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Abstract—Thermal imaging, operating at long-wave infrared
(LWIR) wavelengths, is important for a wide range of room
temperature applications. However, cameras at this wavelength
are expensive compared typical visible (VIS) cameras. We built
a multispectral camera that captures a high-resolution visible
image to enhance a low-resolution thermal image at a fraction
of the cost of higher-end thermal cameras.

Index Terms—thermal, multispectral, registration, fusion

I. INTRODUCTION AND MOTIVATION

According to Wien’s displacement law, objects at room
or body temperature emit black body radiation with a peak
radiance in the range of 9-10 um [1]. This range of so-
called “thermal radiation” — or long-wave infrared (LWIR) —
serves a critical role for defense and security detection, product
inspection, and other room temperature imaging purposes [2].
Despite the abundance of infrared light to sense, LWIR cam-
eras are very expensive compared to their visible counterparts,
with entry level units ranging from $1000 - $3000 [3].

FLIR Systems produces the Lepton, a compact and signifi-
cantly more affordable LWIR camera module that is designed
to fit inside a smartphone [4]. However, due to its low cost
($259) and small size (10.50 x 12.7 x 7.14 mm), the camera
has a limited resolution of only 160 x 120 pixels. Such a low-
resolution is not ideal for imaging applications.

The objective of this project is to combine the Lepton
LWIR camera with a high-resolution visible light camera
and compare multispectral fusion methods that combine the
spectral information from the thermal image with the gradient
information from the thermal image. Such a device would
serve as an inexpensive thermal camera with reasonable image
quality for standard imaging applications.

II. RELATED WORK

Multispectral imaging over visible and infrared (IR) bands is
already an area with great interest. A significant focus of work
in this area is related to hyperspectral object identification
[5, 6], pedestrian detection [7], and product inspection [8].
Techniques in these applications range from simply overlap-
ping information from both visible and thermal cameras to
create images with more channels of information, to using
thermal images to computationally remove backgrounds from
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TABLE I

COMPARISON OF THERMAL CAMERAS

FLIR Boson 640 | FLIR Lepton 3 + R Pi
Cost $3000 $260 + $190
Resolution 640 x 512 ;g(o)oxxl ggolons
Frame rate 60 Hz 9 Hz
Sensitivity 50 mK 50 mK
Horizontal FOV Up to 95° 57°
Spectral range 7.5 -13.5 pm 8- 14 um

visible images in order to isolate objects of interest [6].
However, these applications rely on expensive high-resolution
thermal cameras.

Once a LWIR+VIS image pair has been captured, the two
images must be registered. Due to large spectral differences
in image content, standard descriptor-based registration tech-
niques do not work well [9]. To solve the registration problem,
many application-specific techniques have been proposed [10-
12]. These use methods include contour and segemnt detection
[13, 14] and hybrid feature extraction from urban environments
[15].

Finally, there are a variety of works that explore pansharp-
ening, the use of high-resolution panspectral images to sharpen
low-resolution multispectral images [16, 17]. Notable methods
include highpass filtering, wavelet decomposition [18-21], and
a variety of multichannel fusion techniques [22-26].

III. METHOD OVERVIEW

Our compact system for multispectral fusion is designed
around the FLIR Lepton thermal camera module, which we
interfaced with a Raspberry Pi Zero W board. For the visible
camera we used a Raspberry Pi Camera Module V2, which
has a resolution of 2464 x 3280 pixels. In total, the completed
camera cost just under $500, about half of which comprises
the Lepton. The remaining half comprises the Raspberry Pi,
visible camera, and assorted accessories. Table I shows a
comparison between of various features of the FLIR Lepton 3
and the FLIR Boson 640, a representative high quality thermal
camera module [27]. Our camera is explained in detail in
Section IV.

Image capture is synchronized via the Raspberry Pi. When
the capture button is pressed, the Raspberry Pi captures images
from the thermal and visible cameras, then saves the two



images to memory. The images are later offloaded to an
external computer for post-processing. The post-processing
can be divided into two steps: image registration and image
fusion.

Since the two cameras are offset by approximately 1 inch in
the camera housing, the captured visible and thermal images
experience parallax. Additionally, the field-of-view (FOV) of
the visible camera is slightly larger than that of the thermal
camera. Therefore it necessary to register the images prior
to image fusion. To accomplish this, we first perform edge
detection on both images and compute the cross-correlation
between the edges. Maximizing the edge-edge correlation
yields a shift that best aligns the two images. The registration
algorithm is described in detail in Section V.

There are many methods to fuse the registerd VIS+LWIR
images. A simple single channel method involves injecting
the high frequency components of the visible image into
the thermal image. A more complex method preserves the
intensity information of the thermal image while transferring
gradient information from the visible image. We present these
methods, along with a luminance-chrominance method, in
Section VI. We then discuss their results in Section VII.

IV. CAMERA
A. Hardware Design

The VIS+LWIR camera is built around the a Raspberry Pi
Zero W board which serves as the main controller of the
camera. The Raspberry Pi is connected to a PiCamera V2
visible camera and the FLIR Lepton 3 thermal camera. The
two cameras are mounted adjacent to each other on the inside
of a aluminum box which houses the Raspberry Pi controller
and cameras. Figure 1 shows a front view of the completed
camera. The Lepton and PiCamera can be seen mounted in
the housing.

On the rear of the device, a 5-inch touchscreen panel is
mounted to the exterior of the housing. The screen allows the
user to access the Raspberry Pi and run the camera software as
well as see previews of the captured images. The Raspberry Pi
is controlled via a wireless keyboard and mouse which connect
via a USB receiver. An external USB flash drive allows images
to be transferred off the camera to a desktop computer for
processing. Figure 2 shows a block diagram of the camera
module.

In total, the camera cost just under $500 including the
needed mounts, cables, and peripherals. Appendix gives the
itemized breakdown of parts used in the completed camera.

B. Image Capture

To capture images we use the Python package picamera
[28] to interface with the PiCamera and the C module
Lepton3Module [29, 30] to interface with the FLIR Lepton
3. The Lepton3Module image capture function is compiled
into an executable file which can be run from within a Python
script.

In the camera’s idle state the live preview feed from the
PiCamera is displayed on the touchscreen display. When the

Fig. 1. Front view of finished camera module. The FLIR Lepton (left) and
Raspberry Pi Camera V2 (right) can be seen mounted in the camera housing.

PiCamera V2
Raspberry Pi Zero W

N FLIR Lepton 3

HDMI Touchscreen

Fig. 2. Block diagram of the LWIR+VIS camera.

capture button is pressed, the live preview is stopped and
capture from the FLIR Lepton 3 begins. Image data is from the
Lepton is transmitted in a series of 4 packets. However, due
to the poor quality of connections, packets are often dropped.
The thermal image capture function waits until at least one
of each packet has arrived and displays the image constructed
from the most recent of each packet.

While the thermal image is being captured, a snapshot of
the visible image is displayed on the screen. Once the thermal



Fig. 3. Example of image capture. a) Rear view of camera module, briefly
displaying the captured thermal image. b) Visible and c¢) thermal images of
the captured scene.

Vi

Fig. 4. Examples of captured visible and thermal image pairs.

image is assembled, a second visible image is captured in
order to minimize the time difference between thermal and
visible images. Once the synchronized images are captured,
the thermal image is briefly displayed on the display before the
camera returns to its idle state. Both images are timestamped
and saved on the Raspberry Pi. Figure 3 shows an example
of the camera module capturing a scene. The touchscreen
displays the captured thermal image of the Coca Cola vending
machine. The corresponding visible and thermal images are
shown as well. Figure 4 shows three more representative
visible and thermal image pairs that were captured using the
camera module.

Fig. 5. Staggered packet acquisition results in choppy images of moving
objects.

Fig. 6. SUREF features extracted from visible and thermal images.

Due to the limitation of dropped packets in the current
setup, the camera module can only reliably capture images of
still scenes and it is incapable of displaying a live thermal
feed. The result of trying to capture to capture a thermal
image of moving objects is shown in Figure 5. Packet loss
can potentially be minimized by shortening the connections
between the Lepton and the Raspberry Pi.

V. IMAGE REGISTRATION

Visible and thermal images store salient features in different
ways [9]. For a typical visible image, much of the important
information can be extracted from local gradients; an image
of a parrot still resembles a parrot after extreme adaptive
histogram equalization. The most important features of a
thermal image, on the other hand, are typically intensity
maxima and minima'. Thus while similar keypoints might be
extracted from visible and thermal images (see Figure 6), their
associated descriptors will in general be completely different.
This makes image registration difficult.

Our first attempt at image registration applied the RANSAC
algorithm to SURF keypoints extracted from the two images.
While refining the code, however, we realized that we could
use the fixed camera gemoetry to our advantage. While
RANSAC would be necessary for images taken at an unknown
relative position, our images were constrained by the fact that
the camera modules are mounted next to each other in the
camera housing. This allowed us to limit the scope of our
registration transformtaion to a rescaling by s followed by a
translation by 7.

Our registration algorithm begins by resizing the visible
image to match the size of the thermal image scaled by an

"This mismatch in information between the two spectral bands is related to
the scattered vs emissive origins of the visible and thermal image, respectively.



Fig. 7. Edge-based image registration algorithm. a) Visible image. b) Thermal
image. ¢) Canny-detected visible edge mask. d) Thermal edge mask. e) Cross-
correlation between edge maps after the thermal image is rescaled by an
empirical scale factor s. f) Rescaling and shift associated with the strongest
edge-edge correlation. g) Registered thermal image. h) Registered image pair.

empirical® factor s. The Canny edges are then extracted from
each, as shown in Figures 7c and 7d. The cross correlation
between the two edge masks is calculated from their rotated
convolution, as shown in Figure 7e. The maximum correlation
value is recorded. This process is repeated as s is scanned
between 1.1 and 1.3. The scaling s that maximizes the
correlation is chosen and the associated shift 7" is determined
(see Figure 7f). With the optimum s and 7 obtained, the
thermal image is registered to the visible image and the images
are displayed together for verification (Figures 7g and 7h).

We tried different edge detection methods for our algorithm
and the results are summarized in Table II. The Canny edge
method was able to correctly register 57 out of 62 captured
image pairs.

While it was tempting to circumvent the problem of image
registration by implementing a fixed transformation, the finite

2This rescaling comes from the camera modules’ different fields of view.

TABLE 11
COMPARISON OF EDGE DETECTION METHODS. SUCCESS RATE IS BASED
ON N = 62 DATASET IMAGES.

Edge Method | Success Rate
Canny 0.92
Log 0.82
Z@roCcross 0.82
Prewitt 0.73
Sobel 0.73
Roberts 0.66

Fig. 8. Failure modes of the edge-based registration. a) and b) Strong edges
in the background result in offset foreground objects. ¢) and d) No common
edges means that maximizing the edge-edge correlation does not correctly
regsiter the images.

separation of the camera modules meant that no single trans-
form could compensate for parallax at all depth planes. For
instance, a transformation that overlapped objects at infinity
would leave closer objects misregistered. By maximizing the
edge-edge correlation, our algoritm corrects for parallax at the
depth plane with the strongest edges visible in both images.
This can result in images that are correclty registered at one
depth but offset at another, as seen in Figures 8a and 8b.

Our algorithm also fails when the thermal and the visible
images have no common edges. This is the case in the picture
of the electric range, shown in Figures 8c and 8d. Here the
visible image could not see the outline of the heating element
while the thermal image could only see the ouline of the
heating element.

VI. IMAGE FUSION METHODS

Once the images are registered we can proceed to image
fusion. We begin by considering the important aspects of each
image. Steady state solutions to the heat equation are typically
diffuse, so in general our thermal image will not have sharp
gradients®. Thus the salient features of a thermal image are
typically intensity maxima and minima that highlight warm

30ne common exception is at object edges, where an object at one
temperature ends and a background object at a different temperature appears.



and cool regions, respectively. In contrast, visible images carry
much more information in their gradients. A solid object, for
example, could have strong visible gradients in a small region.
The same object would likely have much slower thermal
gradients.

Under these assumptions, our image fusion methods should
combine the intensity information from the thermal image
with the gradient information from the visible image. We
outline three such methods below, before presenting results
and discussion in Section VIIL.

A. YCbCr Merge

In the RGB color space intensity and gradient information
is spread across all color channels. Because we are interested
in fusing information from two sources, it would be helpful to
work in a color space where the salient features of each image
are confined to a single channel. This motivates our first image
fusion method based on the YCbCr color space.

We begin by converting the grayscale thermal image into an
RGB image with a desired colormap. This encodes the spectral
intensity information of the grayscale thermal image into
chrominance information of the RGB thermal image. Next we
convert the thermal and visible images from RGB to YCbCr.
We replace the luminance (Y) component of the thermal image
with the corresponding component from the visible image.
Finally, we convert the fused image from YCbCr to RGB.
The final product has the gradient information from the visible
image encoded in its luminance and the intensity information
from the thermal image encoded in its chrominance.

B. High Pass Filtering

The YCbCr method relies on having multiple channels in
the fused image. If this was not an option, we must consider
of fusing the images within a single channel.

Given that we are interested in the gradient information
from the thermal image and the intensity information from
the thermal image, one simple fusion method is to extract the
high frequency information from the thermal image and inject
it into the inherently low frequency thermal image. This is
called the High Pass Filtering (HPF) method.

We begin by applying a Gaussian low pass filter to the
visible image v:

vip = imgaussfilt(v, o) (1)

where o is the standard deviation of the Gaussian kernel. Next
we isolate the high frequency components of the visible image
by subtracting its low passed components:

Vgp =V —=VLp 2

Finally we form the fused image x by injecting the high
frequency visible components into the thermal image t:

x=t+vgp. 3)

Whereas the YCbCr method is fully constrained, the HPF
method has one free parameter, 0. In order to make our

algorithm independent of input image sizes, we introduce the

variable « to parameterize o:
1 size(v)

ola)=a X = X ————= 4

(@) 2 size(t) @

When « = 1, this parameterization returns the optimum cutoff

frequency o considering the maximum frequency component
present in the thermal image.

C. Gradient Transfer Function

In order to avoid the spectral distortion introduced by HPF
at strong «, we consider one final method. Recalling that
we want to preserve the intensity information of the thermal
image while injecting the gradient information from the visible
image, we construct the following objective function [9]:

e(x) = %|x—t|§—|—)\|Vx—Vv|1 %)
The first term in this objective function seeks to match the
intensity of the fused image to the intensity of the thermal
image. The second term wants to inject the gradient informa-
tion from the visible image into the fused image. The relative
weight of these terms’ contributions is set by A. For a given
value of )\, the fused image x is found by minimizing the
objective function £(x):

x = arg mine(x) (6)

Our implementation of this method uses an ADMM+TYV solver
in which we have modified the regulation term to minimize
the total variation between the visible and the thermal image.

D. Other Methods

We also experimented with wavelet, Brovey, bilateral, and
high pass modulation fusion methods. Because these methods
are discussed extensively in existing review papers [16, 17]
and our results were not substantially different from HPF and
GTF, we have omitted them from this report.

VII. FUSION EVALUATION
A. Metrics

Before analyzing the results of our single channel methods
we must first identify a set of useful evaluation metrics.
In addition to the standard PSNR and SSIM, we are also
interested in looking at metrics that quantify the amount and
type of information in each image. One popular metric is
the quality with no reference (QNR) index [16]. In general
this index quantifies both spectral and spatial distortion of a
multispectral image. Because our thermal image is the only
band in our “multispectral” image (the visible image is playing
the role of the high resolution panspectral image), we are only
concerend with the spatial distortion term:

QNR=1- |Q(f,V) - Q(tvaP)| (N
Here the Q index [31], defined for two signals = and y, is
given by
40,47y

Qa,y) = (02 +02) {(%)2 + (ayﬂ

®)



Finally, because we are ultimately interested in the amount of
information contained in the final image, we will include its
entropy in the list of metrics. Larger numbers are better for
all metrics.

B. Results

Representative results of the YCbCr, HPF, and GTF fusion
methods are shown in Figure 11.

We begin by considering the YCbCr results qualitatively.
Because the contributions from the thermal and visible images
are contained in separate channels in the YCbCr color space,
the information is displayed without thermal ambiguity (i.e.
warm regions have a warm chrominance, regardless of their
visible texture). More images are shown in Appendix C, Figure
12.

Qualitatively the HPF and GTF methods look very similar
for « = 1 and A = 0.1. In Figure 11, one of the only clear
differences between the two methods is a loss of thermal
gradient detail in the image of the electric range for the GTF
method. It is worth noting, however, that the stove had been
turned on shortly before the image was taken; the gradients
likely would have gotten weaker had we given the range time
to thermalize.

Figure 9 shows the metrics for the HPF and GTF methods
over a range of a and A\ for the heat vent scene shown in
Figures 10a and 10b. Representative images for a range of
parameter values can be found in Appendix C, Figures 13
and 14. All metrics are nomalized with respect to the original
thermal image, i.e. their values when o, A = 0. Here the visible
image has been blurred and downsampled to match the size of
the original thermal image. Prior to fusion, the thermal image
was blurred and downsampled by a factor of 2. The original
thermal image was used as ground truth.

As « and )\ increase, the growing entropy indicates that
the visible image is transferring information into the fused
result. While the PSNR and SSIM decrease for both methods,
it is worth noting that their saturation values are lower for the
HPF method than the GTF method. The QNR index shows
the largest difference between the two methods, with the HPF
QNR becoming negative while the GTF QNR saturates at a
finite positive value.

These limit results can be seen qualitatively in Figure 10.
Of note is the intensity difference between the heat vent in
the foreground and the buildings in the background. In Figure
10c we see that the HPF method has matched the intensities
of the cold buildings with that of the warm vent, distorting
the thermal information. This is consistent with the strong
decrease in the HPF QNR. In contrast, Figure 10d shows a
suppression of the building intensity, enforced by the |x — t|§
term in the objective function. We do, however, also see a
decrease in the intensity of the heat vent, likely due to its
strong visible gradients dominating in the |[Vx — Vv/|; term
of the objective function.

Finally, we note that the metrics in Figure 9 for the heat
vent image are represenatative of the entire dataset, as shown
in Appendix C, Figure 15.
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Fig. 9. Evaluation metrics for a) HPF fusion and b) GTF fusion. For each
method, the metrics are normalized to their values at or, A = 0: QNR =
0.9899, entropy = 6.1625, PSNR = 41.6, SSIM = 0.9781, Q = 0.9968.
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Fig. 10. Limiting cases for HPF and GTF. a) Original thermal image. b)
Original visible image. ¢) HPF fusion with o = 100. d) GTF fusion with
A = 100.
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Fig. 11. Fusion montage. From left to right: original thermal image, HPF fusion (o« = 1), GTF fusion (v = 0.1), YCbCr fusion.



VIII. FUTURE WORK

From a hardware perspective, the first goal in future work
would be to establish a better connection protocol with the
Lepton. Currently, the poor data transmission severely limits
the frame rate and prevents the camera from capturing any
scenes with motion. Utilizing the full nine frames per second
capability of the camera opens the door for a variety of
other goals. Namely, it would be possible to perform basic
image registration and fusion on the Raspberry Pi itself. Image
registration is already a very fast technique, but we could use
a simple method for image fusion such as HPF or YCbCr that
is computationally inexpensive to generate a live feed of the
enhanced thermal images. On-board, real-time image fusion
would allow the dual visible-thermal camera module to more
closely replicate the functionality of more expensive thermal
cameras.

From a physical perspective, it would be a simple matter
to calibrate the readouts from the thermal camera to real
temperatures. Then, the thermal images would no longer
be displayed on an arbitrary grey scale, but as real object
temperatures — a significantly more useful metric.

Finally, there are many potential avenues for improving
the algorithms used to register and merge the images. One
improvement to our registration algorithm is the segmentation
of the thermal image prior to registration. Each segment would
then be independently registered according to the depth of its
dominant edges. This local parallax correction would allow
more objects at different depths to be correctly registered.
Because the thermal image is typically sparse, the registered
image segments could then easily be interpolated back together
to form the final registered image.

If we had access to the full nine frames per second of the
camera, it would then make sense to include runtime with the
metrics used to compare the fusion methods. It is likely that the
YCbCr method would win based on calculational simplicity
and usefulness in real-time imaging applications.

IX. CONCLUSION

Overall, the combination of a low-cost thermal camera with
a visible camera produced promising results. Using image fu-
sion algorithms, we are able to successfully inject information
from the visible image into the thermal image. Qualitatively
the images look much better to the human eye, but the HPF and
GTF methods can introduce false temperature information into
the fused image. Thus, significant work remains if this setup
is desired to replace actual higher resolution thermal cameras,
especially for applications in which high spectral accuracy is
required.

APPENDIX A
AUTHOR CONTRIBUTIONS
Jacob Hines (EE 367, EE 368):
o Machined and assembled the camera housing
o Implemented image registration and fusion
o Wrote the second half of the final report
Evan Wang (EE 367):

« Wrote code to capture and store images from both camera
modules on the Raspberry Pi
o Wrote the first half of the final report
Any task not listed above was shared equally between the
authors.

APPENDIX B
BILL OF MATERIALS

TABLE III
CAMERA MODULE PART LIST

Item Cost
Lepton 3.5 | $259.00

Lepton Breakout Board | $39.99
Raspberry Pi Zero W Kit | $59.95

R Pi Camera Module V2 $24.68

R Pi Zero v1.3 Camera Cable $5.95
Adafruit 5 HDMI Display | $74.95
Wireless Keyboard and Mouse $19.95

[ Total | $484.47 |
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APPENDIX C
SUPPLEMENTARY IMAGES

Fig. 12. YCbCr fusion for a variety of image pairs.



Fig. 13. High Pass Filtering fusion. From left to right: o = 0, 1, 10, 100.



Fig. 14. Gradient Transfer Function fusion. From left to right: A = 0,0.1, 1, 10.
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Fig. 15. Fixed fusion paramer across all images. a) HPF fusion with o = 1. b) GTF fusion method with A = 0.1. Images that report large spikes in metrics
were incorrectly aligned by the registration algorithm.



