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Abstract— Acquisition of medical images (e.g. PET, MRI, etc.) 
often requires a patient to remain motionless for long periods of 
time.  Even the most compliant patients can’t meet this 
requirement. Motion compensation methods are used to alleviate 
this challenge. To compensate for this involuntary movement, one 
tracks the motion of the patients and incorporates this information 
into an image reconstruction algorithm. In this paper, we explore 
three methods of 3D motion tracking of patients using digital 
images. The three methods are: (1) tracking the motion of an 
object using two cameras and a geometric target, (2) tracking the 
motion of an object using one camera and a geometric target, and 
(3) tracking the motion of an object using two cameras and feature 
detection algorithms. Our results indicate that methods (1) and (2) 
may be better suited for robust motion tracking. 

Keywords—Medical Imaging, 3D image tracking, stereo 
tracking, single-image tracking, feature tracking 

I. INTRODUCTION (HEADING 1) 
Positron emission tomography (PET) is a non-invasive 

medical imaging modality that provides 3D visualization of 
physiological processes in a subject’s body. PET complements 
other medical imaging modalities such as X-ray computed 
tomography (CT) and magnetic resonance imaging (MRI), 
which provide high-resolution anatomy, with cellular and 
molecular information on disease.  

The data collected by the PET detector in very noisy. To 
achieve quantitative image data requires many corrections, 
including detector efficiency variation correction and photon 
attenuation correction. For motionless subjects, different 
methods to estimate and compensate for each degrading factor 
have been developed. But for imaging of living subjects, there 
will always be a certain amount of motion that adds another 
layer of complexity; it causes errors in positioning events along 
the PET system detector lines of response which leads to 
significant blurring, inaccurate quantification and additional 
noise.  

To mitigate the problem a motion correction solution is 
required. The solution shold track the motion and incorporate 
the information into a suitable image reconstruction algorithm 
[1], [2]. 

The most accurate and effective motion tracking approaches 
in PET/MR scan settings are MR-based [3] and camera-based 
(provides superior performance),  [1], [4], [5], [6]. 

In this paper we discuss the implementation and compare the 
results of three different camera-based motion tracking methods 
for PET motion correction: 

1. We track the motion of an object using two cameras 
and a geometric target. 

2. We track the motion of an object using one camera and 
a geometric target. 

3. We track the motion of an object using two cameras 
and feature detection. 

 

Fig. 1. Typical PET/CT (left) and PET/MRI brain scans of a normal subject 
acquired separately on the two dual-modality systems. 

 

II. CALIBRATION 
An essential part of 3D image reconstruction is finding the 

mapping from 2D image space to 3D space. This mapping is 
defined by the matrix 𝑀  which is a product of the intrinsic 
matrix, 𝐾, and the extrinsic matrix, [𝑅|𝑇].  𝐾 is consists of the 
internal properties of the camera, such as focal length, principal 
point offset (center of array). [𝑅|𝑇]	is the combination of the 
rotation and translation of the camera in space.  To find these 
matrices we use the built-in Matlab Application called 
CameraCalibrator that is based on the popular Zhang calibration 
method [1]. For stereo camera processing, we calibrate the two 
cameras independently and we calculate the rotation and 
translation between cameras. We do this using the Matlab 
Application called StereoCameraCalibrator. 

 



III. DATA COLLECTION AND GROUND TRUTH 
Our images are collected using two Logitech C615 web 

cameras that interface with Matlab. Each camera has 1080p 
resolution. The cameras are mounted such that they maintain 
their positions relative to one another so that we only have to 
calibrate the cameras once.  

The ground truth, or an estimate of the true position in 3D 
space, is determined using a MicronTracker for tracking 
algorithms (1) and (2). A MicronTracker is a commercial 
product that uses stereo images to locate targets in 3D space. The 
device has a reported accuracy of 0.25mm RMS and an update 
rate of 48Hz. The performance of our 3D localization is assessed 
by comparing the outputs of our algorithms to a data set 
composed of 3 correspondences between the Microntracker and 
images of the target taken usingour stereo camera set-up.  

To assess the performance of our tracking algorithm that 
uses feature detection we also developed a set of stereo images 
of a face without a target. The true position of the head was 
measured using the magnetic tracker, which was attached to the 
back of the head. The magnetic tracker used is the MagTracker, 
which has a resolution of 1.4 mm RMS. The magnetic tracker 
provides more accurate position estimates than measuring the 
distances manually.  

Stereo videos were also taken, with a 20Hz frame rate, with 
and without a target. These videos are used to assess certain 
properties of our algorithms, such as their sensitivity to 
brightness and motion blur. 

 

IV. KEYPOINT IDENTIFICATION 
Finding the target’s keypoints is a universal first step 

required for the first two motion tracking algorithm being 
discussed in this paper, as it establishes a correspondence 
between the target geometry and our images. In this chapter, we 
will describe how we found the 10 key points of the target shown 
in Fig. 2. 

 
Fig. 2. Example of the target used for tracking in the presented algorithms. 
The 10 keypoints are labeled in red. 

 
Fig. 3. Example of the target with a green background mounted on a tripod. 

 
Fig. 4. Example of a target identified using our target segmentation algorithm. 

A. Target Segmentation 
The first step was to segment the target from the rest of the 

image. To simplify this part, we choose to give the target a green 
background, as shown in Fig. 3. 

To segment the target we took the following steps, we: 

1. Convert the image to color space (CIE 1976 L*a*b* 
values) 

2. Perform k-means in opponent color space (a*, b*) and 
find the color that is closest to the target color (was 
found empirically) (the method worked for several sets 
of images with different lighting conditions) Fig. 5(a).  

3. Isolate the biggest segment and perform morphological 
image processing so that the segmented part will be 
bigger than the actual target Fig. 5(c) and (b). 

4. Perform locally adaptive thresholding using Otsu’s 
method on the segmented pixels of the gray image Fig. 
5(c) and (d). 

A zoomed in version of the final result is presented in Fig. 4. 

  



  

 
Fig. 5. Demonstration of steps (a)-(d) of the target segmentation algorithm outlined in Section IV.A. 

 

Fig. 6. Demonstration of  steps (a)-(d) of the  key point detection algorithm outlined in  Section IV.B. 

B. Key Point Identification 
Reliable key point identification is an integral and 

challenging element of our project. We tried using MATLAB’s 
Harris detector (detectHarrisFeatures) and corner detector on the 
segmented grayscale images and binarized images of the target. 
However, the resulting 10-15 strongest points didn’t always 
contain our 10 points of interest. We believe this is because of 
false edges caused by converting the image to gray scale, this 
effect is visible in Fig. 6. To address this problem, we considered 
two main solutions. First, we tried using edge detection — 
looking at points that have high sum or product of diagonal and 
vertical derivates.  Second, we implemented our own version of 
Harris detector — looking for points with the highest minimum 
eigenvalue of the second moment-matrix. In our most robust 
algorithm, we:  

1. Isolate the middle square, then 
a. Inverse the target image  
b. Erode the image using squares with increasing 

edge lengths, until the erosion output gives four 
objects: middle square + three quarter circles 

c. Isolate the largest shape (middle square)  
d. Dilate the image using the square used in b. for 

erosion 
2. Find the middle square keypoints (corners). To do this 

we:  
a. Use detectHarrisFeatures to get the 15 strongest 

points (we limit the number of points to reduce 
runtime). Yellow and red asterixis in Fig. 6(a). 

b. Choose the 4 points out of 15 that creates biggest 
polygon (maximum area). Red asterixis in Fig. 
6(a). 

c. Determine point 1, which is the point that is 
furthest away from the average of the 4 objects 
centers of mass  Fig. 6(a). 

d. Points 2-4 are the other 3 edges in a clockwise 
order (when the square center of mass is defined as 
the origin) Fig. 6(a). 

3. Find the other 6 keypoints. To do this we: 
a. Use detectHarrisFeatures to find the 25 strongest 

points of the target. All color asterixis in  Fig. 6(b). 
b. Divide the points into 4 groups (according to L2 

distance from 4  square's corners) different colors 
asterixis in  Fig. 6(b). 

c. For each group,  
i. Leave only the points that are far enough from 

the square’s center of mass (at least 1.1 times 
the distance of the relevant square’s corner) The 
green and magenta asterixis in  Fig. 6(c). 

ii. Find the 2 points that create the minimum and 
maximum angle defined by the point, the 
square center of mass, relevant square’s corner. 
The magenta asterixis in Fig. 6(c). 

d. Points 5-10 are ordered in a clockwise order 
according to the angular distance away. 

 
Fig. 6(d) shows the final results. We are able to successfully 

able to label the 10 points in an image, in the correct order, for 
the majority of images. 
 

V. STEREO TRACKING 

A. Methods 
With a calibrated stereo camera setup and given the same 

point in  two images, the 3D position of that point in world 
coordinates can be determined. 

This procedure is well known and can be summarized up 
in 3 steps: 

1. Stereo Camera setup calibration (see Section Error! 
Reference source not found.) 



2. Find correspondences between points in left and right 
cameras (see Section IV). 

3. Triangulation which is solved using the linear 
triangulation method [10]. 

B. Results 
To evaluate the accuracy of the results, a comparison with 

the MicronTracker output was performed.  However, we 
realized that determining the extrinsic matrix that transformed 
out camera setup to the MicronTracker coordinate frame was 
very difficult to measure.  This was partly due to the fact that 
we did not know exactly which point the MicronTracker was 
using as its origin.  So instead of trying to perform an absolute 
comparison between our outputs and the MicronTracker’s, we 
opted for a relative comparison between target reference 
frames.  The idea with this approach is that while we cannot get 
the single camera results to agree absolutely with the 
MicronTracker results, they should be able to agree on how 
much the target moved between frames of motion, M1 and M2, 
using the target’s own reference frame.  Stated another way, we 
are finding the pose of the target after it has been moved, with 
respect to its own starting reference frame  This concept is 
captured by the following expression, 

 
( 𝑀+,-.
/0 )2 𝑀+,-/3

. 4 = 𝑀+,-/3
/0 = 2 𝑀+,-6789:;

/0 42 𝑀+,-/3
6789:; 4 

 
Where 𝑀+,-.

/0  and 𝑀+,-6789:;
/0  are the inverses of 𝑀+,-/0

.  and 
𝑀+,-/0

6789:; , respectively.  These results are shown below in 
Table 1 for two different motions. 
 
 

Table 1 - Pose estimation from target's own frame of reference between 
motions 1 and 2 

 
Micron 
Tracker 

Two 
Camera 
(cherry 
picked) 

|Error| 

Two 
Camera 
(full algo 

run) 

|Error| 

Θx 
[rad] 

0.05 -0.01 0.06 -0.36 0.41 

Θy 
[rad] 

-0.40 -0.43 0.03 0.03 0.43 

Θz 
[rad] 

0.06 0.04 0.02 0.02 0.04 

tx 
[mm] 

29.58 29.48 0.10 19.25 10.33 

ty 
[mm] 

21.69 21.03 0.66 -27.28 48.97 

tz 
[mm]  

-11.64 -12.61 0.97 -6.45 5.19 

 
Table 2 - Pose estimation from target's own frame of reference between 

motions 1 and 3 

 
Micron 
Tracker 

Two 
Camera 
(cherry 
picked) 

|Error| 

Two 
Camera 
(full algo 

run) 

|Error| 

Θx 
[rad] 

0.13 0.13 0.00 -0.47 0.60 

Θy 
[rad] 

-0.48 -0.46 0.02 -0.03 0.45 

Θz 
[rad] 

0.04 0.05 0.01 0.03 0.01 

tx 
[mm] 

83.38 81.96 1.42 23.84 59.54 

ty 
[mm] 

32.84 32.15 0.69 -74.14 106.98 

tz 
[mm]  

-93.95 -91.39 2.56 -81.84 12.11 

 
These results suggest this method is very sensitive to noise 

in the keypoint location.  The cherry picked results are vastly 
superior to the results produced with segmentation keypoints. 
 

VI. SINGLE CAMERA TRACKING 

A. Methods 
The objective of this method is to estimate the pose, of a 

known geometric target using only a single camera.  If the pose 
of the target can be determined for each frame of motion, then 
the motion of the target is known.  The terms model and target 
will be used interchangeably in this section. 

The target used for this method is show in Fig. 2, and the 
correspondence between keypoints on the target body and their 
pixel locations is found in the segmentation portion of the 
algorithm described in IV. In addition to establishing this 
keypoint correspondence, the intrinsic matrix, K, of the camera 
must be known, seeSection Error! Reference source not 
found.Error! Reference source not found.. Lastly, rigid body 
motion of the target is assumed.   

The algorithm to be discussed utilizes the principle of 
perspective projection.  Equation (1) describes this operation.  
The notation convention being used is leading superscripts 
represent the frame in which the object or action is observed 
[9].    

𝑝. = 𝑲( 𝑹/. 			 𝑡/:9@. ) 𝑃/  (1) 

Where C𝑝  is the projected point in the camera reference 
frame, 𝑹/.  is the rotation of the model reference frame as seen 
in the camera reference frame, 𝑡/:9@.  is the translation of the 
model origin as seen in the camera reference frame, and 𝑃/  is 
the point in the model’s reference frame.  The term 
( 𝑹/. 			 𝑡/:9@. ) is referred to as the extrinsic matrix, 𝑴𝒆𝒙𝒕. 

Finally, to convert C𝑝	to	screen	pixels,	it	is	converted	to	
homogeneous	coordinates	by	dividing	each	term	by	the	“z”	
term.	  

𝑝. = _
𝑥
𝑦
𝑧
c	,					𝑥76d@+ = 𝑥 𝑧⁄ , 𝑦76d@+ = 𝑦 𝑧⁄ 	 (2)	

In the above two equations, both the model keypoints ( 𝑃/ ) and 
the screen points (𝑥76d@+, 𝑦76d@+) are known, along with the 
camera intrinsic matrix.  The unknown is the extrinsic matrix, 
which encodes the pose information of the target in the 
camera’s frame of reference.  The following gradient descent 
algorithm was employed to iteratively solve for the pose [1]. 



1. Make an initial guess for the pose of the form 𝑥 =
(𝜃, 𝜃h 𝜃i 𝑡, 𝑡h 𝑡i)j .  Here the first three 
terms represent rotations about the x, y, and z axes, 
respectively.  The last three terms are the translation 
components, also referred to as 𝑡/:9@. . 

2. Project the target keypoint coordinates onto screen-
space using equation (1) and (2).  Compare the error 
between these projected points and the known 
keypoint locations in screen-space. 

3. If the error is less than some threshold, calculate the 
Jacobian of the projection operation (f(x)),               𝐽 =
𝜕𝑓 𝜕𝑥⁄ , and evaluate at x.  This produces the 
relationship 𝑑𝑦 = 𝐽	𝑑𝑥 

4. Solve for 𝑑𝑥  using the pseudo inverse, 𝑑𝑥 =
(𝐽j𝐽)o0𝐽j𝑑𝑦 

5. Update pose:  𝑥 = 𝑥 + 𝑑𝑥 
6. Repeat steps 2-5 until error is below threshold. 

 

An illustration of the algorithm converging to the known 
keypoint coordinates can be seen in video file MT_1.gif. 

Fig. 7 shows  an image of the target axes overlaid on the 
image.  These were generated using the calculated pose 
produced by the algorithm.  The x-axis is the red line, the y-axis 
the green line, and the z-axis the blue line. 

 

 
Fig. 7. Unit vectors overlaid on image using pose found from algorithm. 

B. Results 
The comparison to ground truth was performed in the same 

manner as for the two camera problem.  A weakness of this 
method is its sensitivity to perspective effects and keypoint 
accuracy.  When the target is too far from the camera, it 
resembles an orthographic projection rather than a perspective 
projection.  When this is coupled with small errors in the 
keypoint detection, it can lead to large errors in the pose 
estimation.  The tables below were generated from the same 
images as were used in the two camera method.  Here, there is 
a comparison between ideal, “cherry picked” keypoints, and 
somewhat noisy keypoints resulting from the segmentation 
algorithm. 

When the pose is calculated correctly, the average error is 
comparable to the two camera setup.  However, this method is 
more susceptible to perspective effects of the target, and 
therefore has a larger error bar when the erroneous pose values 
are considered. 

 
 
 
 
Table 3.  Pose estimation from target's own frame of reference between 
motions 1 and 2 

 
Micron 
Tracker 

Single 
Camera 
(cherry 
picked) 

|Error| 

Single 
Camera 
(full algo 

run) 

|Error| 

Θx 
[rad] 0.05 0.10 0.05 0.07 0.02 

Θy 
[rad] -0.40 -0.39 0.01 -0.70 0.30 

Θz 
[rad] 0.06 0.06 0.00 0.03 0.03 

tx 
[mm] 29.58 28.71 0.87 33.93 4.35 

ty 
[mm] 21.69 21.63 0.06 21.94 0.25 

tz 
[mm]  -11.63 -10.11 1.52 -19.27 7.64 

 

Table 4 - Pose estimation from target's own frame of reference between 
motions 1 and 3 

 
Micron 
Tracker 

Single 
Camera 
(cherry 
picked) 

|Error| 

Single 
Camera 
(full algo 

run) 

|Error| 

Θx 
[rad] 0.13 0.16 0.03 0.00 0.13 

Θy 
[rad] -0.48 -0.49 0.01 -0.68 0.20 

Θz 
[rad] 0.04 0.03 0.01 0.01 0.03 

tx 
[mm] 83.38 82.12 1.26 84.07 0.69 

ty 
[mm] 32.84 33.84 1.00 30.25 2.59 

tz 
[mm]  -93.95 -92.67 1.28 -104.77 10.82 

 

VII. FEATURE TRACKING 
The high level objective of the project is motion tracking for 

the purpose of medical imaging. Thus, we would like to be able 
to extract the orientation of a physical feature (in our case, a 
face) using the stereo camera setup. 

In order to perform triangulation, we must first find 
keypoints in the right and left images. We decided to track the 
motion of the head based on tracking key points on the face. In 
this case, given that we want to track motion and we want pose 
estimation in 3D, we need to find corresponding points, 
spatially,  between Left and Right cameras and, temporally, 
between 2 pairs of frames taken at different times. 



First, it is necessary to first segment the face from the 
background. We use the Viola-Jones algorithm in Matlab to 
detect faces in our images.  Using this method we are able to 
identify complete images of the face, see Error! Reference 
source not found.. However,  we are only able to identify the 
face in 3 out of 9 pairs of stereo images in our data set. It is 
possible this algorithm could be improved by improving the 
quality of the image by removing background noise or changing 
the lighting conditions We also implemented an algorithm that 
uses hue detection (CAMShift) [8].  The algorithm was 
successfully able to detect part or all of the face in an image; 
however, the bad or partial matches added additional noise to 
our algorithm. 

 
 

 
Fig. 8. Example of the face detection algorithm for pairs of stereo images. The 
left image illustrates a complete face detection. However, part of the neck is 
also shown in the image. The right image illustrates a partial face cropping. 

 

We determined point correspondences using the following 
algorithm that leverages both SIFT descriptors and RANSAC. 

Algorithm: 

1. Collect 2 pairs of frames with the stereo camera 
(2x(Left + Right) = 4 images in total) 

Perform the following steps on image Frame 1, Left and 
Right (SIFT + RANSAC): 
2. Find keypoints 
3. Run Sift Descriptor algorithm on keypoints 
4. Generate descriptors vectors for keypoints 
5. Find matches between Left and Right Images 
6. On Matches found in (4) run RANSAC algorithm to 

find the best homography between left and right 
images 

a. For RANSAC, in each iteration 4 points were 
taken, 30 iterations were ran 

b. In each iteration the homography was 
calculated based on 4 matched points and 
number of inliers was logged  

c. The homography with largest number of 
inliers was used to remove outliers 

7. Filter out all outlier matches and leave only valid 
matches. 

8. Repeat Steps (2) – (8) when images are Frame 1 left, 
Frame 2 Left 

 
a. Use as keypoints for frame 1 left only the 

inlier keypoints that have valid 
correspondences after RANSAC 

 
9. Repeat Steps (2) – (8) when images are Frame 2 left, 

Frame 2 Right 
a. Use as keypoints for frame 2 left only  the 

inlier keypoints that have valid 
correspondences after RANSAC 

 
10. Filter in all 4 images only the keypoints that had valid 

correspondences in all 3 aforementioned SIFT + 
RANSAC steps. 

11. Perform triangulation for each frame (based on 2 
images and corresponding points) 

12. Estimate the pose. 

Frame 1 LEFT, Frame 1 Right: 

   
Frame 1 Left, Frame 2 Left: 

 
Frame 2 Left, Frame 2 Right: 

 
 

Frame 1 Left, Frame 1 Right (After points filtration): 

 
Fig. 9. Example of keypoint detection using our proposed algorithm. 

A. Results 
Table 5.  Results of the feature tracking algorithm compared to the magnetic 
tracker data. 

 
 Stereo 

Camera 
Magnetic 
Tracker 

Error 



ΔX 30.89 -110 140.89 

ΔY 60.89 39 21.81 

ΔZ 150.1 36.9 113.2 

 
Results are quite far (> 10 cm), However this can be mostly 

explained by poor correspondence between points to triangulate 
well the 3D point. The inaccuracy of the magnetic tracker 
collection also contributed to this error. 

The drawack of this method is that it requires 
correspondence in the two directions that requires an accurate 
and robust manner of describing points between cameras. 

 
 

VIII.  COMPARISONS OF METHODS 
We compare the three motion tracking methods by 

assessing the algorithm accuracy, algorithm speed, and the 
physical set-up for taking images. 

A. Stereo Camera Method: 
PROS 

• Does not require prior knowledge about the tracked 
target 

• Lower computation time (0.67 sec)  
• Similar calibration Method to single camera 
 

 
CONS 

• Requires accurate correspondence between between 
points in both cameras 

• Requires calibration of both cameras 
• Sensitive to focus variation between cameras 
• Computation time would be higher for a better 

triangulation method 

B. Single Camera Method:  
PROS 

• Comparable accuracy to two camera setup. 
• Only one camera and a marker. 

 
CONS 

• Run-time too long for real-time motion correction 
(1.5s per frame not including target detection plust 
time to detect the target). 

• Accuracy needs to be improved to sub-millimeter for 
medical applications. 

• Sensitive to perspective effects on target, especially if 
distance to target is much greater than distance 
between target keypoints (See video 
Complete_Video_300frames.gif).  We tried to 
overcome this by using a 3D target, but identifications 
of the keypoints with such a shape would considered 
too difficult for the amount of time we had. 

 

Fig. 10. Example of pose estimation using 3D printed box. 

 

IX. CONCLUSIONS 
In this paper, we present the algorithms and performance of 

three motion tracking algorithms. Our results indicate that 
tracking using a target with either one or two cameras may 
provide more accurate and stable results than using feature 
tracking. However, this may be a consequence of not being to 
detect the face in all of the images and not always finding 
sufficient keypoint correspondences between images using 
feature detection. Comparatively, our algorithms to identify the 
10 points of the target in 3D space is reliable and our methods 
for detecting the resulting 3D orientation is comparatively 
stable. However, both the algorithms can be greatly improved 
by improving our corner detection algorithm. We can see that 
the “cherry-picked” points perform much better, however, 
when we run our algorithm with automatic corner detection, the 
results are much worse.  

Currently, our algorithms can only be used in post-
processing because the algorithms have long run times. In the 
future, we would like to reduce the run time so that we can 
explore real time head tracking for medical imaging. We can 
also greatly reduce our overall run time for the single and two 
camera set-ups by improving our marker detection algorithm. 
We would also like to investigate the impact of image quality 
by taking testing image with more stable lighting and fewer 
background obstacles. Additionally, we would like to test our 
methods on a larger set of images to get a better estimate of the 
true position accuracy. 
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APPENDIX 
Jonathan and Tom worked on the keypoint detection and image segmentation 
code. Tom worked on the single camera detection algorithm. Alex worked on 
the two camera-detection algorithm.  Alex worked on the feature detection 
algorithm. Sophia implemented face detection algorithm. Sophia collected the 
calibration images and ground truth data with Jonathan’s help.   

 
 

 


