

(a) Background frame

(b) Foreground frame: arm and item causes shadow nearby

(c) Shadow Detection

(d) Without shadow removal

(e) With Shadow Removal

Figure 3. Shadow Detection and removal

B. Double Threshold Image Subtraction

However, the pixels of the text on the item still cannot be
fully classified as foreground pixels, so the threshold needs to
be lowered, but lowering the threshold will lead to other
unwanted regions to be identified as foreground. Due to the
different illumination and item color, it is difficult to find one
threshold for all conditions. Therefore, this paper proposes a
double threshold method to resolve this problem.

Since the top part of the foreground has clothes and the
bottom part has the item, their color, and the illumination are
usually different, so the picture is first divided into two parts
and processed independently.

The threshold value is the fraction of the maximum square
of the Euclidean distance of the foreground and background
pixels in the HSV color space. The two thresholds are:

 𝑡ℎℎ = max(∆𝐻2 + ∆𝑆2 + ∆𝑉2) 𝑘ℎ (8)

 𝑡ℎ𝑙 = max(∆𝐻2 + ∆𝑆2 + ∆𝑉2) 𝑘𝑙 (9)

where 𝑡ℎℎ , 𝑡ℎ𝑙 denotes the high and low threshold. 𝑘ℎ, 𝑘𝑙 <
1 𝑎𝑛𝑑 𝑘ℎ > 𝑘𝑙 . As shown in figure 4, it first uses a high
threshold to find the approximate location of the item, so only
a part of the item is identified as foreground. Open and close
morphological operator are also used to remove and fill the
small region. Then, it applies a low threshold, so the entire item
region is classified as foreground, and keep only the foreground
region identified by the low threshold that has a strong
connection with the region identified by the high threshold. By
strong connection, it means that the regions identified by high
threshold and low threshold share at least twenty percent of the
pixels. So only the regions expanded from the foreground
region identified by the high threshold can be identified as
foreground. This allows the second threshold to be much lower
and less strictly defined.

Even with a high threshold, there can still be some
misidentified region. To resolve this problem, this method uses
large open and close morphological operators to remove and fill
the small region and connects the foreground regions that are
close to each other. Then it keeps only the largest foreground
region. This will remove other foreground regions identified
by the high threshold that cannot find a connection with the
largest foreground region, as shown in figure 4. This allows the
first threshold to be set in a more relaxed way.

(a) High threshold with shadow removal: Even with a high
threshold, there is still an unwanted foreground region at

lower left corner.

(b) Low threshold with shadow removal: more unwanted
region and the shadow region nearby has been removed by

closing.

(c) Remove the region that does not expand from the high
threshold foreground. Then select the largest region.

Figure 4. Double threshold image subtraction

Figure 5. Flow chart for double threshold image subtraction

V. FEATURE MATCHING

The keypoints and descriptors of the extracted foreground
are then calculated with Scale-invariant Feature Transform
(SIFT) proposed by Lowe in 1999[6]. The descriptors are
matched to the pre-computed descriptors of 50 different items
with k-nearest neighbors algorithm.

Ratio test proposed by Lowe [7] is used to determine if a
match is correct, which takes the ratio between the closest and
the next closest match. Since the background in the sample
image has not been removed, it is likely to match the key points
in the background of the sample image that has part of the
shopping cart rather than the item itself, especially if some
region of the shopping cart is classified as foreground during
image subtraction. Therefore, a lower ratio of 0.7 rather than
0.8 in the paper is applied to reject more incorrect matches,
although it also discards more correct matches as illustrated in
figure 6 from Lowe’s paper [2].

Minimum 10 good matched points are needed to be
considered as a match. As shown in figure 7, many of the good-
matched keypoints are around the text, so the items that do not
have much text feature will be more difficult to match. If there
is no match, the item will not be shown on the shopping cart
list. In the future, it should allow the user to enter the
information about the item when it cannot find a good match,
so the item list can be updated.

Figure 6. from [7]. PDF of the correct match and incorrect
match vs ratio of distance. As ratio becomes larger, more
correct matches and incorrect matches will be included.

.

Figure 7. SIFT matching: only the good matches are shown

VI. ACTION RECOGNITION

It is important to recognize if the user is putting in or taking
out an item. Traditional action recognition typically involves
action representation and action classification. The dynamic
human motion is encoded into a single image and then
classified by support vector machine, k-nearest neighbors, a bag
of the word, etc. [8]. However, in this application, since it only
needs to recognize two types of actions, and we assume that the
clothes typically have a different color from the item, it is
possible to apply Linear Discriminant Analysis (LDA) to
distinguish the color difference and identify the activity.

As shown in figure 8, at the foreground frame, the user's
clothes are on top of the image, and the item is at the bottom of
the image. Therefore, Linear Discriminant Analysis (LDA) can
use the RGB values of the foreground pixels of the two parts to
calculates the eigenvector. It first labels the RGB values of the
foreground pixels at the top to be clothes and the bottom to be
the item. The middle part is ignored as it contains the features
of clothes, hand, item, and it is also difficult to extract the exact
blob of these features. Next, the RGB values of the bottom part
foreground pixels of the entering frame are projected onto the
eigenvector for classification. When the user takes out the item
from the shopping cart, the hand and clothes enter the scene
first. When the user puts an item into the cart, the item enters
the scene first, so the color of the foreground pixels is mainly
the item color. Therefore, LDA can classify these two actions
based on the color difference in the entering frame.

There are three advantages to this classification method.
First, although the foreground pixels are blurred by motion in
the entering frame, in LDA, to calculate eigenvector, the mean
of each class needs to be calculated first, and then the within-
class and between-class covariance matrix. So the impact of
motion blur is not severe. Second, LDA tends to maximize
class separation, so it can distinguish the item from clothes
when they have a different color. Third, as the whole process
takes place at the same location within a few seconds, it is not
sensitive to illumination changes that may affect the RGB value
of the item or the clothes.

Figure 8. Color data are used to calculate LDA eigenvector.
Then the foreground pixels of entering frame projects to the
eigenvector for action recognition.

VII. TEST & RESULT

A. Test Setup

The phone is placed on top of the cart. Due to angle, its

camera can only capture half of the shopping cart, as shown in

figure 9. So the user needs to hold the item in the front of the

captured part then he can put the item anywhere he wants. The

sample images and the video are taken at a different location

with different illuminations.

Figure 9. Test setup: the user needs to place the item in the

camera capture region first before putting it in other location

B. Result

9 different items are randomly selected and put into the
shopping cart. Some items are placed in the camera captured
region, and some are placed in the non-captured region. Then a
few items are randomly selected and taken out. Although the
RGB difference between the item and the background may
require a different threshold during image subtraction, and
other items already in the shopping cart also have a different
response to the shadow, the algorithm is able to extract the
foreground pixels and produce the correct match for all the
items. It is also able to predict if the user is putting in or taking
out the item correctly. This algorithm has also been verified
with two videos with different items.

As illustrated in figure 10, when the user puts in an item, the
application will add this item into the list shown on the top of
the scene. If the user takes out an item, that item will be
removed from the list.

Figure 10. User interface: on the top of the frame shows the

item list of the shopping cart.

VIII. CONCLUSION

This paper presents a shopping cart item tracker that uses
background subtraction with GMM to detect the keyframes.
The proposed double-threshold image subtraction algorithm
makes the extraction of foreground pixels for a single object
image subtraction more robust and more accurately. The paper
also presents a simple action recognition based on the
difference in color between the item and the clothes. All of the
above algorithms have shown a promising result when the user
puts in or takes out 8 randomly selected items.

However, there is still much room for improvement, and
more tests under different illumination, different color of
clothes are needed to verify the proposed algorithm. The action
recognition algorithm can also be improved with the data about
hand significantly, so it does not rely on the difference in color
between the item and the clothes.

Currently, the algorithm is implemented on a personal
computer. In the future, a smartphone application can be
developed.

The author of the paper Dian Huang did all the work
independently.

References

[1] Kastrenakes, Jacob (March 27, 2017). "Amazon's cashier-free store
reportedly breaks if more than 20 people are in it". The Verge.
Retrieved October 8, 2017.

[2] N. Friedman, S. Russell, "Image Segmentation in Video Sequences: A
Probabilistic Approach", Proc. 13th Conf. Uncertainty in Artificial
Intelligence (UAI), 1997-Aug.

[3] Z. Zivkovic and F. van der Heijden. “Efficient adaptive density estimation
per image pixel for the task of background subtraction”. Pattern
Recognition Letters, 27:773-780, 2006.

[4] Cucchiara, R., et al. “Detecting Moving Objects, Ghosts, and Shadows in
Video Streams.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 10, 2003, pp. 1337–1342.,
doi:10.1109/tpami.2003.1233909.

[5] A. Sanin, C. Sanderson, B. C. Lovell, "Shadow detection: A survey and
comparative evaluation of recent methods", PR, vol. 45, no. 4, pp. 1684-
1695, 2012.

[6] Lowe, David G. "Object recognition from local scale-invariant
features". Proceedings of the International Conference on Computer
Vision. no. 2. pp. 1150–1157, 1999.

[7] D. G. Lowe, "Distinctive image features from scale-invariant
keypoints", Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

[8] Kong, Yu, and Yun Fu. “Action Recognition and Human Interaction.”
Human Activity Recognition and Prediction, 2015, pp. 23–48.,
doi:10.1007/978-3-319-27004-3_2

https://www.theverge.com/2017/3/27/15073468/amazon-go-shopper-tracking-store-opening-delay
https://www.theverge.com/2017/3/27/15073468/amazon-go-shopper-tracking-store-opening-delay
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf

